
A Systematic Process for Functional
Decomposition in the Absence of Formal

Requirements
Ryan Simko, Richard Wise, Erika Brimhall,

John Huggins, Whit Matteson
Georgia Tech Research Institute

19 July 2016

July

www.incose.org/symp2016

Introduction
•  One of the earliest steps in designing a new system is

understanding its functionality: this is often achieved through a
functional decomposition.

•  Traditional guidance for decomposing system functionality
relies on formal system requirements.

•  This briefing introduces a process for developing functional
decompositions in the absence of formal requirements

INCOSE Functional Analysis/Allocation Process (Haskins, 2011)

2

July

www.incose.org/symp2016

Process Goals
•  The process is intended to produce a robust functional

decomposition with the following characteristics:
–  Coverage. The key to ensuring full coverage is to identify

and fill gaps in the functionality.
–  Consistency. This is achieved by preventing

contradictions within the functional hierarchy and ensuring
compatibility between structural and behavioral views.

–  Reusability. A functional decomposition should give
implementation-agnostic functions that defines what the
system must do rather than how the system must work.

3

July

www.incose.org/symp2016

What is a Function?
•  The INCOSE Systems

Engineering handbook
defines a function as “a
characteristic task,
action, or activity that
must be performed to
achieve a desired
outcome” (Haskins,
2011).

•  The table represents
an extension of the
Integration Definition
for Function Modeling
(IDEF0) framework
which was used for the
standard functional
definition.

D e f i n i t i o n
Component

Description

Parent Function
Reference

A reference, whether by name or unique id, to the parent function

ID An unique identifier assigned to the function
Name A verb-noun phrase used to succinctly describe the function
Narrative Description A brief, plain-English textual description of the function that explains its

purpose and usage in the context of other functions
Input The data or objects that are transformed by the function into output

(FIPS PUBS 183, 1993)
Output The data or objects produced by a function (FIPS PUBS 183, 1993)
Control The conditions required to produce the correct output (FIPS PUBS 183,

1993)
Enabler (Mechanism) The means used to perform the function (FIPS PUBS 183, 1993)
Relevant Decomposition
Bin

The verb phrase(s) (i.e. decomposition bin) used to consistently describe
the basic behavior exhibited by the function (Hayhurst, et al., 2007)

Applicable Mission
Phase

The state(s) or significant condition(s) of the system applicable to the
function (Friedenthal, 2015)

Applicable Platform
Type

The category(s) of systems or technologies applicable to the function

Source Document
Reference

A bibliographic reference to the source document containing the
information used to define the function

4

July

www.incose.org/symp2016

Function Attributes
•  The process enforces examining and capturing the functionality

from multiple orthogonal perspectives, including:
–  Decomposition Bins: verbs clearly defined to describe basic behaviors found

in function names throughout a particular decomposition (e.g. Determine,
Receive, Execute, Convey Status).

–  Mission Phases: a way of capturing the basic ideas behind system states.
Friedenthal et al. says that, “a state represents some significant condition” of
the system. A state typically “represents some change in how the [system]
responds to events and what behaviors it performs” (Friedenthal, 2015). (e.g.
Taxi, Takeoff, Landing)

–  Platform Types: categories of systems or technologies for which a functional
decomposition is intended to cover. (e.g. Fixed-wing Aircraft, Rotorcraft, or
Vertical and/or Short Take-off and Landing (V/STOL) Aircraft)

5

July

www.incose.org/symp2016

Model-Based System Engineering
(MBSE) Approach

•  MBSE served as the basis for capturing and documenting the
functional decomposition process.

–  UML Activity Diagrams were used to provide precise semantics in
documenting this process.

–  The process was broken down into a series of actions and decisions, to
provide details about:

•  What needs to be done,
•  how to do it, and
•  an example of the action being performed.

–  Control flows were used to illustrate the process flow.

6

July

www.incose.org/symp2016

Top-Level Process
•  The top-level process consists of 23 steps
•  4 of those steps contain sub processes;

–  Identify Functions
–  Generalize Functions
–  Organize Functions
–  Describe Functions

•  Total of 64 steps across five key diagrams

7

July

www.incose.org/symp2016

Identify Functions
•  Identify Functions is where the domain

specific attributes developed earlier in the
process are populated and used to help
guide the generation of necessary
functions.

•  Functions are developed based on mission
phase, decomposition bins, and platform
type.

•  When this process sub-step is complete,
functions will be appropriately tagged with
attribute data, have a base definition, and
some notional data dependencies for
sequencing later on in the process.

8

July

www.incose.org/symp2016

Generalize Functions
•  Generalize Functions takes the functions

developed in Identify Functions and works to
make them more generic (applicable across
multiple mission phases and possible
implementations).

•  As an example, if you have aircraft functions
that are identical except for the mission phase
of the aircraft, these functions can be
generalized and combined into one function.

•  Functions must be updated appropriately once
they have been generalized to reflect the new
definition, data dependencies, or name.

9

July

www.incose.org/symp2016

Organize Functions
•  Organize Functions is where the list of functions

developed to this point is structured and
assigned a hierarchy based on parent-child
relationships.

•  The goal is to create groupings of functionality
based on similar purpose.

•  The end product should be a hierarchical
function structure consisting of multiple parent-
child relationships.

•  Since functions were generalized in the
previous sub-process, some functionality is
potentially redundant and is marked for review.

10

July

www.incose.org/symp2016

Describe Functions
•  Describe Functions updates the narrative

description from the standard function
definition and captures the additional fields
that have yet to be addressed earlier in the
process.

•  Capturing preceding and succeeding
functions can identify gaps in the functional
decomposition.

•  The Master Data Element List and
Glossary are reviewed and updated as
needed.

11

July

www.incose.org/symp2016

Process Summary
•  Upon completion of Describe Functions,

there are some final feedback loops to
address process completion.

•  Any changes to the decomposition, require
that the process be followed again to assess
the impact.

12

July

www.incose.org/symp2016

Validating the Process Goals
•  The process is intended to produce a robust functional

decomposition with the following characteristics:
–  Coverage
–  Consistency
–  Reusability

•  A functional decomposition for avionics software was
developed using this process to validate these goals.

13

July

www.incose.org/symp2016

Validation - Coverage
•  Ensured functionality would be added to address multiple

orthogonal perspectives, including the decomposition bins,
mission phases, and platform types (steps 12.02-12.06 and
14.01-14.03).

•  Identified and filled gaps in the decomposition. Gaps were most
commonly identified when piecing together complete parent/child
relationships (steps 15.04-15.06) and when determining the
source of data that was required as inputs into identified functions
(steps 12.08 and 19.10-19.14).

•  Enforced functions being decomposed into sub-functions until
they could not be further decomposed without becoming
implementation-specific (steps 14.06-14.07 and 16).

14

July

www.incose.org/symp2016

Validation - Consistency
•  Enforced each function in the hierarchy being composed of its

child functions, which ensures consistency throughout the
hierarchy (steps 15.04-15.06).

•  Activity Diagrams depicting behavioral views of the functionality
were developed (step 19.10) and the process ensured they were
consistent with the hierarchical view of the functions.

•  A data model at a conceptual level was developed for the
functional decomposition (steps 8 and 19.04-19.07), resulting in
consistent inputs and outputs between functions.

15

July

www.incose.org/symp2016

Validation - Reusability
•  Ensured the functions would remain implementation-agnostic

(steps 14.01-14.08).
•  Decomposed the functions to the lowest possible level, while

remaining implementation-agnostic (steps 14.06-14.07 and 16).
•  In addition, the avionics functional decomposition was reviewed

by avionics Subject Matter Experts who agreed the
decomposition was an accurate representation of avionics
software functionality.

16

July

www.incose.org/symp2016

Future Work
•  Analyze the avionics decomposition to understand the amount

of coupling and cohesion occurring between functions.
•  Implement the functional decomposition process to develop

function libraries for other domains beyond avionics software.
•  Identify process improvement opportunities by having non-

systems engineers implement the process and provide
feedback.

17

July

www.incose.org/symp2016

Conclusions
•  This briefing presented a systematic process to perform an

implementation-agnostic functional decomposition in the absence of
formal requirements.

•  The systematic process ensures the functional decomposition has
full coverage of the system’s functionality, is consistent throughout
the functional architecture, and is reusable across various system
domains and organizations.

•  The functional decomposition process has been used in the avionics
software domain to successfully develop a functional decomposition
exhibiting the characteristics of coverage, consistency, and
reusability.

18

July

www.incose.org/symp2016

Questions?

Contact Information:
Ryan.Simko@gtri.gatech.edu, Georgia Tech Research Institute

19

July

www.incose.org/symp2016

References
•  Camarinha-Matos, L. M., ed. 2002. Collaborative Business Ecosystems and Virtual Enterprises. New York:

Springer Science and Business Media.
•  Department of Defense, Systems Management College. 2001. “Systems Engineering Fundamentals.”

Supplementary Text, Defense Acquisition University Press.
•  Faisandier, A. 2013. Engineering and Architecting Multi-Disciplinary Systems, Volume 3: Systems

Architecture and Design. Belberaud, France: Sinergy’Com.
•  FIPS PUBS (Federal Information Processing Standards Publications). 1993. Draft Federal Information

Processing Standards Publication 183: Integration Definition for Function Modeling (IDEF0). Gaithersburg,
MD.

•  Friedenthal, S., A. Moore, and R. Steiner. 2015. A Practical Guide to SysML, 3rd Edition. Amsterdam:
Elsevier.

•  Haskins, C., ed. 2011. Systems Engineering Handbook: A Guide for System Life Cycle Processes and
Activities. Version 3.2.2. Revised by K. Forsberg et al. San Diego, CA: INCOSE.

•  Hayhurst, K. J., et al., 2007. “Preliminary Considerations for Classifying Hazards of Unmanned Aircraft
Systems.” NASA Langley Research Center.

•  ISO/IEC (International Organization for Standardization/International Electrotechnical Commission). 2007.
ISO/IEC 26702:2007. Systems engineering – Application and management of the systems engineering
process. Geneva, CH: ISO/IEC

•  No Magic, Inc. 2013. “UML Profiling & DSL, Version 18.0, User Guide.” Allen, US-TX.
•  The Open Group. (2014). “Technical Standard for Future Airborne Capability Environment (FACE™), Edition

2.1”. Burlington, MA: The Open Group.

20

