
Collaborative MBSE for Cyber-Physical Systems
with a Building Automation Case Study

John Fitzgerald, Carl Gamble, Richard Payne
Newcastle University, UK

Firstname.Lastname@newcastle.ac.uk

Peter Gorm Larsen
Aarhus University, Denmark

pgl@eng.au.dk

Stylianos Basagiannis, Alie El-Din Mady
United Technologies, Cork, Ireland

BasagiS@utrc.utc.com
MadyAA@utrc.utc.com

July

www.incose.org/symp2016

Overview
1.  Engineering of Cyber-Physical Systems
2.  Co-models and Co-simulation
3.  A Building Automation Study
4.  Towards Multi-models
5.  Concluding Remarks

2

July

www.incose.org/symp2016

A Striking Vision

3

•  Systems of Systems enabled by networked,
autonomous computing elements

•  Collaborative and model-based engineering
methods as a means of managing risk

•  Supporting cross-disciplinary analyses, design
space explorations and optimisations

July

www.incose.org/symp2016

Engineering Cyber-Physical Systems	

Advanced Model-Based Engineering & Reasoning (AMBER)
•  Model-based Systems Engineering for demanding systems

•  Systems of Systems (www.thecompassclub.org)
•  Cyber-Physical Systems (www.cpse-labs.eu)

•  Models as a basis for collaborative multi-disciplinary development
•  Exploiting rigorous mathematical semantics
•  Benefits:

•  Traceability to requirements and assurance arguments
•  Design Space Exploration
•  Models as test oracles
•  Design-time V&V of performance, safety, security properties …

•  Demonstrated reductions in development effort and defect rates

July

www.incose.org/symp2016

Engineering Cyber-Physical Systems (CPSs)

5

Networked systems integrating embedded computational
and physical processes, and human users.
•  Examples: agile manufacturing, responsive

infrastructure, buildings, transport, cooperative robotics
•  Step up from technical processes to organisation level
•  Inherently multidisciplinary
•  Reliance is placed on joint behaviour of cyber and

physical elements
•  Confidence in their interaction is a research focus

July

www.incose.org/symp2016

Overview
1.  Engineering of Cyber-Physical Systems
2.  Co-models and Co-simulation
3.  A Building Automation Study
4.  Towards Multi-models
5.  Concluding Remarks

6

July

www.incose.org/symp2016

Co-modelling and Co-simulation

7

July

www.incose.org/symp2016

Co-modelling and Co-simulation

8

externals	
		real	global	export	pos_x;	
		real	global	export	pos_y;	

		
parameters	
		real	global	ini2al_posi2on	[3];	
	
equa.ons	
		posi2on	=	int	(velocity)	+				
																					ini2al_posi2on[1:2];	
		pos_x	=	posi2on[1];	
		pos_y	=	posi2on[2];	
		

class AbstractModalController
instance variables
-- servos (as abstract classes)
private servoLeft: IActuatorRealPercent;
-- current mode and map of all possible modes
protected modes: map Mode to IMode;
-- control turn aggression
private fastSpeed: IActuatorRealPercent`Percent;
operations
public Step: () ==> ()
Step() == (if init then (

 modes(mode).Enter();
 init := false);
 let m = CheckModeChange() in
 if m <> nil then ChangeMode(m);
 let m = modes(mode).Step() in
 if m <> nil then ChangeMode(m););

July

www.incose.org/symp2016

Co-modelling and Co-simulation

9

externals	
		real	global	export	pos_x;	
		real	global	export	pos_y;	

		
parameters	
		real	global	ini2al_posi2on	[3];	
	
equa.ons	
		posi2on	=	int	(velocity)	+				
																					ini2al_posi2on[1:2];	
		pos_x	=	posi2on[1];	
		pos_y	=	posi2on[2];	
		

class AbstractModalController
instance variables
-- servos (as abstract classes)
private servoLeft: IActuatorRealPercent;
-- current mode and map of all possible modes
protected modes: map Mode to IMode;
-- control turn aggression
private fastSpeed: IActuatorRealPercent`Percent;
operations
public Step: () ==> ()
Step() == (if init then (

 modes(mode).Enter();
 init := false);
 let m = CheckModeChange() in
 if m <> nil then ChangeMode(m);
 let m = modes(mode).Step() in
 if m <> nil then ChangeMode(m););

Mind the
(Semantic)

Gap!

July

www.incose.org/symp2016

Co-modelling and Co-simulation

10

CT
Model

DE
Model

Software:
•  Discrete
•  Complex

logic

Physics:
•  Continuous
•  Numerical

•  Con.nuous-.me	(CT),	
e.g.	differen2al	equa2ons	

•  In	simula2on,	the	state	
changes	con2nuously	
through	2me	

•  Good	abstrac2ons	for	
physical	system	
disciplines	

•  Poor	soKware	modelling	
support	

•  Discrete-event	(DE),	e.g.	
VDM-RT	

	
•  In	simula2on,	only	
represent	points	in	2me	
at	which	the	state	
changes	

•  Good	abstrac2ons	for	
soKware	

•  Less	suited	for	physical	
system	modelling	

July

www.incose.org/symp2016

Co-modelling and Co-simulation

11

Software:
•  Discrete
•  Complex

logic

Physics:
•  Continuous
•  Numerical

•  Con.nuous-.me	(CT),	
e.g.	differen2al	equa2ons	

•  In	simula2on,	the	state	
changes	con2nuously	
through	2me	

•  Good	abstrac2ons	for	
physical	system	
disciplines	

•  Poor	soKware	modelling	
support	

•  Discrete-event	(DE),	e.g.	
VDM-RT	

	
•  In	simula2on,	only	
represent	points	in	2me	
at	which	the	state	
changes	

•  Good	abstrac2ons	for	
soKware	

•  Less	suited	for	physical	
system	modelling	

Co-model
Interface

CT
Model

DE
Model

Co-model

July

www.incose.org/symp2016

Co-modelling and Co-simulation

12

CT
Model

Co-Simulation
engine

DE
Model

Overture Crescendo 20-sim

July

www.incose.org/symp2016

Co-modelling and Co-simulation

13

externals	
		real	global	export	pos_x;	
		real	global	export	pos_y;	

		
parameters	
		real	global	ini2al_posi2on	[3];	
	
equa.ons	
		posi2on	=	int	(velocity)	+				
																					ini2al_posi2on[1:2];	
		pos_x	=	posi2on[1];	
		pos_y	=	posi2on[2];	
		

class AbstractModalController
instance variables
-- servos (as abstract classes)
private servoLeft: IActuatorRealPercent;
-- current mode and map of all possible modes
protected modes: map Mode to IMode;
-- control turn aggression
private fastSpeed: IActuatorRealPercent`Percent;
operations
public Step: () ==> ()
Step() == (if init then (

 modes(mode).Enter();
 init := false);
 let m = CheckModeChange() in
 if m <> nil then ChangeMode(m);
 let m = modes(mode).Step() in
 if m <> nil then ChangeMode(m););

July

www.incose.org/symp2016

Co-modelling and Co-simulation

Design Space Exploration

Sweeping over design
parameters
Could be in the DE or
CT models

July

www.incose.org/symp2016

Co-modelling and Co-simulation

July

www.incose.org/symp2016

Co-modelling and Co-simulation

16

		
														

		 				 										 		

				

		

July

www.incose.org/symp2016

Overview
1.  Engineering of Cyber-Physical Systems
2.  Co-models and Co-simulation
3.  A Building Automation Study
4.  Towards Multi-models
5.  Concluding Remarks

17

July

www.incose.org/symp2016

A Building Automation Study with UTRC

18

•  Buildings: 40% of energy
consumption, 36% of
carbon emissions

•  Potential benefits via, e.g.
IoT-based user profiling

•  Complex interconnected
control systems interacting
with physical environment

•  Can co-modelling help?

•  Case Study
•  UTRC identified

targets:
–  Co-modelling
–  Co-simulation

performance
–  Co-simulation accuracy

and precision

July

www.incose.org/symp2016

A Building Automation Study

19

•  Fan Coil Unit (FCU)
•  Water heated/cooled,

passes through Coil
•  Room air blow through

Fan, returned to room
•  Software Controller

July

www.incose.org/symp2016

A Building Automation Study: Co-model Architecture

20

Architectural Structure Diagram

Cyber

Physical

Envt. handled as
time-indexed tables

July

www.incose.org/symp2016

A Building Automation Study: Co-model Architecture

21

Connection Diagram

Shared
Parameters

July

www.incose.org/symp2016

A Building Automation Study: Co-model: CT

22

July

www.incose.org/symp2016

A Building Automation Study: Co-model: CT

23

•  ODEs within the Wall
block in the CT model

parameters
real rhoWall = 1312.0; -- wall density
real cWall = 1360.71; -- specific heat capacity
real lambdaWall = 0.1192; -- wall thermal conductivity
real lWall = 0.001; -- wall thickness
…
variables
real Tosurf; -- external surface temperature
real R; -- wall resistance
real C; -- wall thermal capacity

equations
R = lWall / (lambdaWall * aWall);
C = 0.5 * rhoWall * cWall * lWall * aWall;
Tisurf = int ((hi * aWall * (RAT - Tisurf) + (Tosurf - Tisurf) / R) / C, TisurfInit);
Tosurf = int((ho * aWall * (OAT - Tosurf) + (Tisurf - Tosurf) / R) / C, TosurfInit);

July

www.incose.org/symp2016

A Building Automation Study: Co-model: DE

24

•  Object-oriented
•  e.g. general Actuator

model overridden to
limit outputs from the
control algorithm to suit
physical valve and fan

July

www.incose.org/symp2016

A Building Automation Study: Co-model: DE

25

•  Object-oriented
•  e.g. general Actuator

model overridden to
limit outputs from the
control algorithm to suit
physical valve and fan

•  Could be arbitrarily
sophisticated (this PID
controller isn’t!)

private PIDcalculate:()==>()
PIDcalculate()==
(

 syncSensorsAndActuators();

 MV:=RAT.getLevel();
 err:=RATSP-MV;
 factor:=Td/(sampletime+(Td/N));
 uP:=K*(b*RATSP-RAT.getLevel());
 uI:=previousuI+sampletime*(K*err/Ti);
 previousuI:=uI;
 uDin:=c*RATSP-MV;
 previousuDin:=uDin;
 uD:=factor*(uD/N+K*(uDin-previousuDin));
 control:=uP+uI+uD;
 valveOpen.setState(control);
 fanSpeed.setState(control);

);
thread – period 80 ms
periodic(80E6/*ms*/,0,0,0)(PIDcalculate);

July

www.incose.org/symp2016

A Building Automation Study: Co-model: DSE

26

July

www.incose.org/symp2016

A Building Automation Study: Limitations

27

•  Binary co-model is limiting
•  N-ary multimodel more

realistic
•  Performance acceptable

(one week in 7.5 minutes
on a desktop PC)

•  Ability to set precision DE
side

July

www.incose.org/symp2016

Overview
1.  Engineering of Cyber-Physical Systems
2.  Co-models and Co-simulation
3.  A Building Automation Study
4.  Towards Multi-models
5.  Concluding Remarks

28

July

www.incose.org/symp2016

Towards Multi-models

Integrated Toolchains INTO-CPS (www.into-cps.au.dk)

Co-model Interface

Co-model

DE
Model

CT
Model

Contract

Functional Mock-up Interface Model Descriptions

CT
Model

DE
Model

Multi-model

July

www.incose.org/symp2016

Towards Multi-models

Integrated Toolchains INTO-CPS (www.into-cps.au.dk)

•  No “factotum” tools!
•  Traceability, provenance

and model management
•  Extensible range of plug-ins

•  Modelling Guidelines,
Frameworks, Profiles,
Patterns

July

www.incose.org/symp2016

Overview
1.  Engineering of Cyber-Physical Systems
2.  Co-models and Co-simulation
3.  A Building Automation Study
4.  Towards Multi-models
5.  Concluding Remarks

31

July

www.incose.org/symp2016

Concluding Remarks

•  Collaborative Systems need
Collaborative Engineering!

•  Model-based methods for
multidisciplinary CPSE

•  Challenges:
•  Integration of heterogenous

models in workflows and
toolchains

•  Semantic links
•  Assurance through

traceability

•  User-driven case study
•  Co-modelling and co-

simulation is feasible fro DE/
CT binary co-models

•  Integration of co-modelling
with SE processes

•  Increasing number and
diversity of constituent
models

•  Need for practical guidelines

July

www.incose.org/symp2016

Thank You!

