
Antonio Martini
Jan Bosch

Antonio Martini - PhD in Software Engineering

Software
center

Mission: Improve the software engineering
capability of the Nordic Software-Intensive
industry with an order of magnitude

Theme: Fast, continuous deployment of customer value

Success: Academic excellence
Success: Industrial impact

Software Center

A Software Center Project (1)
Current participants from industry

Antonio Martini - PhD in Software Engineering

A Software Center Project (2)
Current research participants

� Antonio Martini
� Postdoc at Chalmers
� antonio.martini@chalmers.se

� Jan Bosch
� Full Professor at Chalmers
� jan@janbosch.com

� Teres Besker
� PhD Candidate at Chalmers
� besker@chalmers.se

Antonio Martini - PhD in Software Engineering

!

Agenda

� Architectural Technical Debt (ATD)
� What is it?
� What causes it?
� What are its consequences?
� How to manage it?

○ (short summary)

Antonio Martini - PhD in Software Engineering

Antonio Martini - PhD in Software Engineering

What is Technical Debt?

Antonio Martini - PhD in Software Engineering

P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical Debt: From Metaphor to Theory
and Practice,” IEEE Software

What is Architectural Technical
Debt?
� Sub-optimal architectural solutions that

� Have a beneficial impact on short-term goals
but
○ aka “taking debt”

� Have a negative impact in the medium-long
run
○ aka “paying the interest”

� Better explanation: a (horror) story

Antonio Martini - PhD in Software Engineering

Optimal architectural decision

� Example:
� Standard public API

Antonio Martini - PhD in Software Engineering

Comp A

Standard API

Let’s put a
standard API

here… so later
we can update
the component
independently

During feature development…

Antonio Martini - PhD in Software Engineering

Comp A

Standard API

We need
these new

features! Our
competitor is

already
delivering

them!

Comp B

No problem, let’s
add a component B.
The teams will use
the standard API!

…with fast delivery comes…

� Deliver fast!

Antonio Martini - PhD in Software Engineering

Comp A Comp B

Standard API

Private API
(ATD)

ATD
We need

these new
features! Our
competitor is

already
delivering

them!

Fast!

We have to
deliver fast,
let’s use the
private API…
we’ll change it

later

� The violation is spreading to
many components

Antonio Martini - PhD in Software Engineering

Comp A Comp B Comp C Comp D

Standard API

Private API
(ATD)

Comp E

ATD ATD ATD ATD

…the accumulation of sub-
optimal decisions…

We have to deliver fast, let’s
add a dependency, we’ll

remove it later

We have to deliver fast, let’s
add a dependency, we’ll

remove it later

We have to deliver fast,
let’s use the private API!
We’ll change it later…

Fast!

…until, one day…
� New requirement

Antonio Martini - PhD in Software Engineering

Comp A Comp B Comp C Comp D

Standard API

Private API
(ATD)

Comp E

ATD ATD ATD ATD

We need
these new

features! Our
competitor is

already
delivering

them!

Ok, we can replace this
component. The teams used

the standard API!

…the development is not fast
anymore…
� Costly to remove the violation and

difficult to estimate the impact

Antonio Martini - PhD in Software Engineering

Comp A Comp B Comp C Comp D

Standard API

Private API
(ATD)

Comp E

ATD ATD ATD ATDOH NO! We
have to
change

everything!

We need
these new

features! Our
competitor is

already
delivering

them!

…and a crisis starts.

Antonio Martini - PhD in Software Engineering

Comp A Comp B Comp C Comp D

Standard API

Private API
(ATD)

Comp E

ATD ATD ATD ATD

Impossible to
refactor now!
We need to
deliver the
features!

We have to
refactor, but we

need time…

So should we
refactor or
continuing
with other
features?

Architecture Technical Debt in a
real example

� Non-allowed dependencies = “Taking” the Debt
� Save time by non-applying the

optimal solution

� Cost of removing dependencies = Principal
� How much does it cost to provide

the optimal solution?

� Extra evolution cost
� Replacing the component

� Other impacts
� Increasing principal
� Difficult estimation
� Lead time increases

Antonio Martini - PhD in Software Engineering

= Interest

Architecture Technical Debt in a
real example

� Non-allowed dependencies = “Taking” the Debt
� Save time by non-applying the

optimal solution

� Cost of removing dependencies = Principal
� How much does it cost to provide

the optimal solution?

� Extra evolution cost
� Replacing the component

� Other impacts
� Increasing principal
� Difficult estimation
� Lead time increases

Antonio Martini - PhD in Software Engineering

= Interest

Interest-ing!

When we have several teams and
a big project…
� What happens then?

Antonio Martini - PhD in Software Engineering

Time

Crisis

AT
D

 a
cc

um
ul

at
io

n

* Martini, A., Bosch, J., Chaudron, M., 2015. “Investigating Architectural Technical Debt Accumulation and Refactoring over
Time: a Multiple-Case Study”, Information and Software Technology Jounral

Antonio Martini - PhD in Software Engineering

Causes of accumulation?
� Business factors:

� Uncertainty of use cases in the beginning
� Business evolution
� Time pressure: deadlines with penalties (urgency)
� Priority of features over product architecture
� Split of budget in Project and Maintenance

� Lack of specification/emphasis on critical architectural
requirements

� Reuse of Legacy / third party / open source
� Parallel development
� Effects Uncertainty (unknown effects)
� Non-completed Refactoring
� External factors

� Ex.: Technology evolution
� Human factor

Antonio Martini - PhD in Software Engineering

* Martini, A., Bosch, J., Chaudron, M., 2015. “Investigating Architectural Technical Debt Accumulation and Refactoring over
Time: a Multiple-Case Study”, Information and Software Technology Jounral

Causes of accumulation?
� Business factors:

� Uncertainty of use cases in the beginning
� Business evolution
� Time pressure: deadlines with penalties (urgency)
� Priority of features over product architecture
� Split of budget in Project and Maintenance

� Lack of specification/emphasis on critical architectural
requirements

� Reuse of Legacy / third party / open source
� Parallel development
� Effects Uncertainty (unknown effects)
� Non-completed Refactoring
� External factors

� Ex.: Technology evolution
� Human factor

Antonio Martini - PhD in Software Engineering

* Martini, A., Bosch, J., Chaudron, M., 2015. “Investigating Architectural Technical Debt Accumulation and Refactoring over
Time: a Multiple-Case Study”, Information and Software Technology Jounral

Technical Debt is
inevitable!

Accumulation and recovery over time

Antonio Martini - PhD in Software Engineering

Time

AT
D

 a
cc

um
ul

at
io

n

Feature release
(Deadline with penalty) Complete

Refactoring

Uncertainty Opportunity for
refactoring

Urgency

Parallel Development
Long term

effects

S
ho

rt
te

rm

ef
fe

ct
sConstantly

accumulated
ATD Unknown

ATD

Project Budget
Business Evolution
External factors

* Martini, A., Bosch, J., Chaudron, M., 2015. “Investigating Architectural Technical Debt Accumulation and Refactoring over
Time: a Multiple-Case Study”, Information and Software Technology Jounral

Different refactoring strategies

Antonio Martini - PhD in Software Engineering

TimeAT
D

 a
cc

um
ul

at
io

n

Total Recovery

Partial RecoveryNo recovery

Crisis point

Crisis point in time for “No
recovery”

Crisis point in time
for “Partial recovery”

Time gained before reaching the
crisis point that leads to a
necessary big refactoring

* Martini, A., Bosch, J., Chaudron, M., 2015. “Investigating Architectural Technical Debt Accumulation and Refactoring over
Time: a Multiple-Case Study”, Information and Software Technology Jounral

Antonio Martini - PhD in Software Engineering

The problem is not only the accumulation
of ATD but the accumulation of the interest

Antonio Martini - PhD in Software Engineering

Time

Crisis

AT
D

 im
pa

ct

Interest

ATD items

“The Danger of Architectural Technical Debt: Contagious Debt and Vicious Circles,” in WICSA 2015, Montreal,
Canada.

Growing interest

Antonio Martini - PhD in Software Engineering

Time

AT
D

 in
te

re
st

 c
os

t

Principal

Cycle2 Cycle nCycle1 …………………..

Growing interest (low)

Antonio Martini - PhD in Software Engineering

Time

AT
D

 in
te

re
st

 c
os

t

Principal

Low interest

Cycle2 Cycle nCycle1 …………………..

Investment

Growing interest (linear)

Antonio Martini - PhD in Software Engineering

Time

AT
D

 in
te

re
st

 c
os

t

Principal

Low interest

Linear interest

Cycle2 Cycle nCycle1 …………………..

Growing interest (non linear)

Antonio Martini - PhD in Software Engineering

Time

AT
D

 in
te

re
st

 c
os

t

Principal

Low interest

Linear interest

Non-linear interest

Cycle2 Cycle nCycle1 …………………..

Growing interest to crises

Antonio Martini - PhD in Software Engineering

Time

AT
D

 in
te

re
st

 c
os

t

Principal

Low interest

Linear interest

Non-linear interest

Cycle2 Cycle nCycle1 …………………..

Crisis

Need to identify
this interest early
on!

“The Danger of Architectural Technical Debt: Contagious Debt and Vicious Circles,” in accepted for
publication at WICSA 2015, Montreal, Canada.

We don’t want a growing interest!

Antonio Martini - PhD in Software Engineering

Time

AT
D

 in
te

re
st

 c
os

t

Principal

Low interest

Linear interest

Non-linear interest

Cycle2 Cycle nCycle1 …………………..

What if it was
the interest for

the loan?

Antonio Martini - PhD in Software Engineering

Holistic task

Antonio Martini - PhD in Software Engineering

Managing Architectural
Technical Debt

Organization Process Tool

Organizational Aspect

Antonio Martini - PhD in Software Engineering

Managing Architectural
Technical Debt

Organization Process Tool

Antonio Martini - PhD in Software Engineering

Careful, we
have

Technical
Debt!

What to do next?
Refactoring or

features?

Careful, we
have

Technical
Debt!

What do we really
need to refactor?

Governance Team Architecture Team

Organization model: CAFFEA

� Applied and evaluated
� large companies

“A Multiple Case Study of Continuous Architecting in Large Agile Companies: current gaps
and the CAFFEA Framework” in WICSA 2016, Venice, Italy.

CAFFEA evaluated in practice showing
many improvements in:
� Management of ATD
� Sharing improvements and knowledge across

teams
� Tracking decisions
� Long-term perspective
� Clear references
� Monitor of architecture activities

Antonio Martini - PhD in Software Engineering

“A Multiple Case Study of Continuous Architecting in Large Agile Companies: current gaps
and the CAFFEA Framework” in WICSA 2016, Venice, Italy.

Process Aspect

Antonio Martini - PhD in Software Engineering

Managing Architectural
Technical Debt

Organization Process Tool

Fully automated

How to track Technical Debt?

Antonio Martini - PhD in Software Engineering

Unaware

How to track Technical Debt?

Antonio Martini - PhD in Software Engineering

Fully automated

Unaware

Benefits of tracking TD

� From reactive to proactive behavior
� TD visibility
� Better estimation
� Better decisions
� Better prioritization
� Better communication

� Still some challenges, but we are working on them

Antonio Martini - PhD in Software Engineering

Awareness of TD

Results under submission

Tool Aspect

Antonio Martini - PhD in Software Engineering

Managing Architectural
Technical Debt

Organization Process Tool

Should we Refactor?

Antonio Martini - PhD in Software Engineering

Principal (Cost of Refactoring)

Total Interest (Impact)
1

When the cost of refactoring is
greater than the interest, it’s not

convenient to refactor
A. Martini and J. Bosch, “An Empirically Developed Method to Aid Decisions on Architectural
Technical Debt Refactoring: AnaConDebt” ICSE SEIP 2016

Estimating the impact: AnaConDebt
� Developed analyzing 12 cases of ATD
� Current evaluation at several companies

Antonio Martini - PhD in Software Engineering

25

37
42

74

0

10

20

30

40

50

60

70

80

current short medium long

A. Martini and J. Bosch, “An Empirically Developed Method to Aid Decisions on Architectural
Technical Debt Refactoring: AnaConDebt” ICSE SEIP 2016

Visualization of Technical Debt
� Current consultancy work at Ericsson

Antonio Martini - PhD in Software Engineering

System

Sub-Sys A

TD level: 2

Sub-Sys B

TD level: 3

Sub-Sys C

TD level: 5

Objective
measures

Qualitative
assessment

Calibration Layer

Holistic goal

Antonio Martini - PhD in Software Engineering

Managing Architectural
Technical Debt

Organization Process Tool

Antonio Martini - PhD in Software Engineering

Antonio Martini - PhD in Software Engineering

Architectural
Technical Debt is

inevitable

Antonio Martini - PhD in Software Engineering

Time

AT
D

 in
te

re
st

 c
os

t

Principal

Low interest

Linear interest

Non-linear interest

Cycle2 Cycle nCycle1 …………………..

Architectural Technical
Debt interest can be

expensive

Antonio Martini - PhD in Software Engineering

Architectural
Technical Debt can

be managed

Holistic Management of Architectural
Technical Debt

Organization Process Tool

Prioritize Technical Debt!

Antonio Martini - PhD PhD in Software Engineering

…to be continued…

Antonio Martini - PhD in Software Engineering

Questions?
Comments?

CONTACTS
• antonio.martini@chalmers.se
• jan@janbosch.com
• https://www.linkedin.com/in/ant

onio-martini-79654433

PAPERS
• https://www.researchgate.net/pr

ofile/Antonio_Martini

WORK TOGETHER
• antonio.martini.am@gmail.com
• www.boschonian.com

