

27th annual **INCOSE**
international symposium

Adelaide, Australia
July 15 - 20, 2017

Robotic Satellite Servicing Tool Down Selection

Jessica Knizhnik
University of Maryland

Mark Austin
University of Maryland

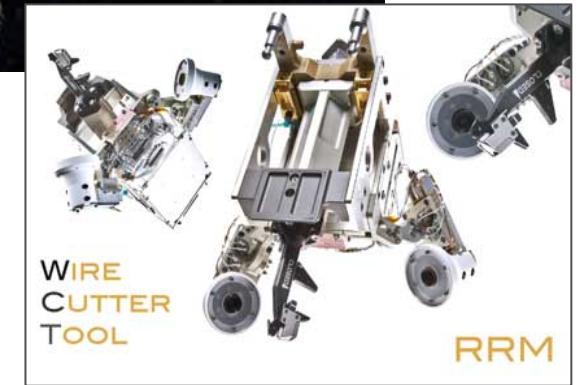
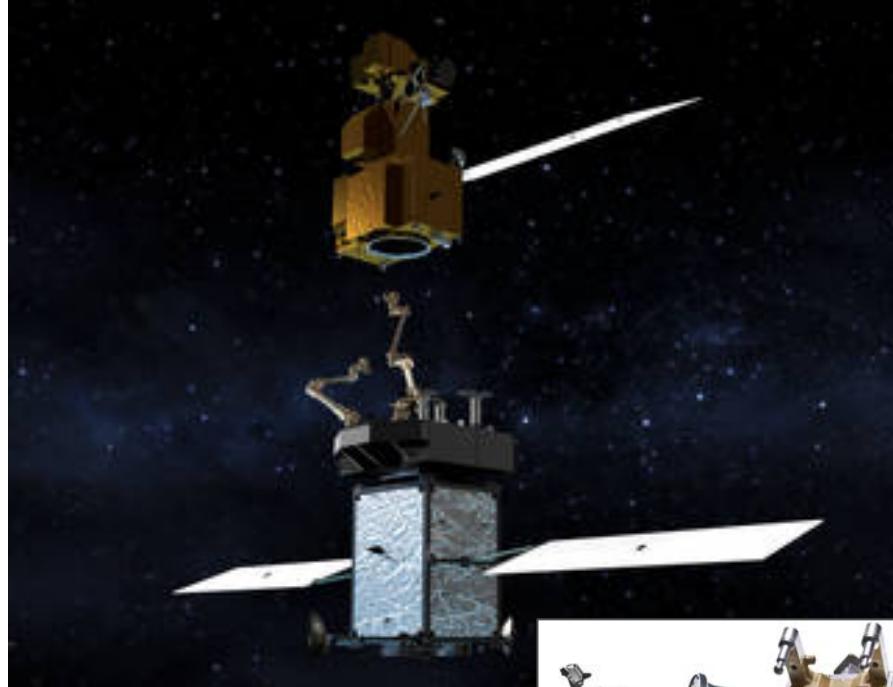
Craig Carignan
University of Maryland



Which Kitchen Tools Do I Need?

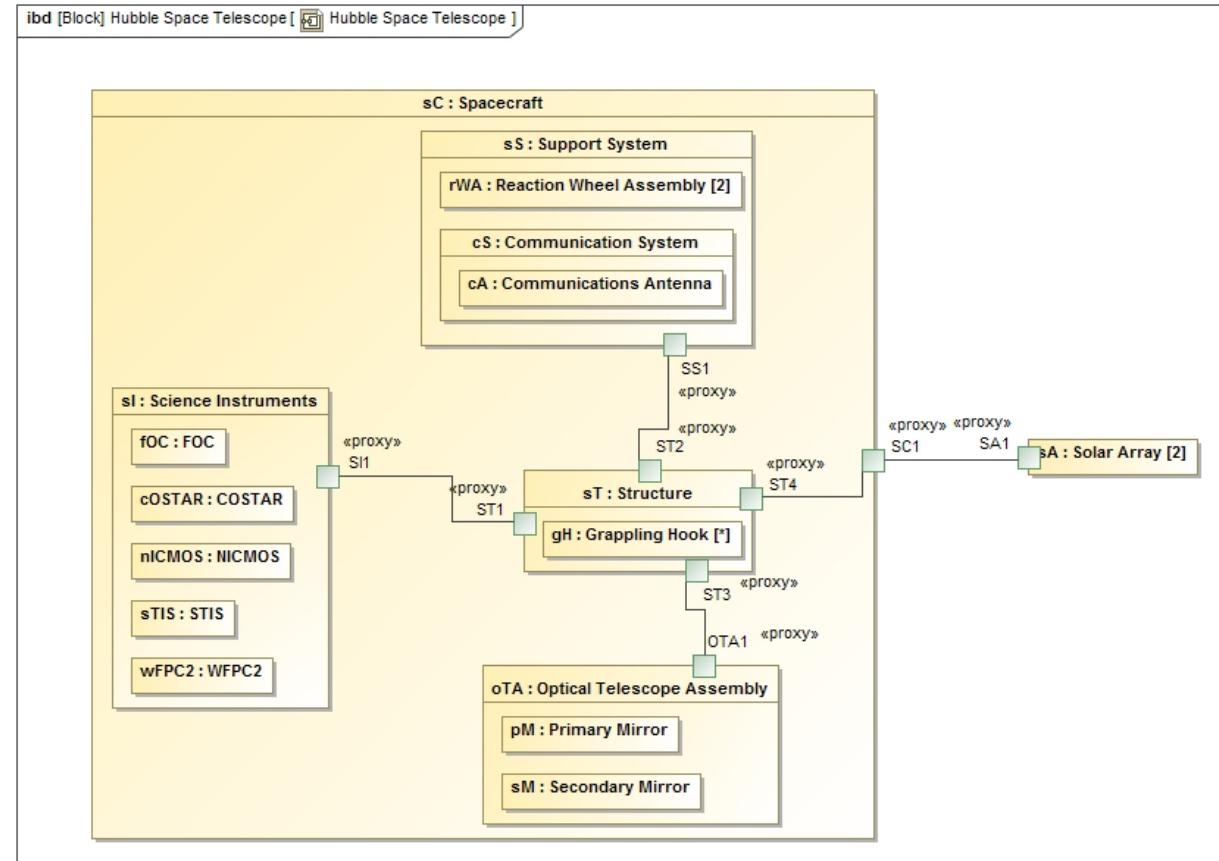

Boil Pasta

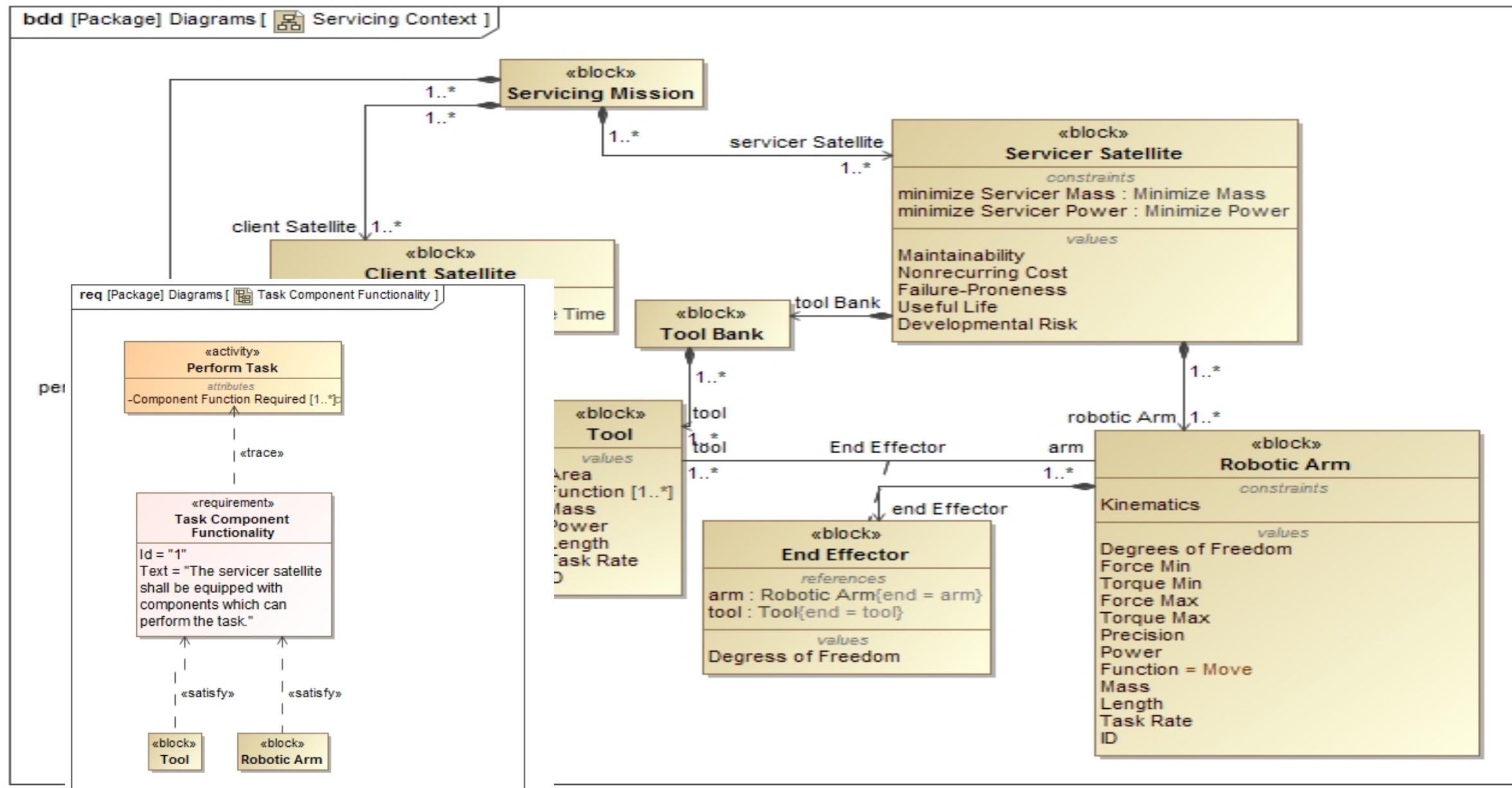
Remove Pasta



Place Pasta in Bowl

Robotic Satellite Servicing

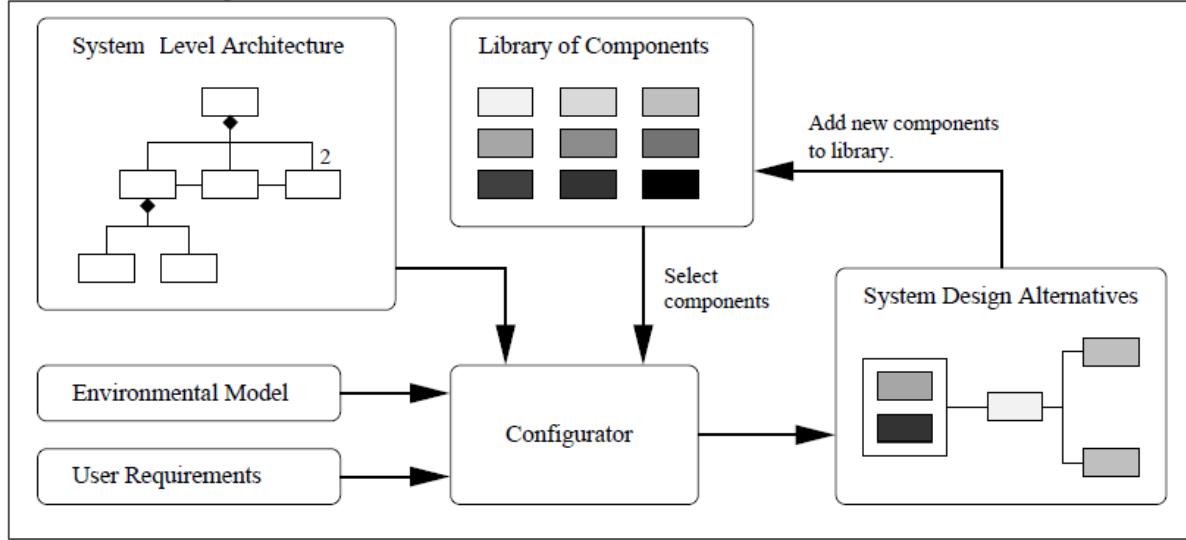
- Robotic servicer satellites can be cheaper and safer than astronauts
- Robots are mass, power and time limited, so which tools and arms are the best to fly with?




99.996%

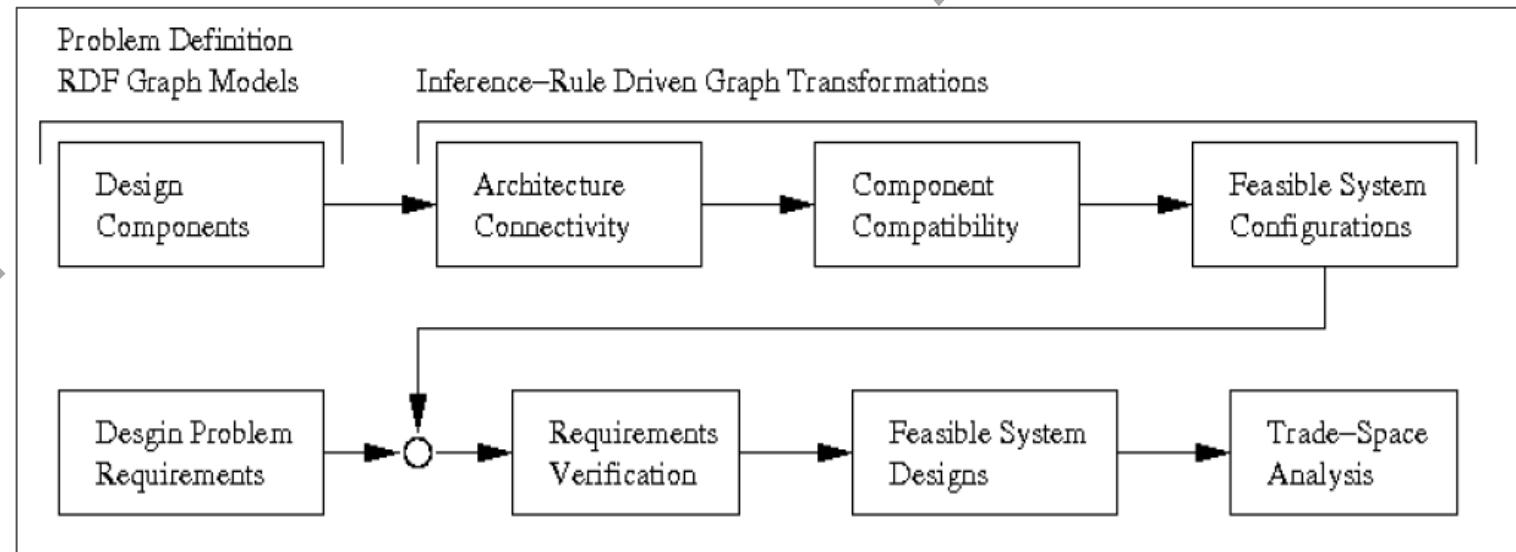
Design Options Removed

Hubble Space Telescope Architecture



Past Work – Hubble Servicing (Pilotte 2004)

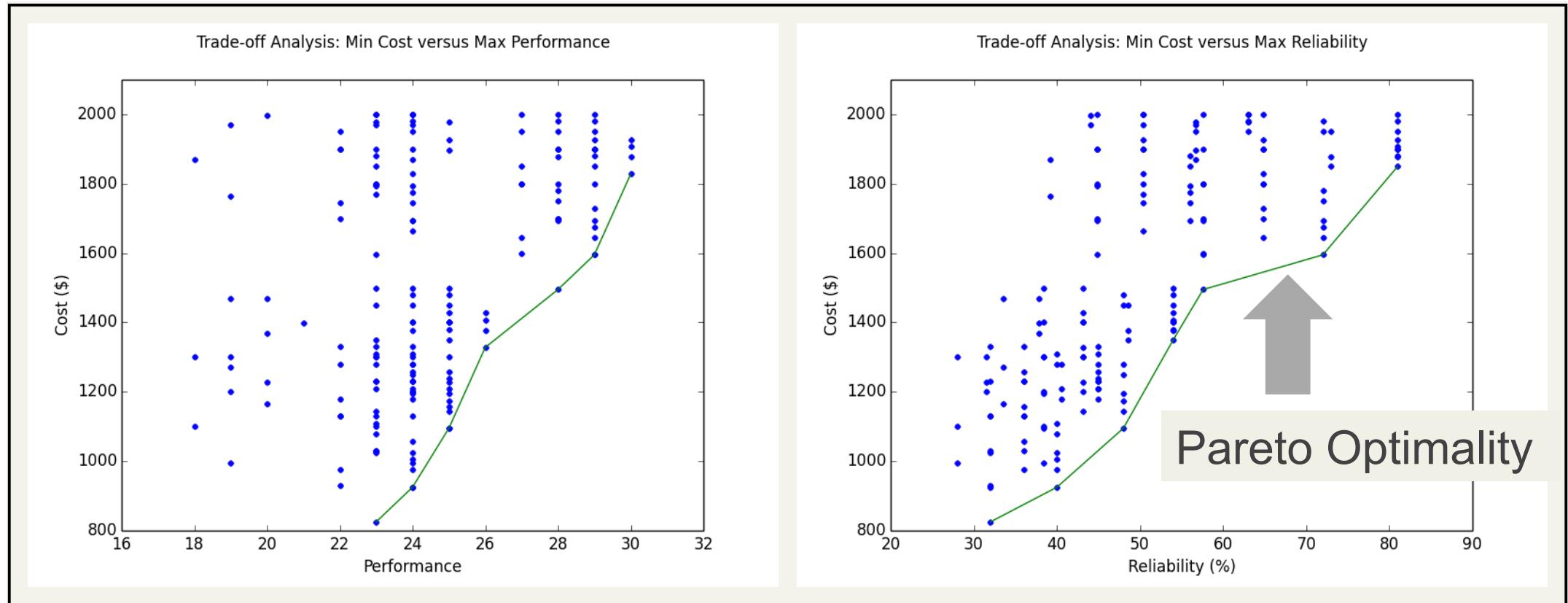
Identified robotic tasks and tools necessary to perform Hubble Space Telescope (HST) Astronaut Servicing Mission 3B (SM3B)

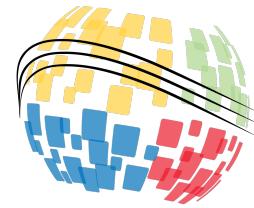

<u>Ref #</u>	<u>EV</u>	<u>Primitive</u>	<u>Task Name</u>	<u>Need?</u>	<u>Broad Prim</u>	<u>1st EE</u>	<u>Inst #</u>	<u>2nd EE</u>	<u>Inst #</u>
3 11		PCU-R Mate							
3226	R MS	Mate connectors (2-bottom PCU-R)	PCU-R Mate	Yes	mate/demate PCU connector	Pinch on retainer	2	HT Pinch	2
3227	R MS	Mate connectors (34-left PCU-R)	PCU-R Mate	Yes	mate/demate PCU connector	Pinch on retainer	34	HT Pinch	34
3228	R MS	Stow J13/J14 saver caps in trash bag	PCU-R Mate	Yes	stow connector cap	Pinch	2		
3 12		V2 Aft Shroud Handrail Covers							
3230	FF	inspect +/- V2 handrails used for ACS and NCS	V2 Aft Shroud Handrail Covers	Yes	inspect worksite	Camera	1		
3231	FF	retrieve handrail covers from ASIPE	V2 Aft Shroud Handrail Covers	Yes	retrieve handrail covers	Unknown	1		
3232	FF	install handrail covers	V2 Aft Shroud Handrail Covers	Yes	install handrail covers	Unknown	1		
3233	FF	config. HST PFR (aft ASIPE) for ACS	V2 Aft Shroud Handrail Covers	No		Unknown	1		

Past Work – Down Selection (Nassar and Austin, CSER 2013)

Modeling: Requirements, Components and Architectures represented with RDF.

Processing Pipeline:
Component Selection corresponds to sequence of RDF graph transformations.




Past Work – Demonstrate Down Selection Process

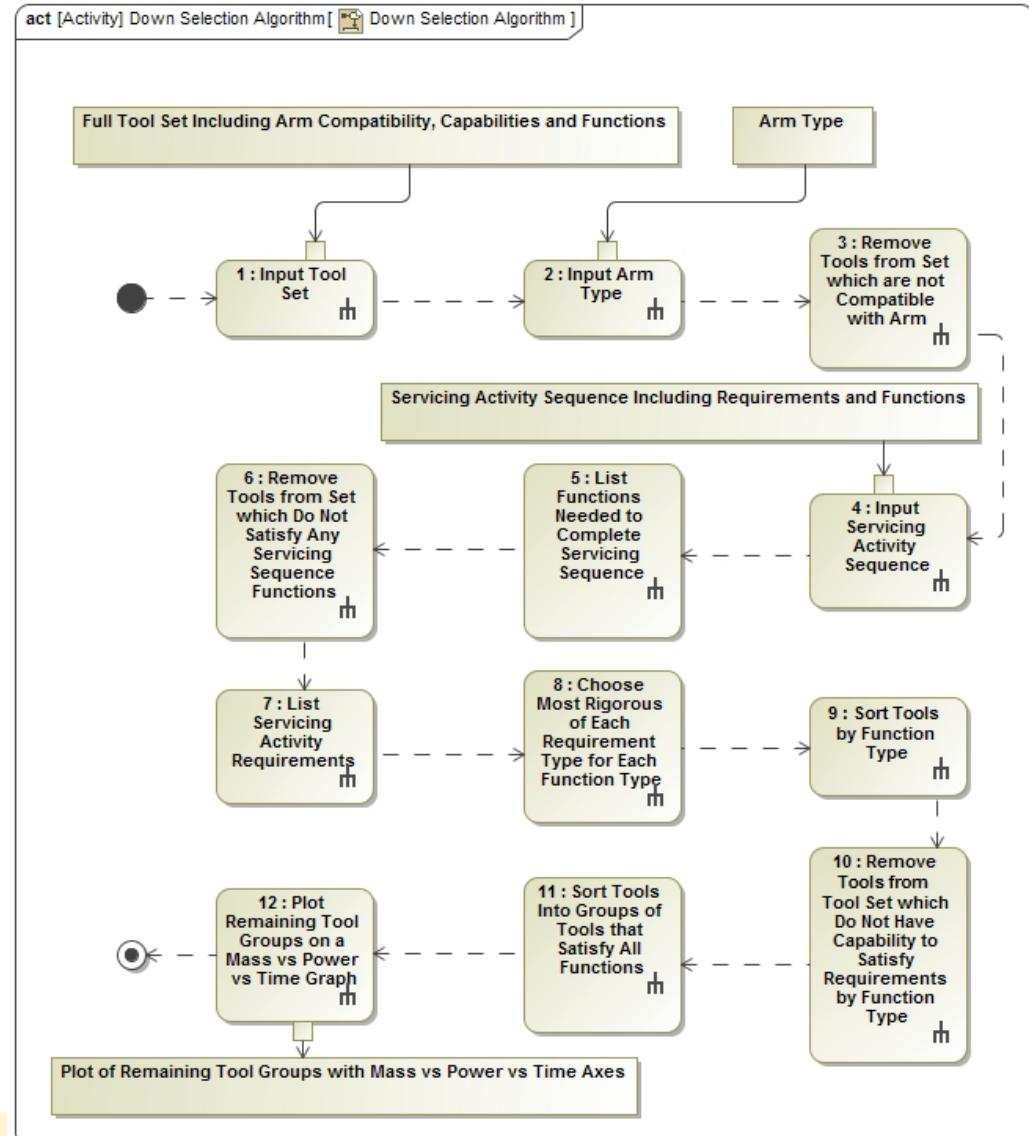
Pipeline: Down selection from a space of 1,000 ``potentially good'' design options.

Result: Tradeoff curves of: 1. Cost versus Performance, 2. Cost versus Reliability, 3. Performance versus Reliability.

Work Thus Far

- Manual Application
 - Simplified
 - Proof of concept
- Automated Application
 - Full problem
 - Decision tool

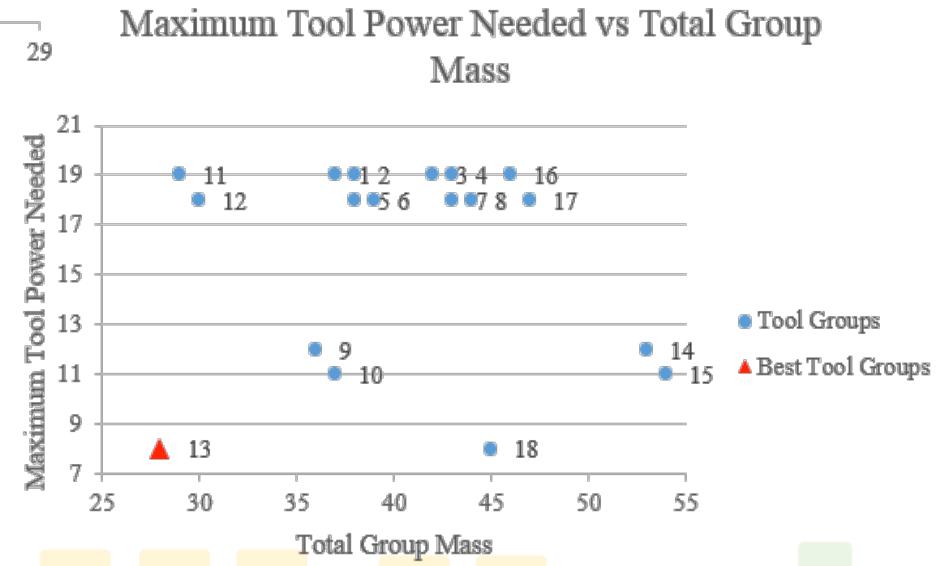
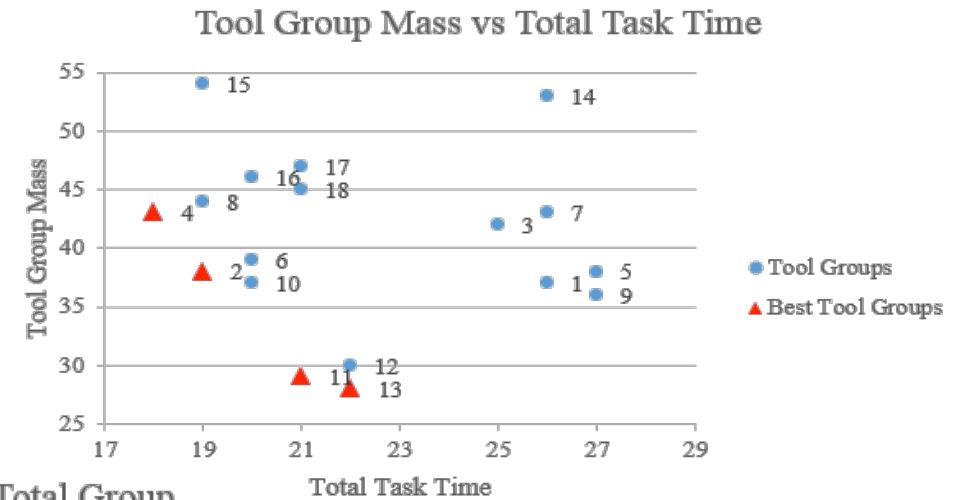
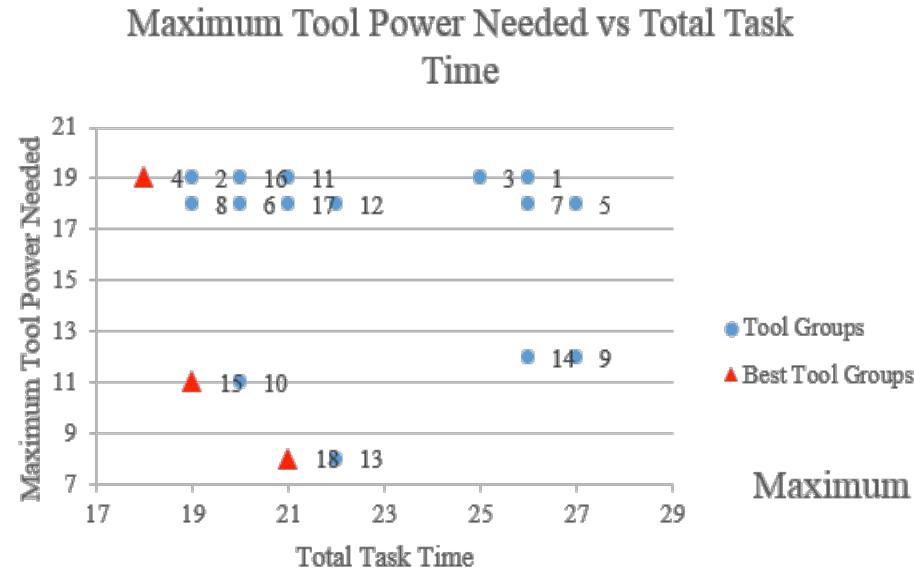
Manual Problem Set Up


- Which tools can perform four representative servicing tasks?
 - Removed arm selection to simply problem

ID	Activity	Tool Function	Force	Resolution	Size
1	Stow groundstrap (SA-3)	Delicate pinch	<5		<10
2	Remove PIP pin (fwd latch)	PIP (pinch)	$4 < x < 10$		$9 < x < 20$
3	Remove BAPS post	Small handrail (grip)	>10		<5
4	Inspect p105 and p106 covers	Camera		>20	<10

Manual Down Selection Process

ID	Tool	Functions	Arm	Force	Resolution	Size	Step Rem
1	Delicate Pinch	Delicate Pinch	RESTORE	1		10	
2	Delicate Pinch	Delicate Pinch	RESTORE	2		9	
3	Delicate Pinch	Delicate Pinch	RESTORE	20		15	10
4	Delicate Pinch	Delicate Pinch	DEXTRE	10		20	3
5	Welder	Welder	RESTORE	5		12	6
6	Cutter	Cutter	RESTORE	13		13	6
7	Pinch	Pinch	DEXTRE	1		8	3
8	Pinch	Pinch	RESTORE	6		12	
9	Pinch	Pinch	RESTORE	7		13	
10	Bolt Driver	Bolt Driver	RESTORE	5		18	
11	Bolt Driver	Bolt Driver	RESTORE	4		30	6
12	Multi Tool	Delicate Pinch, Pinch and Camera	RESTORE	5	22	10	
13	Grip	Grip	DEXTRE	1		1	3
14	Grip	Grip	DEXTRE	2		2	3
15	Grip	Grip	RESTORE	5		5	10
16	Grip	Grip	RESTORE	20		4	
17	Camera	Camera	RESTORE	0	30	5	
18	Camera	Camera	RESTORE	0	21	11	10
19	Camera	Camera	DEXTRE	0	20	10	3




Creating Tool Groups

ID	Tool	Functions	Mass	Power	Time to Complete Task 1	Time to Complete Task 2	Time to Complete Task 3	Time to Complete Task 4
1	Delicate Pinch	Delicate Pinch	1	19	1			
2	Delicate Pinch	Delicate Pinch	2	18	2			
8	Pinch	Pinch	8	12		8		
9	Pinch	Pinch	9	11		1		
12	Multi Tool	Delicate Pinch, Pinch and Camera	12	8	2	3		7
16	Grip	Grip	16	4			10	
17	Camera	Camera	17	3				6

Group ID	Tool IDs
1	1, 8, 12, 16
2	1, 9, 12, 16
3	1, 8, 16, 17
4	1, 9, 16, 17
5	2, 8, 12, 16
6	2, 9, 12, 16
7	2, 8, 16, 17
8	2, 9, 16, 17
9	8, 12, 16
10	9, 12, 16
11	1, 12, 16
12	2, 12, 16
13	12, 16
14	8, 12, 16, 17
15	9, 12, 16, 17
16	1, 12, 16, 17
17	2, 12, 16, 17
18	12, 16, 17

Manual Results

Best Design Options

Group 2

ID	Tool	Functions
1	Delicate Pinch	Delicate Pinch
9	Pinch	Pinch
		Delicate Pinch, Pinch and
12	Multi Tool	Camera
16	Grip	Grip

Group 11

ID	Tool	Functions
1	Delicate Pinch	Delicate Pinch
12	Multi Tool	Delicate Pinch, Pinch and Camera
16	Grip	Grip

Group 15

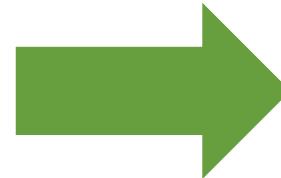
ID	Tool	Functions
9	Pinch	Pinch
12	Multi Tool	Delicate Pinch, Pinch and Camera
16	Grip	Grip
17	Camera	Camera

Group 4

ID	Tool	Functions
1	Delicate Pinch	Delicate Pinch
9	Pinch	Pinch
16	Grip	Grip
17	Camera	Camera

Group 13

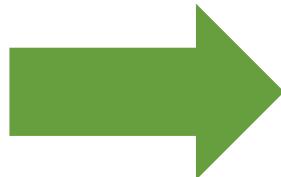
ID	Tool	Functions
12	Multi Tool	Delicate Pinch, Pinch and Camera
16	Grip	Grip


Group 18

ID	Tool	Functions
12	Multi Tool	Delicate Pinch, Pinch and Camera
16	Grip	Grip
17	Camera	Camera

Expanded Automated Problem

4 arbitrary task primitives



35 Solar Array 3 (SA-3) Removal task primitives

8 requirements

55 requirements

21 components

162 components

2 arms

5 arms

19 tools

157 tools

Selected SA-3 Removal Task Primitives

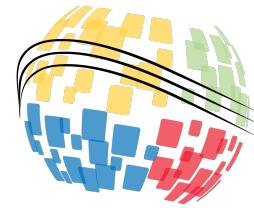
<u>Ref #</u>	<u>EV</u>	<u>Primitive</u>	<u>Task Name</u>	<u>Need?</u>	<u>Broad Prim</u>	<u>1st EE</u>	<u>Inst #</u>	<u>2nd EE</u>	<u>Inst #</u>
1207	FF	drive latch 3 until clamp clears tang, 7-9 turns (release)	SA-3 Removal	Yes	drive bolt	Bolt drive	1		
1208	FF	pivot latch 3 to clear tang	SA-3 Removal	Yes	pivot latch	Small handrail	1		
1209	FF	tether to tang	SA-3 Removal	No		Tether tool	1		
1210	FF	PGT: A2, CCW 2, 5.5	SA-3 Removal	Yes	set bolt drive	COMPUTER	1		
1211	FF	drive tang bolts 9-10 turns (2-disengage)	SA-3 Removal	Yes	drive bolt	Bolt drive	2		
1212	FF	stow tang on CSS	SA-3 Removal	Yes	stow tang	Bolt drive	1	Small handrail	1
1213	FF	PGT: A2, CW 2, 5.5	SA-3 Removal	Yes	set bolt drive	COMPUTER	1		

Selected SA-3 Removal Requirements

Ref #	EV	Primitive	Task Name	Need?	Broad Prim	1st EE	Inst #	2nd EE #	Inst	Tool + Arm			Tool		Arm	
										Force	Torque	Length	Resolution	Area	Precision	DoF
1207FF		drive latch 3 until clamp clears tang, 7-9 turns (release)	SA-3 Removal	Yes	drive bolt	Bolt drive	1					12.0			<70	<17
1208FF		pivot latch 3 to clear tang	SA-3 Removal	Yes	pivot latch	Small Handrail	1			-1.37	- 1.37				<150	<37
1209FF		tether to tang	SA-3 Removal	No		Tether tool	1									
1210FF		PGT: A2, CCW 2, 5.5	SA-3 Removal	Yes	set bolt drive	Computer	1									
1211FF		drive tang bolts 9-10 turns (2-disengage)	SA-3 Removal	Yes	drive bolt	Bolt drive	2					5.5			<70	<17
1212FF		stow to tang on CSS	SA-3 Removal	Yes	stow tang	Bolt drive		Small 1handrail	1							
1213FF		PGT: A2, CW 2, 5.5	SA-3 Removal	Yes	set bolt drive	Computer	1									

Semantic vs Numeric Logic

- Previous work used Jena semantic rule solver
- JaCoP mathematical constraint solver has potential to evaluate larger problems


Introduction JaCoP Constraints JaCoP Search Applications Conclusions

Basic features of the solver

- Evaluation of constraints triggered by events.
- Satisfied constraints are removed from evaluation.
- New constraint can be posed during search to build new search methods.
- Constraints can have a state that changes during search and backtracking in a similar way as variables.
- Easy to add new constraints with different consistency methods; extend abstract class.
- Can run large examples, e.g. ca. 180 000 constraints.

Selected SA-3 Removal Mathematical Constraints

ID	Mathematical Constraint	Component Function Constraint	Which components in the group must meet it?	ROIN
63	$\text{toolTorqueMin} \leq 12.0 \text{ ft-lb}$	Drive Bolt	at least one tool	1207-TAT
64	$\text{toolTorqueMax} \geq 12.0 \text{ ft-lb}$	Drive Bolt	tool which meets ID 63 constraints	1207-TAT
65	$\text{armTorqueMin} \leq 12.0 \text{ ft-lb}$	Move	at least one arm	1207-TAT
66	$\text{armTorqueMax} \geq 12.0 \text{ ft-lb}$	Move	arm which meets ID 65 constraints	1207-TAT
67	$\text{toolArea} \geq 0 \text{ in}^2$	Drive Bolt	same tool as ROIN 1207-TAT	1207-TA
68	$\text{toolArea} \leq 70 \text{ in}^2$	Drive Bolt	same tool as ROIN 1207-TAT	1207-TA
69	$\text{armPrecision} \geq 0 \text{ in}$	Move	same arm as ROIN 1207-TAT	1207-AP
70	$\text{armPrecision} \leq 0.17 \text{ in}$	Move	same arm as ROIN 1207-TAT	1207-AP
71	$\text{toolForceMin} \leq 1.37 * 1000 \text{ lbs} \text{ OR } \text{toolForceMax} \leq 1.37 * 1000 \text{ lbs}$	Grip Small Object	at least one tool	1208-TAF
72	$\text{toolForceMin} \geq -1.37 * 1000 \text{ lbs} \text{ OR } \text{toolForceMax} \geq -1.37 * 1000 \text{ lbs}$	Grip Small Object	tool which meets ID 71 constraints	1208-TAF
73	$\text{armForceMin} \leq 1.37 * 1000 \text{ lbs} \text{ OR } \text{armForceMax} \leq 1.37 * 1000 \text{ lbs}$	Move	at least one arm	1208-TAF
74	$\text{armForceMin} \geq -1.37 * 1000 \text{ lbs} \text{ OR } \text{armForceMax} \geq -1.37 * 1000 \text{ lbs}$	Move	arm which meets ID 73 constraints	1208-TAF
75	$\text{toolArea} \geq 0 \text{ in}^2$	Grip Small Object	same tool as ROIN 1208-TAF	1208-TA
76	$\text{toolArea} \leq 150 \text{ in}^2$	Grip Small Object	same tool as ROIN 1208-TAF	1208-TA
77	$\text{armPrecision} \geq 0 \text{ in}$	Move	same arm as ROIN 1208-TAF	1208-AP
78	$\text{armPrecision} \leq 0.37 \text{ in}$	Move	same arm as ROIN 1208-TAF	1208-AP
79	$\text{toolTorqueMin} \leq 5.5 \text{ ft-lb}$	Drive Bolt	at least one tool	1211-TAT
80	$\text{toolTorqueMax} \geq 5.5 \text{ ft-lb}$	Drive Bolt	tool which meets ID 79 constraints	1211-TAT
81	$\text{armTorqueMin} \leq 5.5 \text{ ft-lb}$	Move	at least one arm	1211-TAT
82	$\text{armTorqueMax} \geq 5.5 \text{ ft-lb}$	Move	arm which meets ID 81 constraints	1211-TAT
83	$\text{toolArea} \geq 0 \text{ in}^2$	Drive Bolt	same tool as ROIN 1211-TAT	1211-TA
84	$\text{toolArea} \leq 70 \text{ in}^2$	Drive Bolt	same tool as ROIN 1211-TAT	1211-TA
85	$\text{armPrecision} \geq 0 \text{ in}$	Move	same arm as ROIN 1211-TAT	1211-AP
86	$\text{armPrecision} \leq 0.17 \text{ in}$	Move	same arm as ROIN 1211-TAT	1211-AP

Selected Components from Library

Component #	Type	Function(s)	Force Min	Force Max	Torque Min	Torque Max	Length	Resolution	Area	Precision	DoF	Mass	Power	Time
A2	Arm	move	0.0005	0.001	-50	20	15			0.15	7	60	9	0.5
MT1	Multi Tool	Drive Bolt, Inspect, pinch, delicately pinch, cut	0.0005	0.0015	-6	30	2		3	70		30	4	3
C1	Camera	Inspect					0.5		4	130		21	7	2.5
BD1	Drive Bolt	Drive Bolt			0	17	2		50			15	7	4.5
SH12	Small Hand rail	grip small object	-0.9	-0.38			1		100			20	10	5

Group Selection

Each group will have two arms and no more than four tools

Group 1

Component #	Mass	Power	Time
A2	60	9	0.5
A2	60	9	0.5
MT1	30	4	3
SH12	20	10	5
Total	170	32	9

Group 2

Component #	Mass	Power	Time
A2	60	9	0.5
A2	60	9	0.5
BD1	15	7	4.5
SH12	20	10	5
Total	155	35	10.5

Lower power allocation

Lower down time allocation

Lower mass allocation

Numerical Approach: Constraint Satisfaction Problem

JaCoP: Java Constraint Programming Library (Open Source)

JaCoP Constraints

- primitive
 - $X + Y = Z$,
 - $X \geq Y$,
 - $X \times Y = Z$,
 - etc.
- conditional
 - IF ($X = Y$) THEN $B > 10$ ELSE $C \leq 7$
 - $X = Y \Leftrightarrow A > C$
- reified
 - $X = Y \Leftrightarrow B$
- logical
 - $(X = Y) \vee (X = Z)$
 - $\neg(A = B)$

JaCoP Search

- JaCoP offers a number of search methods
 - search for a single solution,
 - find all solutions, and
 - find a solution that minimizes/maximizes a given cost function.
- Search is achieved using depth-first-search together with consistency checking.
- Search is parametrized (different classes for labeling, delete, and indomain).
- There are complete search methods and heuristics
 - depth-first-search and branch-and-bound,
 - credit search,
 - “limited discrepancy search”,
 - hierarchical search.

Preliminary Assessment: Support for **many types of constraints**. Algorithms for design space search and pruning are powerful. But, various forms of problem data need to be converted to a common numerical format.

99.996%

Design Options Removed

160000 options → 6 options

99.9999998%

Design Options Removed

3116006480 options → 6 options

Future Work

- Link with SysML
- Sensitivity analysis
- Expand to other problems

Sources

- Hubble Space Telescope. See: <http://hubblesite.org/>, 2016.
- Kuchcinski, K., 'JaCoP: Java Constraint Programming library and its applications', See: <http://www.gecode.org/~schulte/events/SweConsNet/kuchcinski.pdf>.
- Nassar, N. and Austin, M., 2013, 'Model-Based Systems Engineering Design and Trade-Off Analysis with RDF Graphs', Conference on Systems Engineering Research, Atlanta, GA, US.
- Pilotte, K. J., 2004, 'Analysis of Grasp Requirements for Telerobotic Satellite Servicing', Master of Science Thesis, University of Maryland, College Park, MD, US.
- RESTORE-L Mission. See: <http://www.nasa.gov/feature/nasa-s-restore-l-mission-to-refuel-landsat- 7-demonstrate-crosscutting-technologies>, 2016.
- Robotic Refueling Mission. See: https://ssco.gsfc.nasa.gov/rrm_tools.html and https://ssco.gsfc.nasa.gov/rrm_tasks.html, 2016.

Questions?