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A Striking Vision

______________________________________________________________________________________________________________________________________________________________________ 26 INCOSE
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« Systems of Systems enabled by networked,
autonomous computing elements

« Collaborative and model-based engineering
methods as a means of managing risk

« Supporting cross-disciplinary analyses, design
space explorations and optimisations AWORLD IN

www.incose.org/symp2016 3



Engineering Cyber-Physical Systems

Newcastle
University

Advanced Model-Based Engineering & Reasoning (AMBER)
* Model-based Systems Engineering for demanding systems

+ Systems of Systems (www.thecompassclub.org)
» Cyber-Physical Systems (www.cpse-labs.eu)

Models as a basis for collaborative multi-disciplinary development
Exploiting rigorous mathematical semantics

BANG & OLUFSEN

» Benefits: SONY “““
« Traceability to requirements and assurance arguments FeliCa NYSE
+ Design Space Exploration R g e

* Models as test oracles
« Design-time V&V of performance, safety, security properties ...

Demonstrated reductions in development effort and defect rates

www.incose.org/symp2016



Engineering Cyber-Physical Systems (CPSs) qr.\./
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Networked systems integrating embedded computational
and physical processes, and human users.

« Examples: agile manufacturing, responsive
infrastructure, buildings, transport, cooperative robotics
« Step up from technical processes to organisation level
* Inherently multidisciplinary
« Reliance is placed on joint behaviour of cyber and
physical elements
« Confidence in their interaction is a research focus

www.incose.org/symp2016 5}
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Co-modelling and Co-simulation

WWW.INCOS

class AbstractModalController
instance variables
-- servos (as abstract classes)
private servolLeft: |ActuatorRealPercent;
-- current mode and map of all possible modes
protected modes: map Mode to IMode;
-- control turn aggression
private fastSpeed: |IActuatorRealPercent Percent;
operations
public Step: () ==> ()
Step() == (if init then (
modes(mode).Enter();
init := false);
let m = CheckModeChange() in
if m <> nil then ChangeMode(m);
let m = modes(mode).Step() in
if m <> nil then ChangeMode(m); );

e 2
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Edinburgh, UK
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i externals
real global export pos_x;
real global export pos_y;
I parameters
|—.:;‘. e real global initial_position [3];

S equations

i - e suinim position = int (velocity) +

i 0 initial_position[1:2];
v pos_x = position[1];

pos_y = position[2];



Co-modelling and Co-simulation

By L
=T

L E
4 y ™
s R T——
ot aar Bneten |
IITIRINER i
‘
:
o s
Somver =

WWW.INCOS

class AbstractModalController

instance variables

-- servos (as abstract classes)

private servolLeft: |ActuatorRealPercent;

-- current mode and map of all possible modes
protected modes: map Mode to IMode;

-- control turn aggression

private fastSpeed: |IActuatorRealPercent Percent;
operations

public Step: () ==> ()
Step() == (if init then (

modes(mode).Enter();

init := false);

let m = CheckModeChange() in
if m <> nil then ChangeMode(m);
let m = modes(mode).Step() in

if m <> nil then ChangeMode(m);

Mind the
(Semantic)
Gap!
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externals
real global export pos_x;
real global export pos_y;

parameters
real global initial_position [3];

equations
position = int (velocity) +
initial_position[1:2];
pos_x = position[1];
pos_y = position[2];




Co-modelling and Co-simulation

* Discrete-event (DE), e.g.
VDM-RT

* Insimulation, only
represent points in time
at which the state
changes

e Good abstractions for
software

* Less suited for physical
system modelling

www.incose.org/symp2016

Physics:

* Continuous
* Numerical

{
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July 18 - 21, 2016

Continuous-time (CT),
e.g. differential equations

In simulation, the state
changes continuously
through time

Good abstractions for
physical system
disciplines

Poor software modelling
support

10



Co-modelling and Co-simulation
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VDM-RT

* Insimulation, only
represent points in time
at which the state
changes

e Good abstractions for
software

* Less suited for physical
system modelling

* Discrete-event (DE), e.g.

www.incose.org/symp2016

Co-model

Physics:
e Continuous
 Numerical

DE Co-model
Model Interface

Edinburgh, UK
July 18 - 21, 2016

Continuous-time (CT),
e.g. differential equations

In simulation, the state
changes continuously
through time

Good abstractions for
physical system
disciplines

Poor software modelling
support
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Co-modelling and Co-simulation

Overture

www.incose.org/symp2016

Co-Simulation
engine <:>
Crescendo 20-sim
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class AbstractModalController

instance variables

-- servos (as abstract classes)

private servolLeft: |ActuatorRealPercent;

-- current mode and map of all possible modes

protected modes: map Mode to IMode;
-- control turn aggression

private fastSpeed: |IActuatorRealPercent Percent;

operations

public Step: () ==> ()

Step() == (if init then (
modes(mode).Enter();
init := false);
let m = CheckModeChange() in

if m <> nil then ChangeMode(m);

let m = modes(mode).Step() in

if m <> nil then ChangeMode(m);
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externals
real global export pos_x;
real global export pos_y;

parameters
real global initial_position [3];

equations
position = int (velocity) +
initial_position[1:2];
pos_x = position[1];
pos_y = position[2];
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Design Space Exploration Sarburgh, UG

Sweeping over design
parameters

Could be in the DE or
CT models

www.incose.org/symp2016
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A Building Automation Study with UTRC 4 T
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« Buildings: 40% of energy
consumption, 36% of
carbon emissions

« Potential benefits via, e.g.
loT-based user profiling

« Complex interconnected
control systems interacting
with physical environment

« Can co-modelling help?

www.incose.org/symp2016
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« Case Study

 UTRC identified
targets:
— Co-modelling

— Co-simulation
performance

— Co-simulation accuracy
and precision

18



A Building Automation Study g“,./
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« Fan Coil Unit (FCU) o121

« Water heated/cooled, l il
passes through Coill |>l Qm FD;e;*;:r'r

 Room air blow through
Fan, returned to room ,
Fresh Air

 Software Controller Return

Air Circulation

Single Room

www.incose.org/symp2016 19



Architectural Structure Diagram

Cyber —

Envt. handled as
time-indexed tables

Physical —

www.incose.org/symp2016
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Shared
Parameters

—

[ ] c:iController
3
y

{3

fanSpeed] | vaiveOpen
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A Building Automation Study: Co-model: CT

______________________________________________________________________________________________________________________________________________________________________ 26 INCOSE
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Wall Model: models the head dissipation
from the room to the outside temperature

Edinburgh, UK

OAT

Controller Model: modified for co-simulation purpose,
and connected with VDM to run the PID algorithm.

Room Model: models the FCU components,
room thermal mass and internal thermal load.

RATSP T

> Room : L

22



A Building Automation Study: Co-model: CT
______________________________________________________________________________________________ 26 INCOSE

e ODEs within the Wall
block in the CT model

www.incose.org/symp2016

&

e

Edinburah. UK
parameters
real rhoWall = 1312.0; -- wall density
real cWall = 1360.71; -- specific heat capacity
real lambdaWall = 0.1192; -- wall thermal conductivity
real IWall = 0.001; -- wall thickness

variables

real Tosurf; -- external surface temperature
real R; -- wall resistance

real C; -- wall thermal capacity

equations

R = IWall / (lambdaWall * aWall);

C =0.5*rhoWall * cWall * Iwall * aWall;

Tisurf = int ((hi * aWall * (RAT - Tisurf) + (Tosurf - Tisurf) / R) / C, TisurfInit);
Tosurf = int((ho * aWall * (OAT - Tosurf) + (Tisurf - Tosurf) / R) / C, Tosurflnit);

23



A Building Automation Study: Co-model: DE
______________________________________________________________________________________________________________________________________________________________________ 26 INCOSE

* Object-oriented

* e.g. general Actuator
model overridden to
limit outputs from the
control algorithm to suit
physical valve and fan

www.incose.org/symp2016

Edinburgh, UK

— Actuator
Description  “Niwua,, Controller + State - real
+ K- + localState : real
K, Ti and Td are . K:real :
standard PID Td real + setState(in s: real)
attributes +Ti: real + getState(): real
+ PIDcalculate() + Update()
+ syncSensorsAndActuators() T
Sensor Y1 ?1 ActuatorLimited
+ level : real + max : real

+ localLevel : real

+ getlLevel(): real
+ update()

2| + min:real

+ setState(in s: real)

24
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private PIDcalculate: ()==>() Edinburgh, UK

* Object-oriented prbeateutate (=2 s

° eg general ACtuatOF syncSensorsAndActuators () ;
model overridden to 7L oRAT . getlevel ()
imit outputs from the e
control algorithm to suit ;;ziizﬁ:ijsampletime* (Krerr/Ti) ;
physical valve and fan uDin:=c*RATSP-MV;

«  Could be arbitrarily pD%flt:iP Enl/j%?'<uDin_previousuDin>>,-
sophisticated (this PID valveOpen.setState (control);

fanSpeed.setState (control);

controller isn’t!) );

thread - period 80 ms
periodic (80E6/*ms*/,0,0,0) (PIDcalculate);

www.incose.org/symp2016 25
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Room 20 Control
= Setpoint = Control Output
30 = RAT |- Control Output,
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Edinburgh, UK

2 4 6 8 10 12
Thermal Conductivity (lower = better insulation)

--10 Weeks -m-35Weeks —4-60Weeks 80 Weeks
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A Building Automation Study: Limitations tr. ..:-/
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* Binary co-model is limiting

* N-ary multimodel more PP— W — ——
realistic ] s B —:‘“—'“j":"fj __@ P
« Performance acceptable o
(one week in 7.5 minutes Oy
on a desktop PC) o —
 Ability to set precision DE
side
27
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Towards Multi-models

Integrated Toolchains INTO-CPS (www.into-cps.au.dk)

Multi-model
@ om
DE CT CT
Mod Model Model odel
[ Model Descriptions || | Functemaidetiomeprnterface ]/j

@B = OM B ¢ %

Modelio Overture 20-sim OpenModelica Crescendo TWTEngine RT-Tester

SyshL Discrete-event Continuous-time and physical- Co-simulation solutions Test automation /
modelling modelling systems modelling model checking

www.incose.org/symp2016
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Towards Multi-models P

----------------------------------------------------------------------------------------------------------------------------------------- 26 INCOSE
Integrated Toolchains INTO-CPS (www.into-cps.au.dk) vt ke

s

Design Space Exploration
Test Automation

* Modelling Guidelines,

Frameworks, Profiles, - e eedback MiL
Requirements Co-Simulation
Patterns )
. » Heterogeneous Testing
SysML - FMI Systems Models
Model Generation
k' Code /
HiL / SiL Hardware
Slmulat|on

* No “factotum” tools!

« Traceability, provenance
and model management

« Extensible range of plug-ins Strong Traceability

Configuration Management

www.incose.org/symp2016
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Concluding Remarks

« Collaborative Systems need
Collaborative Engineering!

* Model-based methods for
multidisciplinary CPSE

« Challenges:

* Integration of heterogenous
models in workflows and
toolchains

« Semantic links

« Assurance through
traceability

www.incose.org/symp2016
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User-driven case study
Co-modelling and co-
simulation is feasible fro DE/
CT binary co-models
Integration of co-modelling
with SE processes
Increasing number and
diversity of constituent
models

Need for practical guidelines
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