On Relationship of System
Testability, Reliability and

Modularity

Mahmoud Efatmaneshnik
Mike Ryan

= Capability
AP U NSW Systems
N Centre

AAAAAAAAA

UNSW Canberra

Life-Cycle Benefits of Modularity

Design

— Problem Tractability

— Evolvability/Reuse

— Upgradability
Implementation/Integration/Manufacturing
— Parallel implementation

— Testability

— Assembility

Use/Operation

— Maintainability

— Reparability

— Extendability of operations/functions
Retirement

— Recyclability

What is Testability?

* Testability is commonly defined as the degree to which a
component or system can be tested in isolation, or as
the relative to effort required to test it.

e Design for test techniques improve quality of the
product in addition to reducing the costs of testing

e Testability is commonly regarded as dependent on two
other qualities :

— Observability: is the degree to which internal state of a system
can be inferred from its inputs and outputs relations.

— Controllability: is the degree to which the internal state of a
system is determined by the inputs.

Standard Definitions of Testability

Extent to which an objective and feasible test can be
designed to determine whether a requirement is met (1SO/
IEC 12207).

Degree to which a requirement is stated in terms that permit
establishment of test criteria and performance of tests to
determine whether those criteria have been met (IEEE 1233).

Degree to which a system or component facilitates the
establishment of test criteria and the performance of tests to
determine whether those criteria have been met (ISO/IEC/
IEEE 24765).

Degree of effectiveness and efficiency with which test
criteria can be established for a system, product, or
component and tests can be performed to determine
whether those criteria have been met (ISO/IEC 25010).

So...

e Testability can be a property of a requirement, a system,
or any structural constituent of the system—that is, of
any system element.

 We define one aspect of testability as the reliability of
the test, or the confidence in the outcome of the test, or
the probabilistic accuracy of the test in having the
correct outcome.

A Model of System Integration and Testing

* Reliability of the system after
integration without any testing:

Rg = 71'1=1 R;

e Reliability of the system after
integration and testing:

Integrate in S1

RST 2 H?:l Ri

* Latent Defect Probability: Passed :

\{

P,, = (1-R)x(1-TR)

Repeated Testing

state of ate of Outcome
system S ?e(sato probability

state of

system state of
test

Outcome
probability

Detected Detected

e S

1-TR

P = (1-R) x (1-TR) Unit NotDetected > — |P < (1-R)x(1-TR)

Nothing to detect | —————» Nothing to detect | ————

Solving for R.; and Test time/cost

 Monte Carlo Simulation:
— R is system reliability after repeated testing.
— The expected number of tests are indicators of the total test

cost/time.
k= 1000000;
test _time = 0;
latent = 0;
for i = 1:k
f = rand(1l,n) > R;%a one means a fault
test time= test time + 1;
while any(f)
m = nnz(f);%no of actual defects
d = rand(1l,m) < TR; %detected defects
if any(d)
j = find(d);
f = rand(1,n) > R;
test _time= test time + 1;
else
f =0;
latent = latent + 1;
end
end

end
RST = 1 — (latent/k);
TST = n * test_time / k;%for the unit

M
= v v A = &
09— 7 et v n=t
&
0.8f —A—n=2
= 0.7
o —>—n=3
> 06—
§ 0.5 —<—n=b
o
= 0.4
5 ! —*—n=10
0.3¢
0.2 n=20
0.1 —+—n=50
0 Il Il
0 0.2 0.4 0.6 0.8 1
Test reliability (TR)
6

Log (Time/Cost)

| —+—n=10

n=20

—8B—n=50

Test relaibility (TR)

Reliability and Cost of Repeated Testing

n is system size, number of
components and interfaces.

R = 0.9 for all components/
interfaces.

Modular Testing

Grouping of components into modules for test.

Each module then requires creation of separate test
plans.

We ignore the cost of creating separate test plans for
modules.

Testing Architecture

Failed: lFailed : lFailed : 1

[Test] { Test J [Test 1 [Test] [Test] IR
Passed Passed Passed Passed Passed T ..
Failed
Passed ! : Passed

Integrate in S1 O r
\ v

Failed Integrate in S
"""" Test

Passed

M1

Failed -

Failed |

Integrate in S1-1

v Failed-....
Test2

Passed

A two level testing architecture with A two-level testing architecture
no modularization. with a two-module decomposition.

41 Sample Architectures

no " m no m no m no m no m
Sample 1 | 1 2 2 3 2 4 2 5 2
M vector [10] [[51.051] [[6].[4]] [[71.031] [18].12]]
Sample 6 | 2 7 3 8 3 9 | 3 10 3
M vector [[91.011] [[4L.03L13]] [[41.[41.[2]] [[5L.03L.[2]] [[SLIALIT]
Sample 11 3 12 |3 13 |3 14 |3 15 |4
M vector [[6].[2],(2]] [[6].[3,[1]] [[71.(2],[1]] [[8].[11,(1]] [[31.03].[2],[2]]
Sample 16 |4 17 |4 18 |4 19 |4 20 |4
M vector [[BLBLEBLIT | [41,021,021121] [[[4LB3L210] | (414100000 | [051.031,[11,(1]]
Sample 21 [| 4 22 [4 23 [4 24 | 5 25 [5
M vector ([5L2L2L001 | (612100000 | (071,01 [1.[1]] [[2],[2]2,][]2],[2],[[[3],[2]1,][]2],[2],[
Sample 26 |5 27 |5 28 |5 29 5 30 6
M vector (BLBLELOALE [[4LBLOLALE [SLE2LALALE | [eLALILILE | (121121121211
1] 1] 1] 1]] 1L[1]]
Sample 31 |6 32 |6 33 |6 3 |6 35 7
M vector (BLELEZLOLE [[BLELOLALL [MALELALALE | SLALALILE | [12L2L12L1L
11.[1]] 10.[1]] 11.[1]] 1], 1]] 1L
Sample 36 | 7 37 7 38 8 39 490 |9
M vector [(BLELOLOLE [[4L0L0LOLE | (2LE2LA L0 [[3],[1],[1],[1],[[2],[11,[1L,[1],[1
1],[1],[11] 1,010,011 [SNRNARIARY) OLOL0 | 1O,
Sample 41 [l 10
M vector I,[1],[1],[1 .
L) N = 10 (system size)
[11]

Reliability after Testing

1L 4
/ —TR=099
09f 1
——TR=09
— 0.8 4
2]
i R
=)
5 07 TR=0.8
©
5 o6
——TR=05
05}
——TR=0.1
04t/ —
1 5 10 15 20 25 30 35 40

sample no

For all two-layer testing architectures (sample no>2), the achievable unit
reliabilities are mostly identical for any given test reliability value.

Testing Cost

o2}
o

T T
——TR =0.99
—TR=0.9 |+

(6)}
()}
T

TR=0.8
—TR =05
TR =0.1

(o))
o
T

N
(6}
T

1

N
o
T
1

W
o
T

Expected test time/cost
&
1

N
&)
T

N
o
T

—_
(&)}
T
1

1 0 1 1 1 1 1
1 5 10 15 20 25 30 35 40

sample no

The expected time/costs of the two-layer architectures vary greatly with architecture.
Modularization reduces the cost of testing more than 50% relative to non-modular (one-
layer) architecture.

The time/cost is sensitive to the topology of the testing.

Samples no 2, 7, 15, 24, 30, and 35 show a consistent pattern of local cost minimization;
thus they are a more efficient architecture for testing; because the same unit reliability
results at the lowest cost.

These sample numbers have the minimum standard deviation of the number of modules
for their modularization number.

Conclusion

Modularity facilitates testability: any modular testing
architecture reduces the number of latent defects.

Although the expected time/costs vary greatly with
architecture, modularization into a two-level
architecture reduces the cost of testing more than 50%
relative to a non-modular (one-layer) architecture.

Additionally, the time/cost is much more sensitive to the
topology of the testing than it is to the unit reliability.

Balanced modularization leads to lowest testing cost.

— For example when creating two modules, a modularization
vector of MV = [5,5] has a variance of zero, and for three
modules MV=[3, 2, 2] has the lowest variance amongst all
three-module architectures.

On Relationship of System
Testability, Reliability and

Modularity

Mahmoud Efatmaneshnik
Mike Ryan

= Capability
AP U NSW Systems
N Centre

AAAAAAAAA

UNSW Canberra

Standard Definitions of Testability

Extent to which an objective and feasible test can be designed to
determine whether a requirement is met (ISO/IEC 12207:2008 Systems
and software engineering--Software life cycle processes, 4.52).

Degree to which a requirement is stated in terms that permit
establishment of test criteria and performance of tests to determine
whether those criteria have been met (IEEE 1233-1998 (R2002) IEEE

Guide for Developing System Requirements Specifications, 3.18).

Degree to which a system or component facilitates the establishment of
test criteria and the performance of tests to determine whether those
criteria have been met (ISO/IEC/IEEE 24765:2010 Systems and software

engineering--Vocabulary).

Degree of effectiveness and efficiency with which test criteria can be
established for a system, product, or component and tests can be
performed to determine whether those criteria have been met (ISO/IEC
25010:2011 Systems and software engineering--Systems and software
Quality Requirements and Evaluation (SQuaRE)--System and software
quality models, 4.2.7.5).

