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Research Scenario & Motivation



Small Satellites

* Interest in small satellites has grown significantly in recent years

e Building, launching and operation of small satellite constellations is
becoming increasingly feasible
— Miniaturization of satellite components
— Standardization of many satellite parts
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Examples of Recent Small Satellite Missions

Google and Fidelity Investments have made a S1 Billion
investment in SpaceX

OneWeb Ltd to provide global internet service on a
network of 648 lightweight LEOs through Air Bus

CyGNSS: NASA Weather Predictions
SNaP: US Military Nanosatellite UHF Constellation  anenne ————— |

Microcontroller

Small satellite startup Satellogic is on its way to Copaciors | /
building and orbiting a constellation of 300 Earth
Observation (EO) satellites to provide near-real time
imagery
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Solar Cells

High-resolution earth imaging, space-based internet, atmospheric
modelling, on-demand coverage



“Small” —A specific class of satellites
Relatively low resources and proportionally increased risk
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Standardization Efforts
ISO TC20/SC14 (Space Systems and Operations)

International Academy of Astronautics IAA Study Group 4.18

Considering the term “Lean Satellite” to reflect the low-cost and
fast delivery attributes rather than satellite size or mass

Definition and Requirements of Small Satellites Seeking Low-Cost
and Fast-Delivery

1SO/19683 Design Qualification and Acceptance Tests for Lean
Satellite

— COTS to comply before sold as space units



Aspects under Discussion—Lean Definition

Total cost including infrastructure investment, launch

. 3Mto 10M USD
and operation

Time from the contract to delivery 6-months to 3-years
Number of mission payloads 1to5
Number of persons needed to operate per satellite pass 1to5
Number of people engaged in satellite development 10 to 30 persons

Percentage of non-space qualified COTS parts/material
usage

10% to 90%

Mission down time allowed 90-min to 1 week

Satellite mission duration 1 to 3 years




Challenge—Reducing Risk for Same Resources

Conventional Sub-Optimal Trade-off
— — — Subject Optimal Trade-off
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Traditional Systems Engineering Lifecycle

Requirements Engineering

SDR

Requirements Breakdown Structure

Hierarchical Functional Structure

PDR
Physical Architecting

Design Analysis
Prototyping

A
~ Detailed System Design

DDR/CDR

Development & Integration

Testing
Verification & Validation

Operation

Retirement



Lean Satellite—Largely COTS based

Various physical elements are connected together in a specific
way to perform the required functions

_~

Largely driven by availability and compatibility of COTS alternatives
of each element
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Selection of preferred COTS alternatives of each element



Decide-Build-Test

Available Off-the-Shelf Solutions
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Making the decision first and then testing a physical design to
receive feedback



Proposed Approach
Lean Satellite Architecture Design



Elements of Proposed Framework

COTS
Databases

Tradespace Construction
Design Verifications —
Desktop Applications & Tools
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Proposed TSE—Explore-Test-Decide
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Proposed TSE—Explore-Test-Decide

Requirements y 4

Ayoaeasry udisa(g oy atordxy

Explore all potential architectures

Combinations of available component alternatives

Tradespage Explagation -
Assessing against the Objective Function

To address the Lean Satellite challenges . E——
<— Opportunity Identification

e.g. Improving Reliability
“Design Verification

Design decisions are delayed until the feasibility and optimality are proven
prior to physical development
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Exploring the Design Hierarchy
Off-the-shelf Solutions

2 Sub-Systems
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Exploring the Design Hierarchy
Off-the-shelf Solutions

2.Subsystems

Sll 521

512 522

513 523

514 524

Design Mass Volume Cost Design Mass Volume Cost
Alternative | (g) x10°(mm)3 k$ Alternative | (g) x10°(mm)3 k$

S11 343.55 | 2.5373 | 3.4772 Sy1 348.99 | 2.7455 | 5.1664
512 363.16 3.0021 4.1302 Szz 353.80 2.8243 4.2446
S13 362.57 3.0036 4.0663 533 361.87 3.0125 5.9877
S14 366.94 | 3.1067 | 4.1529 S24 368.73 | 3.1705 | 6.1676




Exploring the Design Hierarchy
Off-the-shelf Solutions

- 8 Components
® 4 Sub-Sybsystems
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Considering lower layers of design decomposition (or hierarchy) is likely to disclose
non-intuitive designs of interest



CubeSat System Example
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Design Space of Example CubeSat System

Subsystem Optimization

Y

System Optimization Sub-Optimal

Tradespace

Volume (x105 mm?3)

500 25

Figure 4. Volume-mass-cost tradespace for the example CubeSat system

22



Design Space of Example CubeSat System

Single Power Subsystem
Dual Power Subsystem

®  Higher-Reliability

Utility Curve
6 I\
) E .s.\ XY ‘i‘ b
) [ )

E .,}\ i %o
% Utility Curve 4 ° ‘B *s \s{“‘ ?o\“ "
-

2

900

40

Potential R&D
Tradespace

Figure 5. Tradespace of example CubeSat system including improved reliability designs
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Design Space of Example CubeSat System
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Value of Exploration

Power Subsystem in this design
NanoPower P31U Power Supply
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Designing for Reliability

The Difference allows for redundancy, through either power Power Subsystem SpeC_ificationS
subsystem, to improve the reliability as: (5323(’)5521513%8 P1U "Vasik
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Conclusions
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Design Verifications —
Desktop Applications & Tools
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Conclusions
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Figure 5. Tradespace of example CubeSat system including improved reliability designs
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