26 nnucl INCOSE

&"’.5..?&},/‘ Edinburgh, UK

July 18 - 21, 2016
7 A \ Y O~-£1,£U10
w1 a4

»>

!

P

Agile Systems Engineering Process Features
Collective Culture, Consciousness, and Conscience
at SSC Pacific Unmanned Systems Group

INCOSE I1S16
Edinburgh, Scotland, 18-21 July 2016

Rick Dove, Paradigm Shift International
Bill Schindel, ICTT System Sciences
Chris Scrapper, US Navy, SSC Pacific Unmanned Systems Group

rick.dove@parshift.com, attributed copies permitted

Need and Objectives: INCOSE ASELCM Project

The engineering environment is unpredictable, uncertain, evolving:
customer objectives, programmatic changes, requirements understandings,
technology evolution, available resources, and corporate priorities.

Effectively-adaptable SE processes are needed to address this reality.

Agile software development practices appear to offer promise,

but haven’t had impact outside of the software domain:

- their “principles” ignore fundamental purpose and intent

their “practices” are insufficient for effective SE guidance

hardware and firmware development have different issues and constraints
acquisition policies have incompatible requirements

SE standards (e.g. 15288) don’t provide an effective agility foundation
waterfall and V dominate cultural understanding and behavior

How can this situation be rectified?

with SE principles based on clear fundamental purpose and intent

with SE principles undeniably identified as necessary and sufficient

with SE principles compatible with reality, culture, standards, and practices
with SE principles universally applicable in all SE environments

with people who have insightful understanding of core concepts

How can this be done?

Examine what works and identify why it works, fundamentally

rick.dove@parshift.com, attributed copies permitted

How We Know What We Are Talking About

Darwin didn’t have a model of evolution that he tried to prove or force fit.
He observed, and asked, “What’s going on here and how does it work?”

From that he iterated on model refinement
until he could find no exceptions
and could make effective predictions.

That’s science, not conjecture, not a kinda good idea, not opinion.

Similarly...

in The ‘90s we analyzed hundreds of real-world systems that exhibited agility,
asked how they did that, and converged on a fundamental model that fit the facts.
No conjecture, no kinda good idea, no opinion.

We are doing it again, now,
analyzing real-world processes that exhibit agility,
asking how they do that, and converging on fundamental behavior principles,
that fit the facts, everywhere.

No conjecture, no kinda good idea, no opinion.

rick.dove@parshift.com, attributed copies permitted

The UURVE Environment Drives Need for Agility

for both agile systems and agile systems engineering

Agile systems/processes have effective situational response options,
under:

- Unpredictability: randomness among unknowable possibilities.

- Uncertainty: randomness among known possibilities with unknowable
probabilities.

- Risk: randomness among known possibilities with knowable
probabilities.

- Variation: randomness among knowable variables and knowable
variance ranges.

- Evolution: gradual (relatively) successive developments.

But agility doesn’t occur unless someone actively:
- is aware that a situation warrants a response

- has effective options appropriate for a response
- selects and affects an appropriate response
Minds-on hands-on full and timely engagement.

rick.dove@parshift.com, attributed copies permitted

Iconic Agile Architecture Pattern (AAP)

System Response-Construction Kit
Details in www.parshift.com/s/1406301S14-AgileSystemsEngineering-Part1&2.pdf

Moduleleomp nents L e g
¢ Fadboil UF
Integrity o [Joiners, Axles —
Management Gears/PuIIeys Motors Wheels Tools Small Parts Structural Materlal

— Resource mix evolution —‘— _17 Product System Eng.

— Resource readiness Retail Distribution Process

— Situational awareness Product Manager

— Activity assembly Owner/Builder

— Infrastructure evolution - Product Manager "
Active

Infrastructure g s
Pas‘flve Plane Helicopter Mobile Radar
Y Y

Sockets ®— Parts Interconnect Standards == :

Signals Control Protocol

——— Security (None)
—— Safety ®— Harm-Proofing Standards :

—— Service m— Process Rules & ConOps e Corlol Sordarg E

———— Radio Control Standards

Rules/Standards

rick.dove@parshift.com, attributed copies permitted

Example: Scrum Agile Architecture Pattern

Details in www.parshift.com/s/1406301S14-AgileSystemsEngineering-Part1&2.pdf

Modular Resources Eam—
Integrity i hhh "m‘ HESTI 1
Mana gem ent Product Owners Scrum Masters Testers Product Backlog Stakeholders

— Resource mix evolution —‘— —I— PO with Team Collaboration

— Resource readiness — Scrum Master, Developers/Testers —

— Situational awareness Everybody

— Activity assembly Self Organizing

— Infrastructure evolution T , Product Owner (PO) »
Active b Gibd

Seru
Master QM"
Sprint Sprint Review
Finished Work

Infrastructure |
| @@ &I » e @p’h(ﬁ
Pas‘f ve Scrum Meeting Sprint n Sprint Retrospective
Y Y
Sockets Peer-Peer Interaction
Signals Daily Scrum Info

———— Security Trustworthy Transparency
——— Safety Collaborative Review

——— Service - Process Rules & ConOps

e Retrospective Change

Rules/Standards

rick.dove@parshift.com, attributed copies permitted

Systems Engineering Process — Architecture Elements

SE Process Drag and Drop Resource Pools

- Resources are self-contained encapsulated units which conform to the plug-and-play passive
infrastructure. They can be dragged-and-dropped into the SE process. Resources are
encapsulated so that their methods of functionality are not dependent on the functional methods
of other resources, except perhaps as the passive infrastructure may dictate.

SE Process Active Infrastructure Sustainment Responsibilities

1. Resource Mix Evolution — Who (or what process) is responsible for ensuring that existing
resources are upgraded, new Resources are added, and inadequate resources are removed, in
time to satisfy response needs?

. Resource Readiness — Who (or what process) is responsible for ensuring that sufficient
resources are ready for deployment at unpredictable times?

. Situational Awareness: Who (or what process) is responsible for monitoring, evaluating, and
anticipating the operational environment in relationship to situational response capability.

. Activity Assembly — Who (or what process) assembles new response configurations when new
situations require something different in capability?

. Infrastructure Evolution — Who (or what process) is responsible for evolving the passive and
active infrastructures as new rules and standards become appropriate to enable next generation
capability?

SE Process Plug and Play Passive Infrastructure

The passive infrastructure provides drag-and-drop connectivity between resources. Its value is in
isolating the encapsulated resources so that unexpected side effects are minimized and new

operational functionality is rapid. At least five categories of standards and rules should be
considered:

1. Sockets — physical interconnect

2. Signals — data interconnect

3. Security — trust interconnect

4. Safety — of process user, process, and environment

5. Service — response assembly and sustainment ConOps

a H~ WO D

rick.dove@parshift.com, attributed copies permitted

Prior Work: 10 Agility-Enabling System Design Principles
for fleshing out the architecture

Reusable
Encapsulated resources (loosely coupled black-box units)
Facilitated interfacing (easy resource insertion/removal)
Facilitated re-use (support for finding/deploying appropriate resources)

Reconfigurable
Peer-peer interaction (direct communication w/o intermediaries)
Deferred commitment (decisions & fixed bindings at last-responsible-moment)
Distributed control and information (decisions at point of maximum knowledge)
Self organization (relationships and interactions negotiable)

Scalable
Evolving infrastructure standards (resource interface and interaction change)
Redundancy and diversity (duplicate and diverse resource populations)
Elastic capacity (resource populations and functional capacity is variable)

rick.dove@parshift.com, attributed copies permitted

Current Work: Process Operational-Behavior Principles
(WIP Hypothesis based on analytical workshops in process)

Monitoring (observe, orient)
External awareness (proactive alertness)
Internal awareness (proactive alertness)
Sense making (risk analysis, trade space analysis)

Mitigating (decide, act)
Decision making (timely, informed)
Action making (invoke/configure process activity to address the situation)
Action evaluation (V&V)

Evolving (improves above with more knowledge and better capability)
Experimentation (variations on process ConOps)
Evaluation (internal and external judgement)
Memory (current process ConOps)

Natural selection: replication with variation in competition.
(A ubiquitous algorithm, the essence of learning and evolution)

rick.dove@parshift.com, attributed copies permitted

Agile Systems Engineering Life Cycle Pattern

Encompassing Systems 1, 2, and 3

3. System of Innovation (SOI)

Learning & Knowledge
Manager for LC Managers
of Target System

A 4

(Substantially all the ISO15288 processes are included

Life Cycle Manager of
LC Managers

o

2. Target System (and Component) Life Cycle Domain System

t

v

Learning & Knowledge

Manager for Target
Systems

-®

7 s N
|
l’-
o "- ’
'l N ’
’ [
-®

L4

1
»

—

LC Manager of

Target System

4

\/

1. Target System

g

N

in all four Manager roles)

e
:

| S

E") Target
Environment

System-1 is the target system under development.
System-2 includes the basic systems engineering development and

maintenance processes, and their operational domain that produces System-1.

that learns, configures, and matures System-2.

slide credit: Bill Schindel

rick.dove@parshift.com, attributed copies permitted

System-3 is the process improvement system, called the system of innovation

Two different operational environments
defining necessary agile counterpoint for the
systems they encompass

Process
Operational Environment

Product
Operational Environment

Engineering
System-2 and -3
in Operation

Engineered
System-1
in Operation

Uncertain Unpredictable

Risky Variable
Evolving

Risky Variable
Evolving

It is counterproductive to have
an agile development process
if you don’t have an agile product architecture

rick.dove@parshift.com, attributed copies permitted

11

SSC-Pac Case Study

IS16 paper: www.parshift.com/s/ASELCM-01SSCPac.pdf
This case study reveals concepts with broad application in many domains.
A systems engineering process with 6-month, 4-phase, overlapping “waves”:

1. System component development
2. System architecture evolution

3. Capability integration

4. Validation testing

The process capability supports a portfolio of projects,
with three years of respected and effective results.

Classic Wave Model, subsequently tailored for the analyzed program
(Scrapper and Dahmann, 2016) |

A v

Initiate Conduct ' Continue ; Continue ' Continue
SoS SoS Analysis SoS Analysis SoS Analysis SoS Analysis

Develop|
SoS
Arch

Implement Implement Implement
SoS SoS SoS
Update Update

rick.dove@parshift.com, attributed copies permitted 12

The Process is Successful

...replaced a waterfall process plagued by cost overruns, missed schedules,
inadequate development achievement, uncooperative teaming, and poor status

visibility.
...orchestrates the interaction of the 60-some engineers and managers on the
project, including six external organizations of 4-5 engineers each working on

development of functional capabilities to be integrated into a federated system.

... encompasses research, development, integration, test, and evaluation of
deployable system and component technologies that can provide new
capabilities.

... demonstrated effectiveness over three years in lower and predictable costs,
on-time capability deliveries, and continual advancements on the overall
performance of the systems under development.

... will be migrated to other programs.

rick.dove@parshift.com, attributed copies permitted

13

UURVE that Prompted an Agile SE Approach

Systems Engineering (SE) process for HW/SW/WW*
for evolutionary development of innovative-edge technology

Unpredictability (unknowable situations):
0 Strategic realignment of project-sponsor priority.
O Changes in and/or availability of key personnel and development contractors.

Uncertainty (randomness with unknowable probabilities):
0 Feasibility of technical approach and initial designs.
0 Contracting issues, funding gaps, and budget short falls.

Risk (randomness with knowable probabilities):
0 Failure to meet technical performance measures.
0 Maturation and integration of required component technologies.

Variation (knowable variables and variance ranges):
0 Availability of test environment and test support

0 Time to obtain requisite approvals.

0 Reliability, Availability, Maintainability of test-beds.

Evolution (gradual successive developments):
O Changes in technical landscape and insertion of emerging technology.
0 Changes in programmatic objectives & stakeholder requirements (scope creep).

* WW: Wet Ware (people)

rick.dove@parshift.com, attributed copies permitted 14

On Choosing the Agile Wave Model Approach

The Scrum software development process does learning in two-to-four
week sequential development increments, with retrospective analyses of
outcomes and process-behavior effectiveness.

Sequential Spiral approaches include more than software development,
necessitating longer learning cycles, with risk reduction as a central
cycle-driving theme.

The Wave Model approach has overlapping learning cycles, decoupling

the development effort from the subsequent integration, test, and
evaluation efforts.

This decoupling affords back-to-back development increments that don’t
have to wait for integration, test, and evaluation before starting the next
increment of new-capability development.

Key Take Away:
Let an understanding of the problem pull an agile solution that fits.
Don’t push a favored agile process just because.

rick.dove@parshift.com, attributed copies permitted

15

Wave Benefits to this Program

The Wave Model offered meaningful progress feedback in project-
appropriate 6-month cycles, long enough to accommodate incremental
new-capability development time, and short enough to demonstrate
frequent progress to sponsors and allow learning and affordable re-
planning and corrective action when needed.

There is nothing about the Wave Model that precludes a Scrum approach
in the software-development activity, if software developers wish.

The Wave Model approach accommodates tailoring based on size of
project, funding levels, and overall project goals.

Wave, using a modular-component architecture, lowers costs to all
sponsors with re-usable modules across projects.

rick.dove@parshift.com, attributed copies permitted 16

/(

-ﬁm
— — -
P A A
- — -~
- / — —
Ve — — ——
- 4 ¢
. » .

i

-

N)

System Engineering Plan

N

Vision
\CCNC-.D:. Requirements, & System Dcﬁr.‘.or)

(r N
\. -y
Modular Open Architectures
. /

<~

£

@

/

—)

()
\ \ \) %
e S S s S
N \
\ \ \ \
. ’ ’ .
- =/
_ Integration Strategy -/

Test & Experimentation

\ TEMP, Test Beds, Infrastructure & Tools /

Five elements of the Integration Strategy

Vision

a
a
Q
a
a

slide credit: Chris Scrapper

Systems Engineering Plan

Modular Open Product-System Architecture
Integration Test and Experimentation Master Plan
Continuous Integration Environment

rick.dove@parshift.com, attributed copies permitted

17

Integration Strategy
Overlapping Six-Month Waves

Analysis and
Development

Evolve
Architecture

Integrate
Capabilities
Validate
System
Wave #3 Wave #4 Wave #5 Wave #6 Wave #7 Wave #8
FY13 IV&V SUMET FY14 TRA FY15 TRA FY16 MAGV Demo
TDPv2.0 Fmdamgntal Enhaneements Advanoed Maneu_vers Muitimode perception _(TRL 8)
- Multimode Perception Nighttime Operations Day/Night operation
EQ-only Perception Path Planning Enhancements Basic Tactical Behaviors Safe & Ready for
Daylight operation Operational Environment
Material Classfication
=3
FY 13 FY 14 FY 15 FY 16

slide credit: Chris Scrapper rick.dove@parshift.com, attributed copies permitted 18

Engaged Integrated Team:
Alternate Leads and End-Users

Conduct - Conduct
Analysis Analysis

Analysis

......

Integrate Integrate Integrate Release
Capability Capability capability |
Enhancements Enhancements Enhancements
_ System
Verification

Program Lead
Validate Validate

System System
Production
Release

System Validation

& Extended Testing

Time

slide credit: Chris Scrapper rick.dove@parshift.com, attributed copies permitted 19

CDR: Critical Design Review

g

Dol: Declaration of Intent
PDR: Preliminary Design Review I t t d St t
SDR: System Design Review n eg ra e ra egy
SFR: System Functional Review
SRR: System Requirements Review ‘ : h a rt
TEMP: Test and Experimentation Master Plan
TOP: Test Operating Procedures
TRR: Test Readiness Review
I 1 [
Integration Integration Integration Integration
Capability experimentation Exercise Test Capability Experimentation Exercise Test
Development Development v v
SiR N Decision § /’ CDR\ '/ ' l SRR__..;‘""_ Decision / CDR / \ ¥
Analysis and ;\'\PDR/ | o 4 TRR TRA == PDR ; \ comind _TRR RA:
‘ SFR -
Development \"" /¥ 4
evelopme — [Capability Development D - [Capability Development dTeSt :
/ I
Prep — S N N~ Prep |
E @ . . TOPs ITEMP Dol | |g,e;§| [J TOPs | J Dol | | i |
J N\ J \ \ AN\ \ J \ - I
1 P
F N S8 (%) (20)
Evolve System | N\ — _ — A —
. | N Architectural Analysis Evolve Architecture \ LArchitectu ral Analysis Evolve Architecture
Architecture : A)
! N\ cmP TDP N\ CMP [Ep ‘ICDI
| N | \ el =)
| System I System I
E Veiiﬁcaﬁon \ E Ve-riﬁcation \ i
Integrate : (TRe) | N : N)
Capablllty I " Re ease Release \ I
Integrate Decision Integrate Decision
Enhancements E \ N € \ !
Test " stable | Test Stable I
{ Plan Release N L [Plan} [ReleaseJ \ “ I
| System . I System - I
: Validation Relegse N : Validation Release \ :
Va|| date : Deci{sion — \ : Decision — :
Test Ext Testi
System : ‘Exten e eshng‘ \': ended Tes ng] . :
! Test\’ [Stable ‘ ! Test product N
: Plan Release : \ Plan Release :
4 N\ . Milestone . Evolving
. . . \) Review Decision Artifact
slide credit: Chris Scrapper B Event [] [:] Component

s

Systems Engineering Process AAP

for evolving autonomous off-road-vehicle robotic military technology
SE-Process Reusable/Reconfigurable Resources

C) Integration Leads Contract Performers Reusable Components
Inteqrit Functional Leads @ Users (War Fighters) CIE Data
grity @ Technical Leads @Test Methods

Management
— Resource mix evolution —‘— —17 PM+CIT.

— PM+CIT (Core Integration Team) —

— Resource readiness

— Situational awareness PM+CIT+Leads
— Activity assembly Leads
- Infrastructure evolution —m PM (Process Manager)

A

Active Facilitating IPT Working-Group

Validation Testing

o ==

RaDER Integration EV1 Integration

Infrastructure

Passive Enabling

@

elelele
elelelele
|

——— Sockets
—— Signals
—— Security
== Safety
& Service N

Rules/Standards

Sockets: CIE, System-1 modular architecture, roles, culture, test threads

Signals: Vision, Declarations of Intent, Config Mgmnt Plan, Integration Strategy, CIE data, decisions, engaged team feedback
Security: User agreement/NDA, Config Mgmnt Plan, CIE access controls

Safety: Open-process visibility, open communication, protected communication

Service (SE ConOps): Vision, Culture, Consmousness(CIE) Conscience, Wave, Integration Strategy/TEMP, Sys-1 and Sys- 2AAP

rick.dove@parshift.com, attributed copies permltted

 B.E.E.B.BB
B ER.E.B.|

Resources Assembled in Process-Activity Configurations

Integration Lead — Develops the Vision for System-1 and oversees the technical
execution and coordination of activities and processes in System-2.

Technical Lead — Oversees technical execution and mitigation of technical risk
associated with a specific phase in System-2.

Functional Lead — Provides in-depth technical expertise in each designated
functional area to support the research, design, implementation, operation,
maintenance, and assessment of new capability enhancements.

Contract Performer — Leads the development of desired functional capability for
System-1.

End-Users — Validates the operational concept for System-1 and provides
feedback into System-2 regarding utility of current and planned capabilities.

Reusable Components — Functional capabilities and tools to support the
integration and specification of System-1 capabilities for different vehicle types
and mission sets.

CIE Data — Artifacts and evidentiary information produced by System-2 and
shared across extended team to enable the rapid and agile development of
System-1.

Test Methods — Tools, procedures, and metrics for quantifying the performance of
System-1 to enable the rapid assessment, characterization, and inter-comparison
of experimental results.

rick.dove@parshift.com, attributed copies permitted 22

Collective Culture of Engagement

Most pronounced during the analysis activity was the pervasive nature of the
culture, its thoughtful development, and its continual reinforcement. This is done
with a combination of soft skills and supporting infrastructure.

Culture is a shared set of expectations for behavior, and an environment that
enforces that behavior.

Here culture isn’t written like a mission statement, but is rather practiced by
leadership, shaped by consistent reinforcement, and enforced by dealing openly
with infractions detrimental to the team and at odds with a pervasive collective
agreement to work together toward total success.

Full and active engagement with the SE process intent and the SE project
objectives is the expectation. All team members are on a shared mission, and all
team members need to support and be supported by all other team members, at
all times.

The nature of the SE process, its leadership, and the transparency of
comprehensive real-time project status provide team-engagement sensitivity.
Where the culture doesn’t fit an individual (or vice-versa), that individual will
either move on, or adjust. The culture will not tolerate in-action.

rick.dove@parshift.com, attributed copies permitted 23

Collective Consciousness

The Continuous Integration Environment (CIE) is a data-driven repository of
knowledge, with customized viewing templates for different needs. CIE provides
user interfaces that separate internal representations of data (the model) from the
ways that information is presented to users (the view), with custom views for
different stakeholders.

This homegrown CIE is structured as a federation of independent capabilities,
mostly off the shelf, and is being evolved to provide real-time relevant and
comprehensive views of history and current status to all team members.

The CIE intent is to facilitate a real-time collective consciousness, where all team
members are plugged in to all information associated with full project success, as
well as to the information of relevance to their specific responsibilities and tasks.

New data, new decisions, new issues, new test results, ripple through the relevant
federation of CIE components and CIE user views immediately.

This collective consciousness manifests for the team much like it does for
musicians in a symphony orchestra, where off notes and bad timing are
immediately sensed by all.

rick.dove@parshift.com, attributed copies permitted 24

Collective Conscience

Meeting openings remind everyone that the customers are taxpayers and
warfighters. These reminders don’t stop with a simple statement. They are rooted
in image and story that elevates them to personified walking needs with faces.

The warfighter needs tools that are effective, timely, and affordable for mission
achievement and self preservation. Warfighter reality is obtained with their critical
presence at testing events, and with structured workshops between waves.

The tax payer needs tools that are effective, timely, and affordable for national/
homeland security — capability that is affordably deployable, not costly
technology that limits production quantities and threatens sustainable programs.

In these contexts (warfighter and taxpayer) the team accepts responsibility, and
evaluates decisions with that critical internal customer voice.

The team develops and maintains a collective conscience to do what is
responsibly right. This breaks the inertia of building upon favorite and
comfortable technical approaches, to consider technologies that address the

fundamental needs.

rick.dove@parshift.com, attributed copies permitted

25

Notable Process Concepts

Common process spanning a portfolio of projects.

Government-retained architecture ownership.

Systems engineering structured as a Wave-Model-inspired evolutionary process.
Continuous integration with comprehensive regression testing.

Clear unambiguous roles and responsibilities.

Common culture embracing development contractors.

Ubiquitous real-time shared awareness of project progress and status.
A sense of collective mission.

Quality-of-engagement sensitivity.
Distributed test threads and continuous risk management.
Meaningful user involvement.

All are discussed in the paper.

rick.dove@parshift.com, attributed copies permitted

26

Agility-Enabling S2-S1 Design Principles

Reusable
Encapsulated resources: black-box components, people with individual styles.
Facilitated interfacing: strict S2-process and S1-component interface rules.
Facilitated re-use: engaged full-knowledge-team can/will pitch in as needed.

Reconfigurable
Peer-peer interaction: full project transparency and open communications.
Deferred commitment: working groups configured at time of need.
Distributed control & info: Individual responsibility for activity & CIE data.
Self organization: open planning (relationships and interactions negotiable)

Scalable
Evolving infrastructure standards: architecture and CIE evolve per wave.
Redundancy and diversity: multiple resources for any activity
Elastic capacity: scalable process accommodates multiple projects.

Simple examples, not comprehensive

rick.dove@parshift.com, attributed copies permitted 27

Process Operational-Behavior Principles

(WIP Hypothesis based on analytical workshops in process)

Monitoring (observe, orient)
External awareness: Warfighter workshops & testing, technology monitoring,
Internal awareness: Resource quality-of-engagement sensitivity/monitoring.
Sense making: Pervasive risk analysis distributed in all activities.

Mitigating (decide, act)
Decision making: data and risk driven, open, inclusive, immediate, fearless.
Action making: IPT working groups configured for resolution.
Action evaluation: data-driven retrospectives and corrections.

Evolving (improves above with more knowledge and better capability)
Experimentation: encouraged technical and process ConOps experiments.
Evaluation: constant data-driven open evaluation with full team.

Memory: CIE and wikis updated daily

Simple examples, not comprehensive

rick.dove@parshift.com, attributed copies permitted

28

Push vs Pull

A very key lesson we learned at the SSC-Pac workshop was the power of a “pull”
approach. Chris Scrapper designed his process to fit his problem. He didn’t come
to the party with Scrum or Spiral or Wave in his mind.

Agile SE concepts should be pulled into practice by a need to solve recognized
SE problems, rather than pushed into practice by a belief that they must be better
than current practice. One thing this means: don’t start with Scrum in mind as a
solution, ready to force fit it to the engineering and management environments.

Instead, understand your problem environment, relative to UURVE issues, in
terms your engineering and management people can relate to. Then identify the
intent and nature of solution concepts needed to address the issues. Then and

only then examine the ready-made practices for conceptual bits and pieces of
usefulness.

In other words, develop your agility-requirements before choosing a solution.
With a clear understanding of the fundamental and true requirements, an agile SE
approach can be incrementally introduced and evolved to fit the culture, the
business, and the engineering environment.

rick.dove@parshift.com, attributed copies permitted 29

Bottom Line: SE as Active Learning Process

Engagement.
Awareness.
Collaboration.
Experimentation.
Evaluation.
Evolution.

What you’ve done?
What you are doing?
What you should have done?
Evolve accordingly.

How you’ve done it?
How you are doing it?
How you should have done it?
Evolve accordingly.

rick.dove@parshift.com, attributed copies permitted

30

Asynchronous/Simultaneous Agile SE-LCM Framework

Systems and software engineering — Life cycle management — Part 1: Guide for life cycle management ISO/IEC TR 24748-1:2010(E)

Research
Situational awareness
and evaluation of
external and internal
environments and
evolution for threat
and opportunity.

Observed in all
workshops to
date

This Agile SE Life
Cycle Model is
consistent with

Retirement Concept
ISO/IEC/IEEE Store, archive or Identify needs.
standards dispose of sub-systems Explore concepts.

and/or system. Propose viable solutions.

Development
Refine requirements.
Describe solution.
Build system.
Verify & validate.

Support
Provide sustained
system capability.

Utilization Production
Operate system Produce systems.
to satisfy users' needs. Inspect and test.

Seven asynchronously-invoked stages are engaged repetitively and
simultaneously when engagement criteria are met

rick.dove@parshift.com, attributed copies permitted

31

2015 ASELCM Workshop Characterizations

SSC Pac (Autonomous vehicle technology innovation)
Three years proven process success
Product portfolio architecture leveraging reusable resources in a Wave process
Driven by quality of results over process dogma/conformance (process evolves)
Awareness and management of cooperative engagement behavior (team culture)
Real-time knowledge management and assimilation (team consciousness)
Focus on delivering meaningful value to customers (team conscience)

Northrop Grumman (Systems-of-systems information hub capability-evolution)

- Six years proven process success using a Scrum/Waterfall/Wave hybrid process
Mitigation of uncontrolled System-of-System environment (22 independent systems)
Intimate stakeholder involvement in the SE process
Asynchronous/simultaneous life cycle stages, in never-ending system growth/ evolution
CMMI level 5 procedure discipline, providing seamless-release stability, and more
Awareness and mitigation of external environment evolution
Real-time optimal process-control model, re-prioritizes development-increment activity

Key Characteristics for Case Studies Below are Work-in-Process (more before November)

Rockwell Collins (avionics product-line engineering)
Proven software-process success, still evolving integrated HW/FW process agility
Product Line architecture with Scrum software process
Infrastructure with reusable resources for combined HW/SW/FW development
Focus on stake-holder relationship facilitation & management
Continuous market alertness and awareness

Lockheed (warplane capability evolution)
Early process success, still evolving
SAFe process tailored for Lockheed project portfolio and gov’t contract nature
Agile SE assimilation in a cooperative defense acquisition environment
Appreciation of constraints imposed on SAFe proprietary IP utilization
Appreciation of information debt in addition to technical debt

rick.dove@parshift.com, attributed copies permitted

32

References

Dove, R. and W. Schindel. 2016. Agile Systems Engineering Process Features
Collective Culture, Consciousness, and Conscience at SSC Pacific Unmanned
Systems Group. INCOSE International Symposium (IS 2016), Edinburgh,
Scotland, UK, July 18-21. www.parshift.com/s/ASELCM-01SSCPac.pdf

Schindel W. and R. Dove. 2016. Introduction to the Agile Systems Engineering
Life Cycle MBSE Pattern. INCOSE International Symposium (IS 2016),
Edinburgh, Scotland, UK, July 18-21.

Scrapper, C., R. Halterman, and J. Dahmann. 2016. An Implementers View of the
Evolutionary Systems Engineering for Autonomous Unmanned Systems.
IEEE Systems Conference, Orlando FL, 18-21 April.

INCOSE Webinars:
Agile 101: Architecture Pattern,

www.parshift.com/s/AgileSystems-101.pdf, www.parshift.com/s/AgileSystems-101.wmv

Agile 102: Design Requirements,

www.parshift.com/s/AgileSystems-102.pdf, www.parshift.com/s/AgileSystems-102.swf

Agile 103: Design Principles,

www.parshift.com/s/AgileSystems-103.pdf, www.parshift.com/s/AqgileSystems-103.mp4

Agile 104: Engagement Quality,

www.parshift.com/s/AgileSystems-104.pdf, www.parshift.com/s/AgileSystems-104.mp4

ASELCM project and workshop Host information/details:
www.parshift.com/ASELCM/Home.html

rick.dove@parshift.com, attributed copies permitted 33

Backup and Unused

rick.dove@parshift.com, attributed copies permitted

34

Document

Document

SW Test Tools) Technical Auto-Generated
Cocje Review Report Test Report
Compliance
\ < Schi Sch
Schema chema Ci emal t
SW Test Tools) Style Sheet Style Sheet [rrmermeergreneees Ontglsogy
Unit Tests
\ / Repository w REPOISWOGF\I/ winldance atabase
E——r.) Technical Test Results - Perfgmt‘ance
Regression Review Data Metrics ala
Testing
\ / Web Application \
Automated
JENKINS Repositories JIRA Ticket Test Tools
A AV RN) |UOUS Functional \ J
Integration Source Code - T
Capability . N
Server Physical "d
Test
Methods
REPOSitSLI i dous JIRA Ticket)
Integration Risks * Continuous Integration Environment
Result . ..
esults L J is partitioned by performer to support
, 2 access control.
JIRA Ticket
— Issues * Knowledge, information, and
Style Sheet sy .) technical data in CIE is partitioned to
— JRA Ticket A\ align with functional areas.
Continuous
Integration Report Ve
\. W,
How data is connected in CIE
35

rick.dove@parshift.com, attributed copies permitted

Agile System History Perspective

Agile manufacturing systems - 1991
Agile enterprise Systems - 1992
Agile CCRP C2 - 1996
Software development — 2001 (with predecessor work, e.g., Spiral, etc)
Military as agile enterprise - 2013

Systems engineering becomes a focus - 2015

rick.dove@parshift.com, attributed copies permitted

36

American Football is Agility in Action

Operational Environment
Unpredictability (injury)
Uncertainty (composition of opposing team on game day)
Risk (impaired team-work day)
- Variation (weather)
Evolution (team competencies)
Dynamic game situations require certain response capabilities, e.g.
- Creating: e.g., a tailored game plan for each game
- Improving: e.g., opponent-evaluation accuracy
- Migrating: e.g., pre to post salary cap rule, now concussion concerns
- Modifying: e.g., game plan strategy with game-time learning
- Correcting: e.g., on-field competitive mismatch in specific position
- Varying: e.g., defense-offence competitive strength balance
- Expansion/Contraction: e.g, range of player-position depth of 2-4
- Reconfiguring: e.g., mix of 11-on-field frequently

Performance quality is determined
by degree of engagement of every team member at every moment

rick.dove@parshift.com, attributed copies permitted 37

Example: Football Agile Architecture Pattern

Drag-and-drop modules in a plug-and-play infrastructure
Details in www.parshift.com/s/1406301S14-AgileSystemsEngineering-Part1&2.pdf

Modules

Ii:)’(lefense Offense Players Game Plans Plays
Coaches ayel's 000---000 . .
XXX XXX O0--00 NINEININ
|nteg rity Trainers Special Teams Scouts Medics/Therapists
TT--T 227---72Z S---S M---M
Management I
— Resource mix evolution —t Coaches, Owner, Scouts
— Resource readiness Trainers, Coaches, Therapists —
— Situational awareness } Virtually Everyone
— Activity assembly QB, Def/Off Coaches
— Infrastructure evolution i NFL and Owner
AT' O O 0O O 0O O X X X X X X X zZ zZ zZ zZ z z 2
ctive Tak Grd Ctr Grd Tak Tnd OLB End Tak MLB Tak EndOLB End Ubk Ubk Ctr Ubk Ubk End
| TN F e
Infrastructure Reo O HRBK Rec O o . CB -
Saf Saf V4
Paslsive N N N Pt
‘1’ E Offensive Down]j Defensive Down Special Teams Punt
Y
Sockets L: Positions
Signals Play Book, QB Calls

—— Security
—— Safety
——— Service

Rules/Standards

Covert Communications

®= Protective Equipment

— NFL Rules, Team Culture

rick.dove@parshift.com, attributed copies permitted

38

