
Experience	certainty.	

Architecture as a Solution
Schema for a Class of Problems

Swaminathan Natarajan, Anand Kumar
TCS Research

Prof. Kesav Nori
Indian Institute of Information

Technology, Hyderabad

July

www.incose.org/symp2016 Experience	certainty.	

Motivation

Ø  Express our viewpoint on What is architecture?
§  Articulate our empirical understanding of architecture for pedagogical

purposes
§  Distinguish architecture from point solution design

Ø  Sharply formulate what it means to take an architectural approach to a
problem: help learners build mental models
§  Current expositions of architecture clear about the outcomes of

architecting, less precise about the nature of the activity

Arising from our experience in teaching course at TCS for budding architects

Articulate common understanding – no intent to propose anything new

July

www.incose.org/symp2016 Experience	certainty.	

Typical Perspectives

Fundamental concepts or properties of a system in its environment embodied
in its elements, relationships, and in the principles of its design and evolution

Ø  Architecture is outside in (stakeholders, context),
design is inside-out (how to meet requirements)

Ø  Design solves a defined problem. Architecture shapes
problem & solution spaces, relationships between them

Ø  Normative restriction
of design freedom

Ø  Goes beyond specific current problem
to define general schema e.g. product
lines, domain reference arch

Ø  Civil architecture: shaping space.
Form to achieve function, deliver
stakeholder value, including aesthetics

Challenge: Align and encompasses all these

July

www.incose.org/symp2016 Experience	certainty.	

Proposed Framing

Architecture is a solution schema for a class of problems
that asserts the capacity to deliver targeted stakeholder value

Formulate architectural problem space
by abstracting from specific current

problem

Generate solution schema that places
normative constraints on design solution space

such that targeted stakeholder value can be
achieved for any problem within the class

Express in the form of elements, their interrelationships,
desired relationships between the system and its contexts,
principles and guidelines governing their design and evolution

July

www.incose.org/symp2016 5 Experience	certainty.	

Current
problem

Actual evolution path of product
Anticipated evolution scenarios
Unanticipated evolution scenarios

Problem variants

Generalized
problem
space

Abstracted	
architectural	
problem	

Solution Schema

Principles &
guidelines

Component
spaces

Conceptual View

Instantiate to the specific
requirements of each product

July

www.incose.org/symp2016 Experience	certainty.	

Relationships to Practice
•  Abstrac7ons	iden7fied	in	problem	&	solu7on	space	
•  Capture	stakeholder	needs	&	scenarios	e.g.	ATAM	evalua7on	
•  Pull	back	from	specific	requirements	to	categories	

•  Think	about	quality	requirements	in	terms	of	level	of	stringency	etc	
•  But	typically	do	not	formulate	an	“architectural	problem”	explicitly	

Should	we	always	generalize	
the	problem?	

Generaliza7on	typically	
involves	costs	(performance,	
cycle7me	etc),	limited	by	
need	to	assert	capacity	to	
achieve	stakeholder	value	

What	about	systems	with	no	
explicit	architecture?	

“All	systems	have	architecture,	
even	if	it	is	not	explicit”	
Architecture	is	the	set	of	

decisions	that	endure	across	
change	and	varia7on	

What	about	one-off	problems	
with	no	evolu7on	concerns	?	

Architecture	focus	is	on	
paQerns	that	generate	

stakeholder	value	e.g.	simplify	
construc7on	and	verifica7on	

		

July

www.incose.org/symp2016 Experience	certainty.	

Formulating the Architectural Problem
1	 Scope the architectural problem space

Usually done as part of requirements rather than architecture
Results in scenarios against which architecture is analyzed

•  Also constraints on the architecture, to facilitate integration &
conformance with its environments

July

www.incose.org/symp2016 Experience	certainty.	

Formulating Architectural Problem - 2
Pull back from specific requirements

•  Abstractions that generalize functions to functionality spaces
•  E.g. “Media feeders”, “marking engine”, “finishing devices”

•  Commonalities and variabilities → generalized to concern areas and
constraint spaces

–  E.g. “Auditing requirements”, “compliance requirements”, “decimation
policies”, “business process”

–  Details bound for each specific product at requirements and design time

•  Generalize quality requirements to stringency levels, categories
•  E.g. “Near-zero downtime”, “thousands of transactions per minute”

2	

July

www.incose.org/symp2016 Experience	certainty.	

Formulating Architectural Problem - 3

Address holism: Desired relationships to context 3	

Architecting goals often framed
as desired relationships

between system and context
•  “Comply with applicable regulations”
•  “Scale as transaction load increases,

maintaining response time goals”
•  “Ability to develop and release new

features with short cycletimes”

Hold for anticipated and
unanticipated changes
to system and context

Need to rely on patterns
and experiential knowledge

Patterns create
capacity

Design establishes
desired relationships

Often people processes to
maintain relationships
when context changes

During Architecture During Instantiation During Evolution

July

www.incose.org/symp2016 Experience	certainty.	

Solution Space Architecting

v  Functionality spaces → component spaces

v  Collaboration patterns reflect commonalities
(relationships and interactions from the domain)

v  Variabilities addressed by patterns that enable
late binding e.g. process externalization, rules

v  Patterns that address each stakeholder concern,
establish & maintain relationships

v  Synthesis into schema + principles; description
and analysis based on concern viewpoints

Solu%on	schema	to	address	each	aspect	of	formulated	
architectural	problem	

ü  Functional correctness arguments based on
(de)compositional logic of problem domain

ü  Quality concerns verification based on capacity
of patterns to deliver desired levels of quality

ü  Coverage of formulated architectural problem

Qualita%ve	verifica%on	and	valida%on	of	correctness	and	
completeness	of	architecture	

complemented	by	

ü  Scenarios-based verification: can address
problem requirements and scenarios
while conforming to the architecture

Much	of	the	above	part	of	current	prac7ce	(e.g.	ATAM	analysis).	Our	formula7on	sharpens	prac7ce	
by	providing	a	basis	for	asser7ng	completeness	and	correctness	within	some	confidence	level	

July

www.incose.org/symp2016 Experience	certainty.	

Summary

ü  Normative restriction of design freedom

Generalize	problem	instance	
to	include	evolu7on	&	
varia7on	scenarios	

Determine	desired	
rela7onships	with	

context	

Architectural	
Problem	

Formula7on	

PaQerns	and	principles	to	
establish	and	maintain	
desired	rela7onships	

PaQerns	to	reflect	commonali7es	
and	variabili7es,	facilitate	

generaliza7on	and	late	binding	

Abstrac7ons	
to	facilitate	

generaliza7on	

Solu7on	Schema	
to	address	
formula7on	

Argument-based
verification & validation
of completeness and

correctness

ü  Architecture is outside-in (stakeholders,
context), Design is inside out (how to meet
requirements)

ü  Shapes problem & solution spaces

ü  Fundamental concepts or properties of a system in its
environment embodied in its elements, relationships, and in
the principles of its design and evolution

July

www.incose.org/symp2016 Experience	certainty.	

Thank you!

Questions? Feedback?

