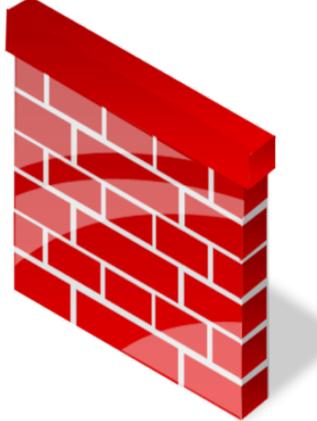


27th annual **INCOSE**
international symposium

Adelaide, Australia
July 15 - 20, 2017

Enabling Repeatable SE Cost Estimation with COSYSMO and MBSE



Problem Statement

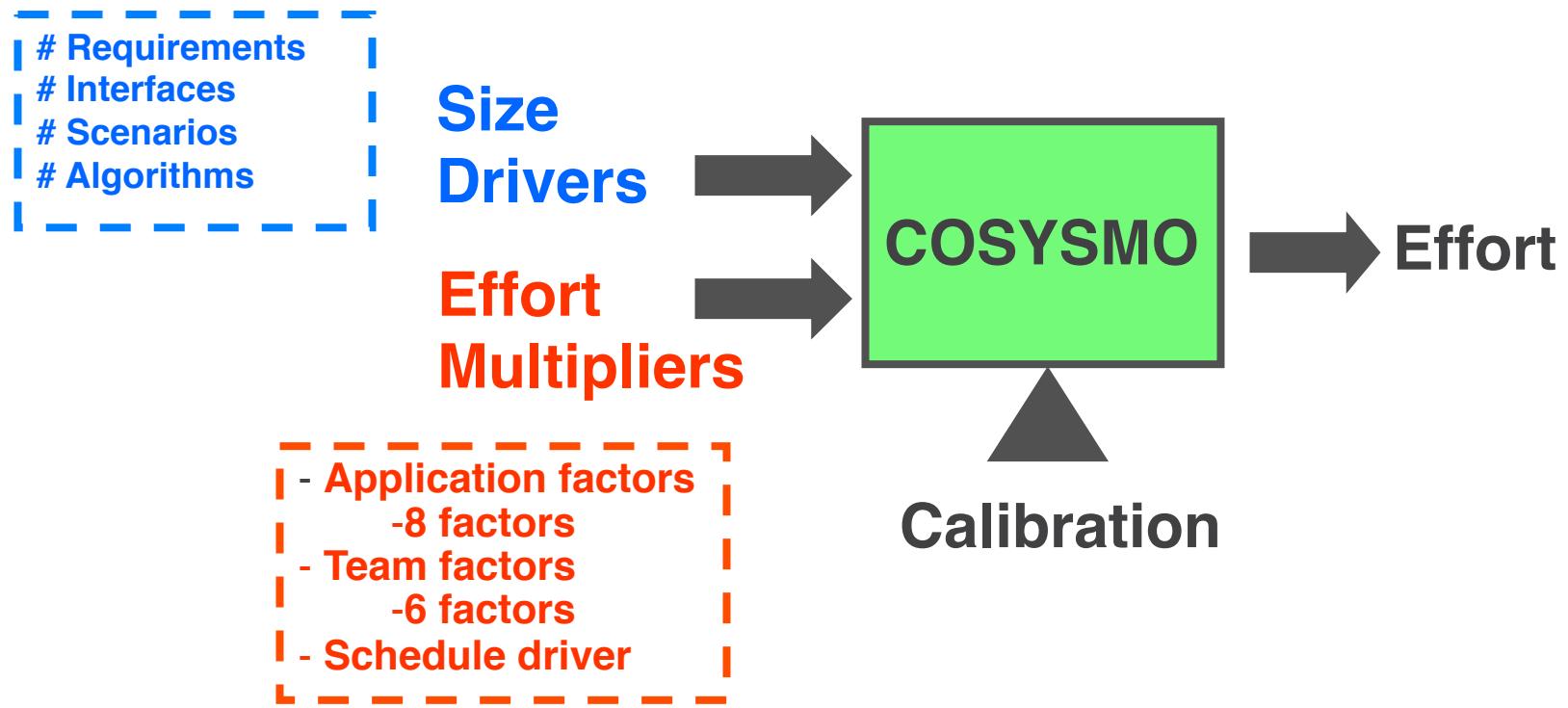
**System
Designer**

Cost Analyst

- Two stove-piped worlds today: system architecting vs. cost estimation
 - Lack of traceability of data
 - Lack of ability to conduct cost trades (CAIV or DTC)
 - Lack of early visibility to the economic effect of system architecture

Introduction

- This paper proposes a concept of integrating parametric cost estimating with Model Based Systems Engineering (MBSE)
 - An approach of integrating COSYSMO cost estimating relationship with SysML modeling environment
 - Demonstrated use case for a practical implementation
 - Feasibility of parametric cost estimating as a natural extension of Model-Based Systems Engineering

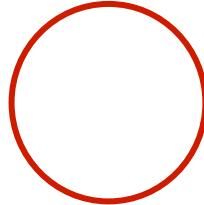

Background

- 2005
 - The Constructive Systems Engineering Cost Model (COSYSMO) was originally introduced by Ricardo Valerdi (PhD Dissertation, University of Southern California)
- 2008-2015
 - COSYSMO was extended by the Wang, Fortune, Valerdi and others with the General Reuse Framework to address reuse in systems engineering activity
- 2016
 - The Generalized Reuse Framework –Strategies and the Decision Process for Planned Reuse was presented by Dr. Gan Wang at 26th Annual INCOSE International Symposium (IS 2016) Edinburgh, Scotland

COSYSMO – Parametric Cost Model for Systems

4 Size Drivers and 14 Cost Drivers

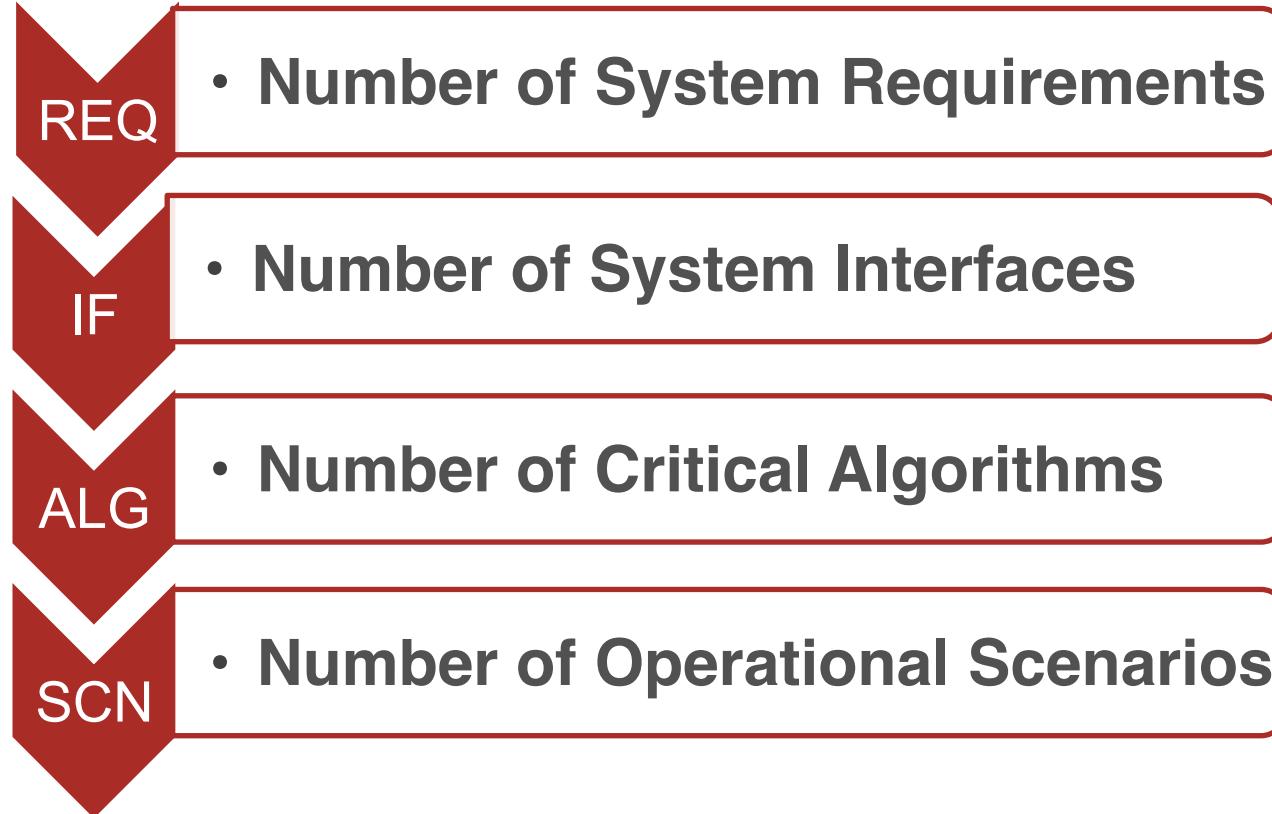
Basic Cost Estimating Relationship (CER)


$$PH_{NS} = A \cdot SS^E \cdot CEM$$

- **PH_{NS}** = systems engineering effort in person-hours under nominal schedule
- **A** = productivity constant, typically derived from historical project data
- **SS** = system size, determined by the four size drivers
- **E** = nonlinearity for the productivity curve, representing a diseconomy of scale
- **CEM** = composite effort multiplier, determined by the fourteen cost drivers

Basic Cost Estimating Relationship (CER)

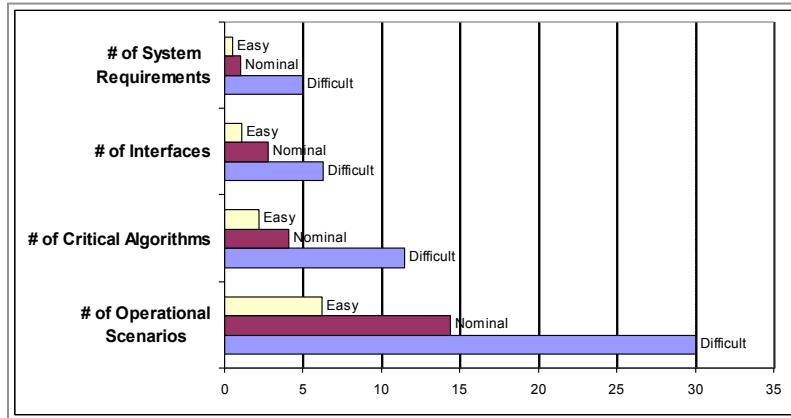
$$PH_{NS} = A \cdot SS^E \cdot CEM$$


- PH_{NS} = systems engineering effort in person-hours under nominal schedule
- A = productivity constant, typically derived from historical project data
- SS = system size, determined by the four size drivers
- E = nonlinearity for the productivity curve, representing a diseconomy of scale
- CEM = composite effort multiplier, determined by the fourteen cost drivers

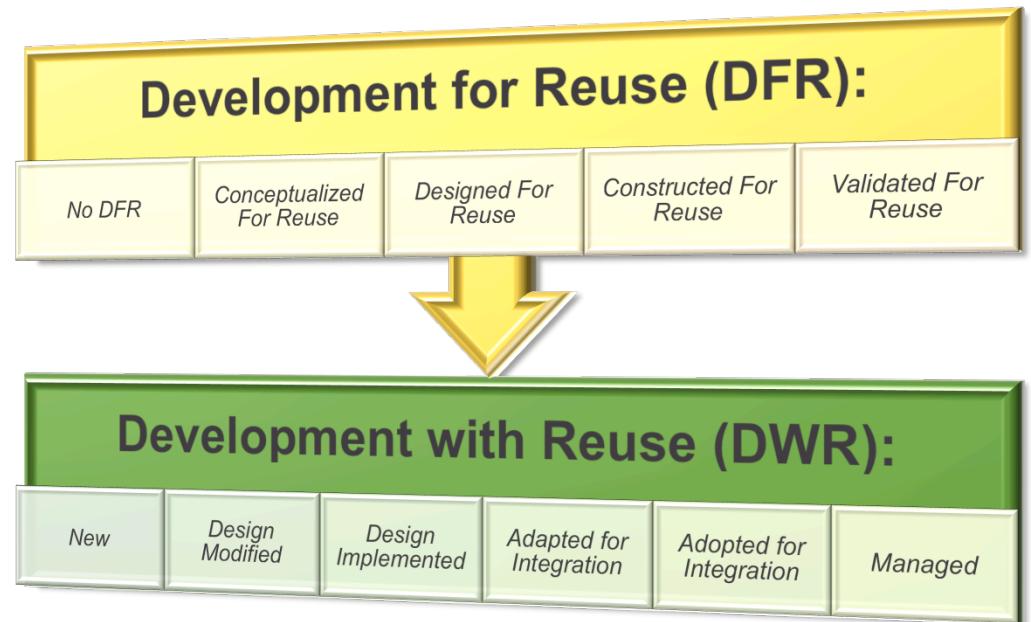
This presentation will focus on generation of the System Size (SS) component of the COSYSMO equation.

Four Sizing Drivers

Each weighted by:


- 1) Levels of complexity
- 2) Degrees of reuse

Driver Counting/Classification Rules


- **Levels of Complexity**

- “Easy”
- “Nominal”
- “Difficult”

- **Degrees of Reuse**

- “Generalized Reuse Framework”

COSYSMO 3.0 with the Generalized Reuse Framework

Total Project Effort = DWR Effort + DFR Effort

$$PM_{DWR+DFR} = A_1 \cdot \left[\sum_k \left(\sum_r w_r (w_{e,k} \Phi_{e,k} + w_{n,k} \Phi_{n,k} + w_{d,k} \Phi_{d,k}) \right) \right]^{E_1} \cdot CEM_1 \\ + A_2 \cdot \left[\sum_k \left(\sum_q w_q (w_{e,k} \Psi_{e,k} + w_{n,k} \Psi_{n,k} + w_{d,k} \Psi_{d,k}) \right) \right]^{E_2} \cdot CEM_2$$

Where:

PM_{DWR} = effort in Person Hours/Months (Nominal Schedule)

A₁ = DWR constant derived from historical project data

k = {REQ, IF, ALG, SCN}

r = {*New, D. Modified, D. Implemented, Adapted for Int., Adopted for Int., Managed*}

w_r = weight for defined levels of size driver reuse

w_x = weight for “easy”, “nominal”, or “difficult” size driver

Φ_x = quantity of “k” size driver

E₁ = represents diseconomy of scale in DWR

CEM₁ = composite effort multiplier for DWR

Where:

PM_{DFR} = effort in Person Hours/Months (Nominal Schedule)

A₂ = DFR constant derived from historical project data

k = {REQ, IF, ALG, SCN}

q = {*No DFR, Conceptualized, Designed, Constructed, Validated*}

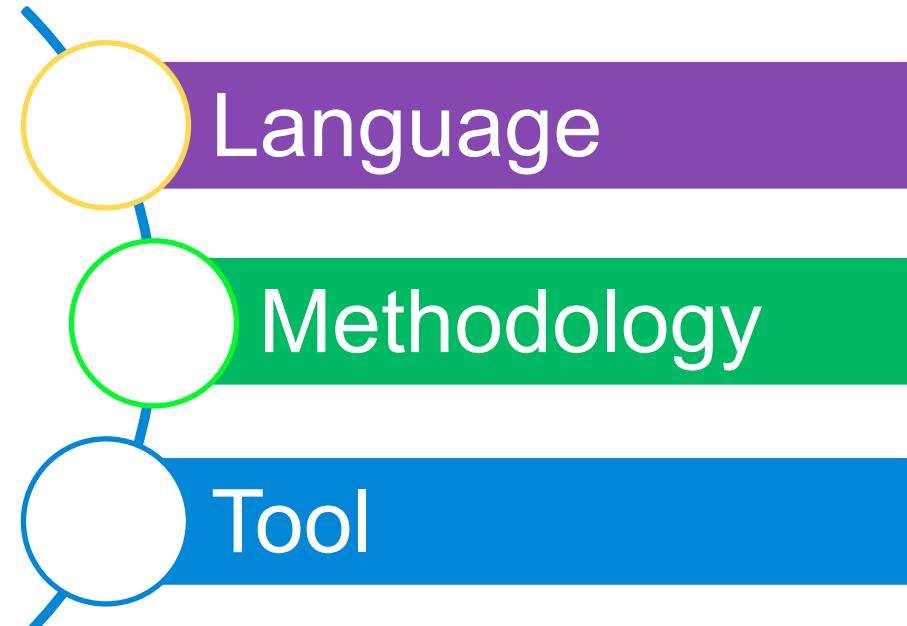
w_q = weight for defined levels of size driver reuse

w_x = weight for “easy”, “nominal”, or “difficult” size driver

Φ_x = quantity of “k” size driver

E₂ = represents diseconomy of scale in DFR

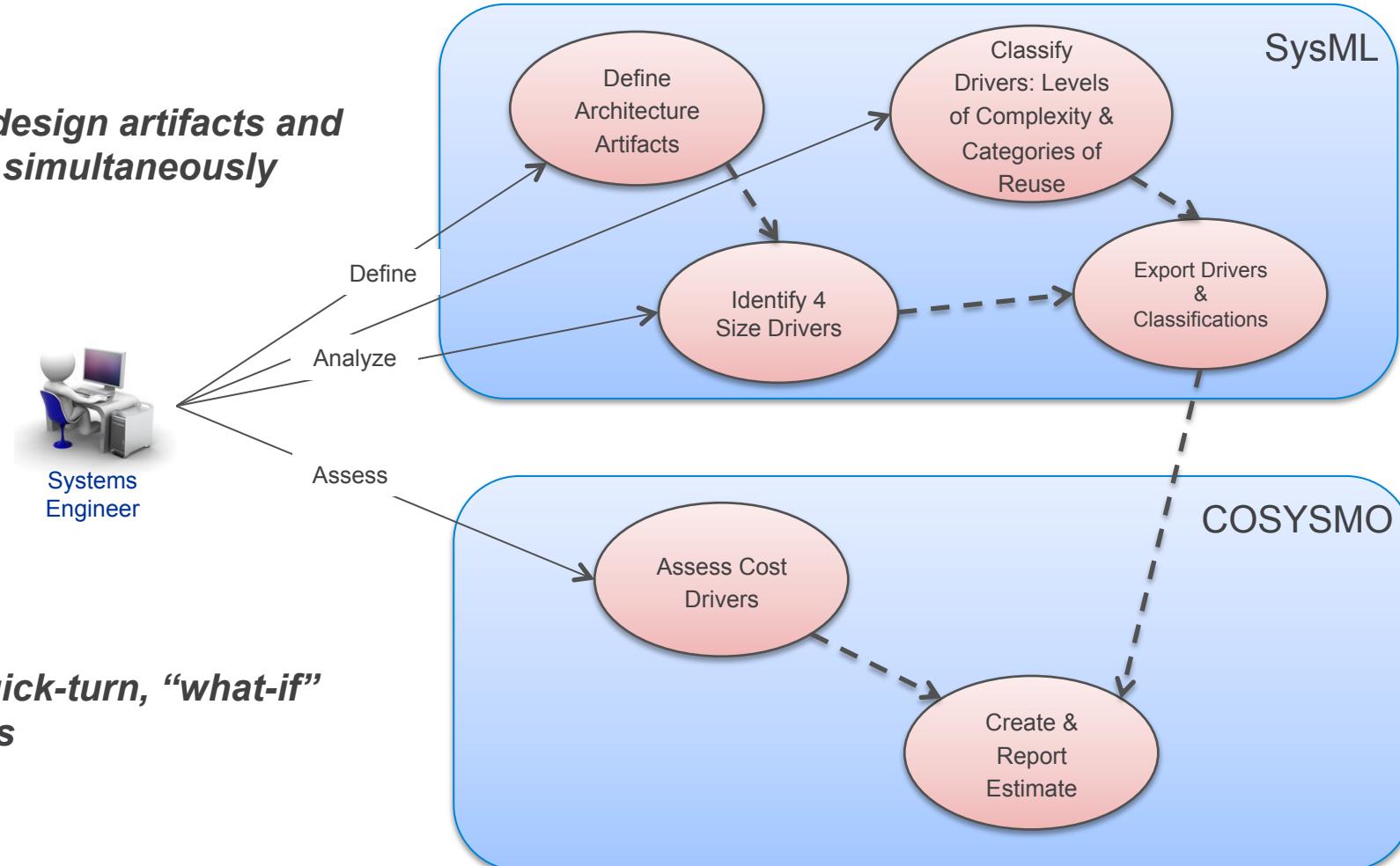
CEM₂ = composite effort multiplier for DFR


Wang, Gan. 2016. “The Generalized Reuse Framework - Strategies and the Decision Process for Planned Reuse.”

INCOSE International Symposium Volume 26, Issue 1, July: 175-189.

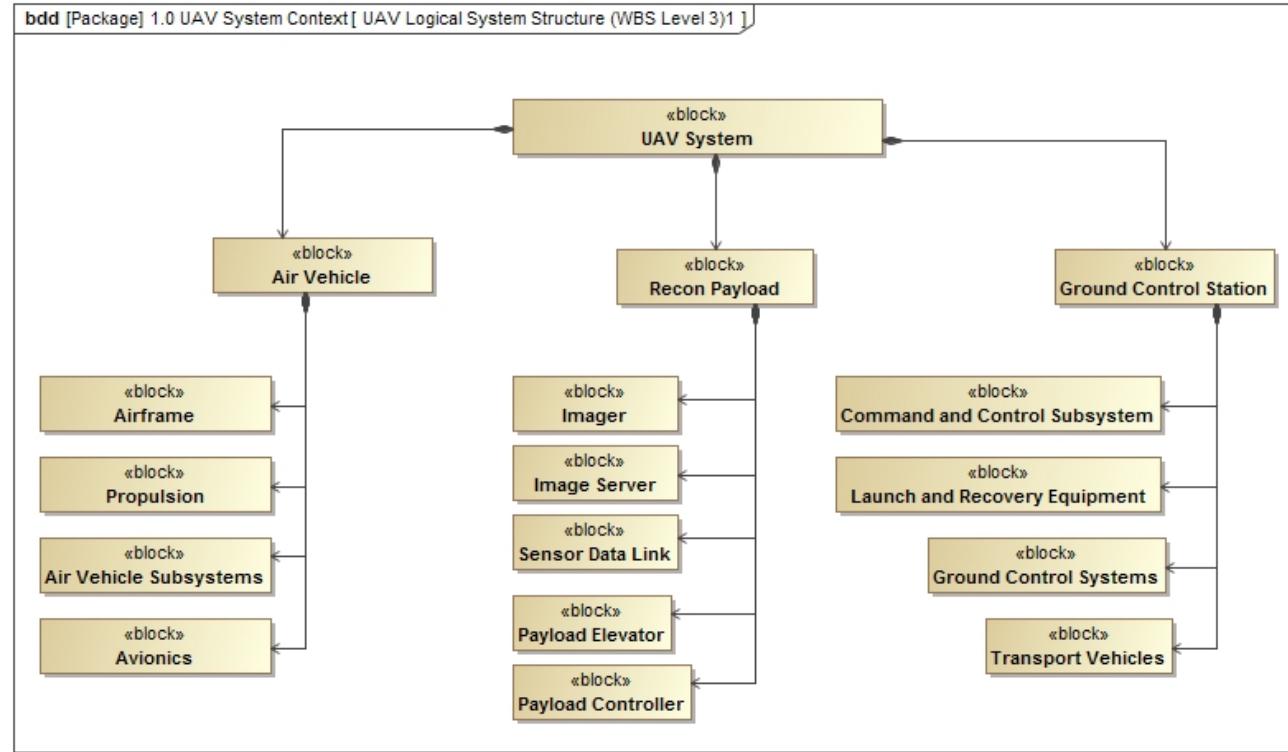
What Do We Mean When We Say MBSE?

Model Based Systems Engineering



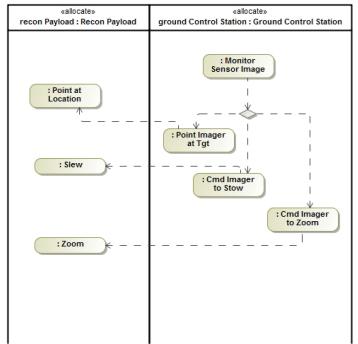
- **Model/data repository provides a single source of truth!**
 - **Cost model is just another model**
 - **Size estimate is just another piece of data within repository**

MBSE-Based Cost Modeling Process


- **SE develops design artifacts and cost estimate simultaneously**

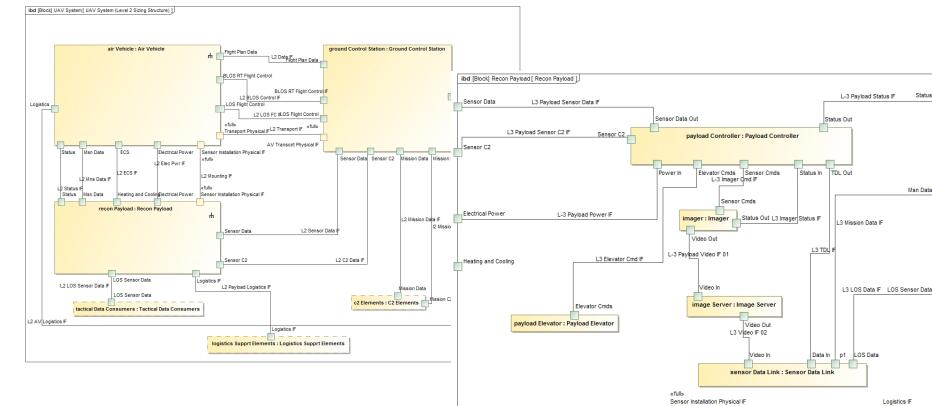
Define the “System of Interest”

WBS Level 1 {
WBS Level 2 {
WBS Level 3 {


In SysML, system structure is defined through Block Definition Diagrams:

- Systems, subsystems and components are represented by blocks
- System decomposition is represented by a “composition” relationship.

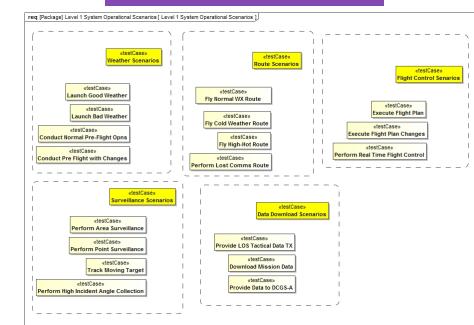
System Definition SysML vs Size Drivers


Algorithms

Requirements

Recon Payload : Level 1 System Requirements		
System Requirements		
Criteria Scope (optional): System Requirements		
#	Text	
1	3.2.1	3.2.1.1 System Component Descriptions
2	3.2.1.1	3.2.1.1.1 Payload Options
3	3.2.1.2	3.2.1.2 UAV Control
4	3.2.1.3	3.2.1.3 Transport GCS
5	3.2.1.4	3.2.1.4 LOS and BLOS
6	3.2.1.5	3.2.1.5 SCT Communications
7	3.2.2	3.2.2 Functional Configuration
8	3.2.2.1	3.2.2.1 Modular Config
9	3.2.2.2	3.2.2.2 Air-Grid DataLink
10	3.2.3	3.2.3 External Interfaces
11	3.2.3.1	3.2.3.1 DHS IP
12	3.2.3.2	3.2.3.2 Comms Interoperability
13	3.2.3.3	3.2.3.3 Networks
14	3.2.3.4	3.2.3.4 Services

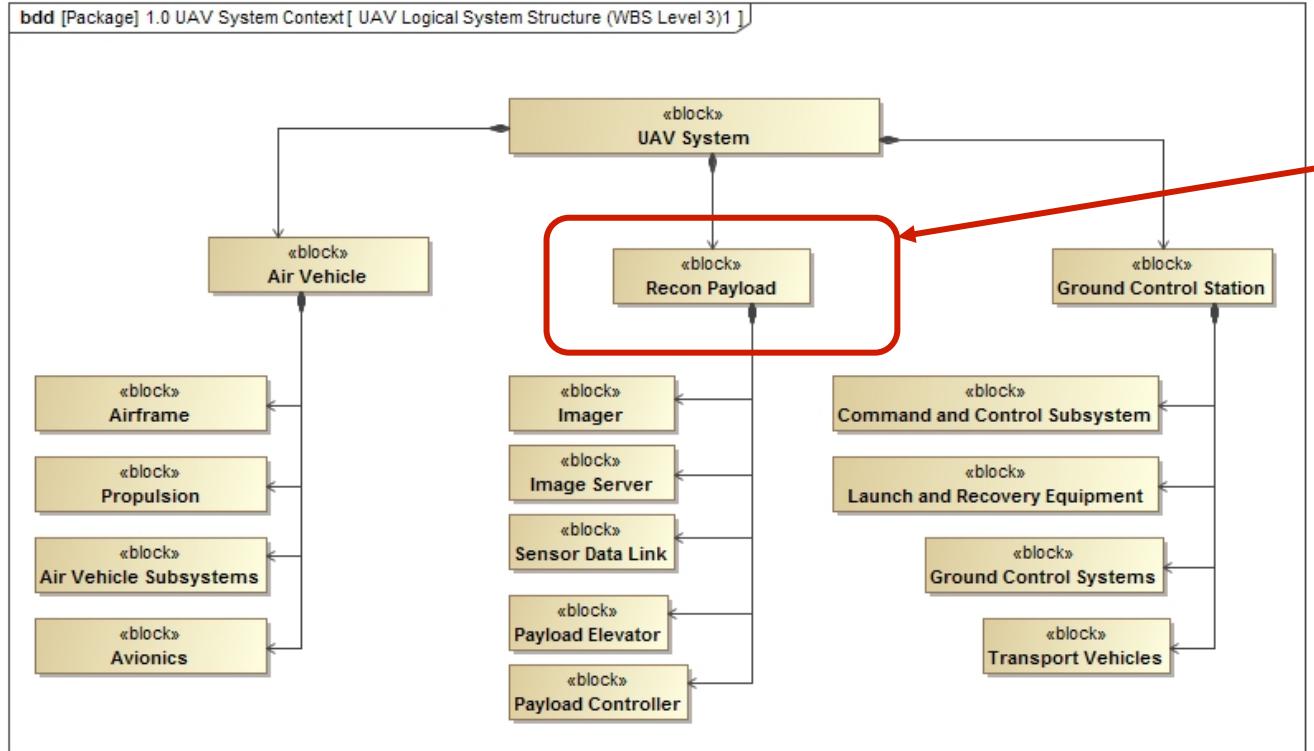
Requirements


Interfaces

Behaviors:

- Activities
- Interactions
- State Machines

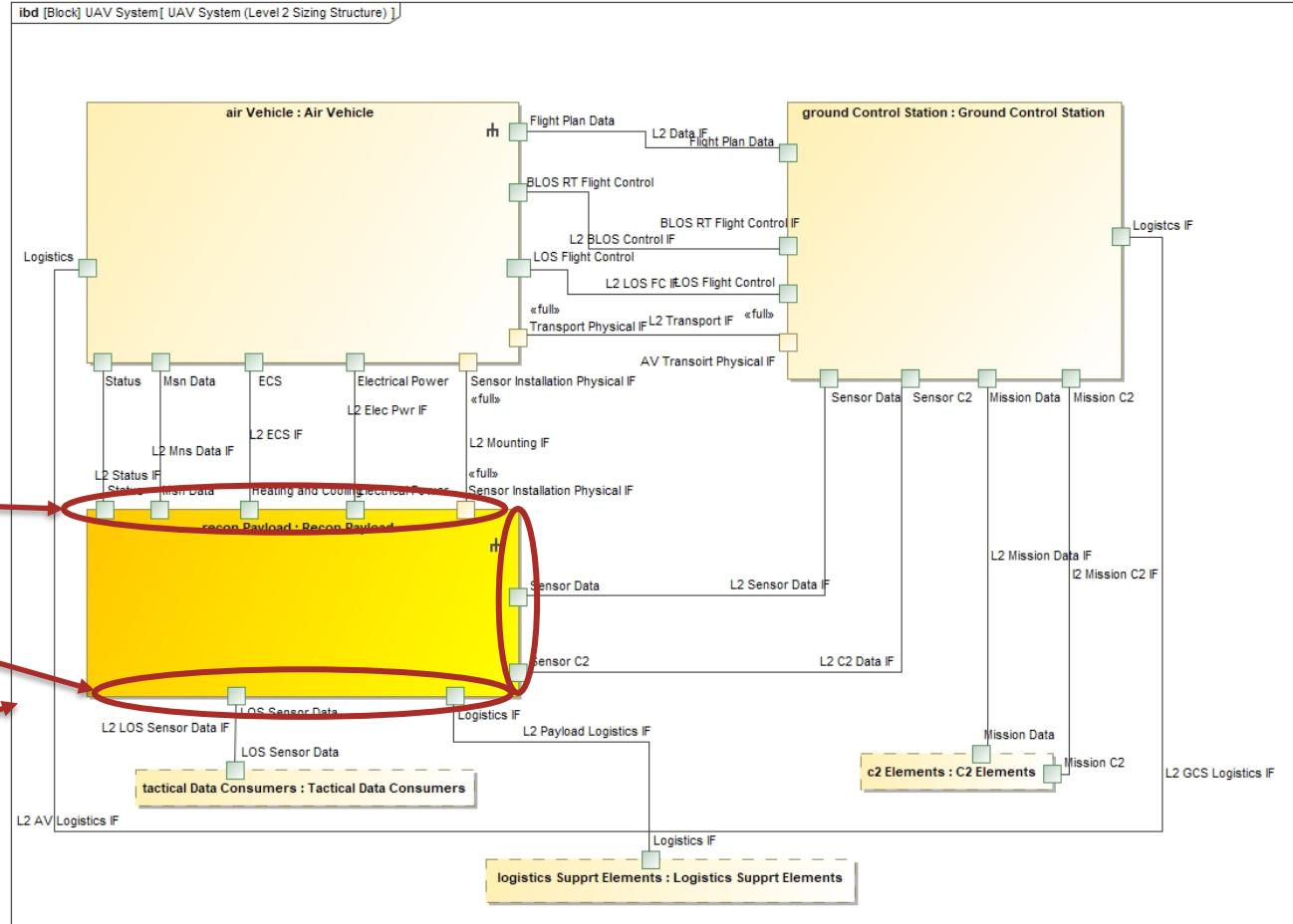
Ports or Connectors


Scenarios

Test Cases or Use Cases

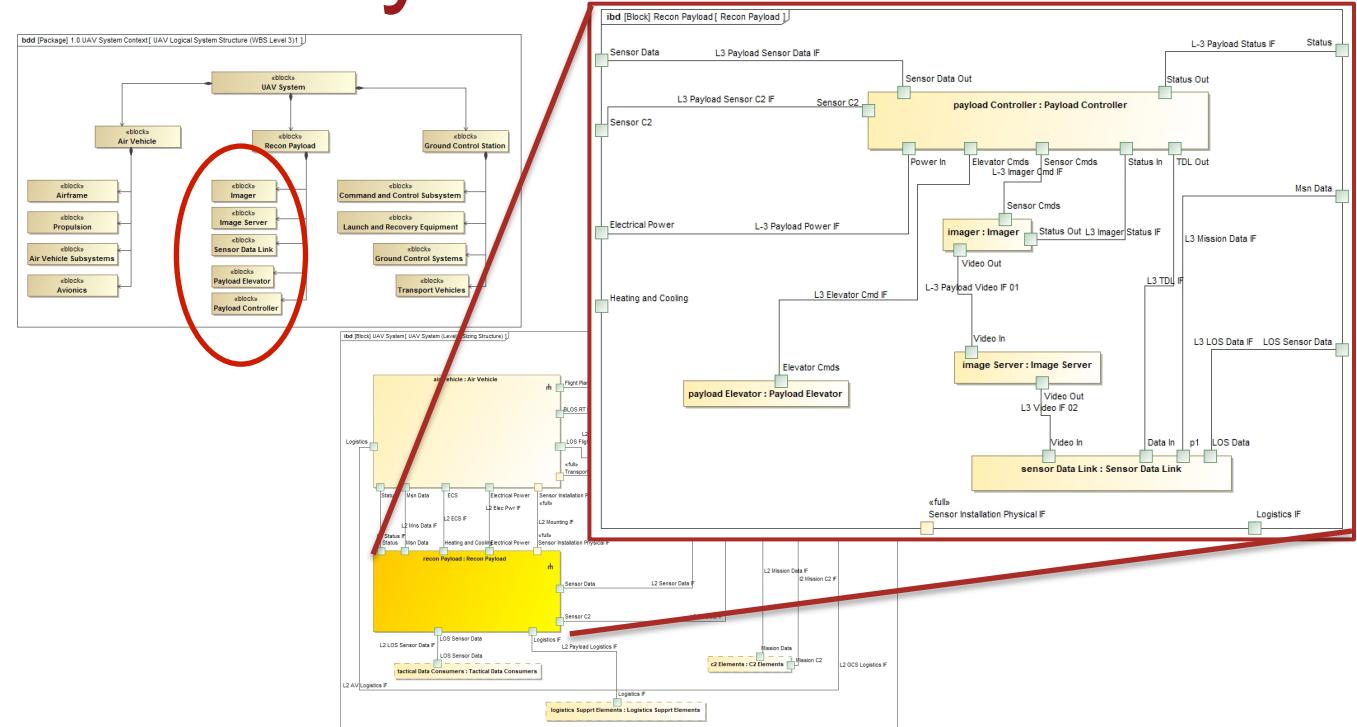
Define the “System of Interest”

The system selected as the SOI for this example is the Recon Payload:


- WBS Level 2

Maintain the Levels of Abstraction, Consistency and Traceability

- Size Drivers are typically counted at the black box level for the SOI
- Example: Recon Payload
 - 300 REQ (Recon Payload System Spec)
 - 9 IF
 - 11 ALG
 - 3 SCN


Internal Block Diagram showing interfaces between Level-2 Subsystems

Maintain the Levels of Abstraction, Consistency and Traceability

- At each level of abstraction, each component is defined with its REQ, ALG, IF, SCN.
- Example - Level 3 elements within the Recon Payload:
 - Payload Controller
 - 8 IF, 250 REQ, 8 ALG
 - 1 SCN
 - Payload Elevator
 - 2 IF, 100 REQ, 2 ALG, 2 SCN
 - Imager
 - 3 IF, 300 REQ, 6 ALG, 3 SCN
 - Image Server
 -
 - Sensor Data Link
 -

The level of abstraction chosen for the sizing estimate directly affects the quantity of sizing elements.

The key is to maintain consistency with the approach used across projects and with that used for calibration.

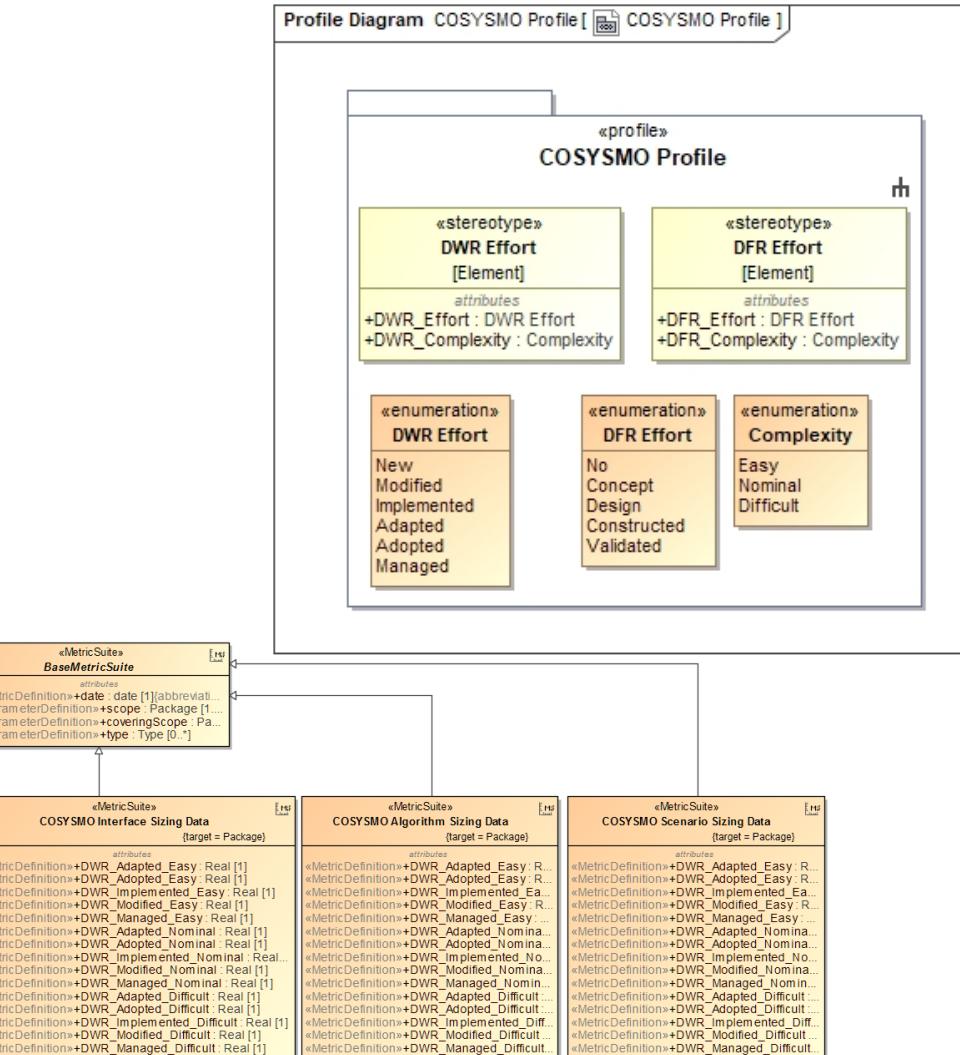
Applying Reuse Categories and Levels of Complexity

- Within a SysML model, **reuse category** and **complexity** are simply properties of model elements.
- There are multiple methods to assign properties to model elements in SysML.
 - The approach shown in this presentation takes advantage of specific tool features in the selected tool (MagicDraw™) that minimized the effort to assign and count sizing elements.
 - Other tools may have other features for defining model element properties and calculating model metrics.

Create COSYSMO Profile and Metrics Rules

- COSYSMO sizing properties are created as new stereotype elements:
 - Stereotypes are a core SysML feature
 - Defined in a Profile Package
- Metrics rules and measurements are a tool specific feature:
 - Multiple methods exist to determine the numbers of each sizing element
- The COSYSMO profile and metrics sets are created once as a separate project and reused:
 - They are applied (reused) on each new system project when generating sizing estimates

5 DFR Reuse Categories


6 DWR Reuse Categories

3 Levels of Complexity for each (Easy, Nominal, Difficult)

4 Sizing Elements Types (REQ, ALG, SCN and IF)

A potential of 132 individual pieces of sizing data:

$$(5+6) \times 3 \times 4 = 132$$

Apply Reuse Categories

- As part of the design analysis, the Systems Engineer identifies system elements (REQ, IF, ALG and SCN) that are to be included in the sizing estimate.
- Once elements are identified, assignment of **re-use category** and **complexity** is a trivial effort:
 - Create generic table and select element type and package scope.
 - Select the new stereotypes from the “show columns” pull-down.
 - Select the cell in the table and apply the reuse category and complexity.
 - Once selected, the tool applies the properties as **tag values** to the model element.

Interface Count Example

The screenshot shows a UML interface table and a 'Tags' dialog box. The table has columns for #, Name, DWR_Effort, DWR_Complexity, and DFR_Effort. A red circle highlights the 'DWR_Effort' column for the 'Sensor C2' row, which is set to 'Adopted'. A red arrow points from this cell to the 'Tags' dialog box. The 'Tags' dialog box shows a tree view of stereotypes and their properties. A red circle highlights the 'DWR_Effort = Adopted' and 'DWR_Complexity = Nominal' properties under the 'Sensor C2' element, which are also highlighted in the table.

#	Name	DWR_Effort	DWR_Complexity	DFR_Effort
1	Electrical Power	Adapted	Easy	
2	Heating and Cooling	Adapted	Easy	
3	Logistics IF	Modified	Nominal	
4	LOS Sensor Data	Adapted	Nominal	
5	Msn Data	Implemented	Nominal	
6	Sensor C2	Adopted	Nominal	
7	Sensor Data	New	Easy	
8	Status	Modified	Easy	
9	Sensor Installation Physical IF	Implemented	Nominal	

Properties selected in the table are actual properties of the model element.

Tags

Profile: <ALL>

Sensor C2

- Usage in Diagrams
- Connectors
- Provided/Required Interfaces
- Inner Elements
- Relations
- Tags**
- Constraints
- Interface Block Properties
- Language Properties

Selected for it.

«Allocated»

- allocatedFrom
- allocatedTo

«BasicInterval»

- max
- min

«deprecated»

- deprecatedReason

«DFR_Effort»

- DFR_Complexity
- DFR_Effort

«DirectedFeature»

- featureDirection

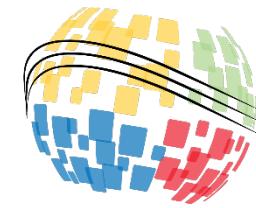
«DWR_Effort»

- DWR_Effort
- DWR_Complexity = Nominal
- DWR_Effort = Adopted

«EndPathMultiplicity»

- lower
- upper

Apply Reuse Categories

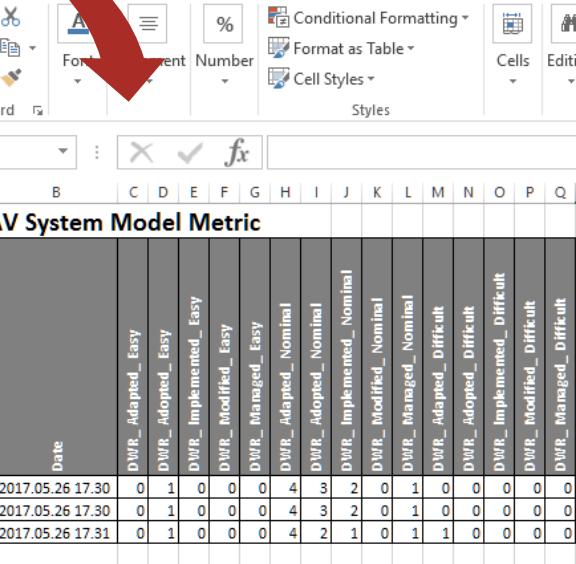


- The process of applying re-use categories and complexity level is repeated for each of the four sizing categories (REQ, IF, ALG and SCN)
- If requirements are managed in an external requirements management tool, sizing metrics for requirements can be easily calculated by applying properties in that tool, and using spreadsheets or other applications to sum each category.

The screenshot shows a requirements management interface with three tables:

- Test Case Table:** Criteria: Element Type: Test Case, Scope (optional): System Operational Scenarios. It lists three scenarios: Payload Stow and Deploy Scenarios (Adapted, Nominal), Sensor Visibility Scenarios (Adapted, Nominal), and Target Tracking Scenarios (Adapted, Nominal).
- Activity Table:** Criteria: Element Type: Activity, Scope (optional): L2 System Functions. It lists 11 activities: enter area stare mode, Monitor Sensor Status, perform gyro alignment, Point at Location, record metadata, record streaming image, Report Sensor Status, Slew, Store Search Plan, Stow for landing, and Zoom. Each is allocated to Recon Payload and has DWR_Effort (Adopted, Implemented) and DWR_Complexity (Nominal, Easy).
- Full Port/Proxy Port Table:** Criteria: Element Type: Full Port, Proxy Port, Scope (optional): Recon Payload. It lists 9 components: Electrical Power, Heating and Cooling, LOS Sensor Data, Msn Data, Sensor C2, Sensor Data, Status, and Sensor Installation Physical IF. Each has DWR_Effort (Adapted, Modified, Implemented, Adopted) and DWR_Complexity (Easy, Nominal).

Run the Metrics Tool and Calculate Sizing Element Counts



- Run the metrics tool to generate a metrics table with counts for each reuse category/complexity combination.
 - Separate tables are create for each sizing element type (REQ, IF, ALG and SCN)
 - Metrics tables can be exported to Excel for input to the cost model.
- Depending on the tool, other methods may be available to determine sizing counts and export data.

Criteria											
Metric Suite: COSYSMO Algorithm Sizing Data			...	Scope (optional): Drag elements from the Model Brow		key	...	Filter: <input type="text"/>			
#	△ _{Documentation}	Date	Documentation	DWR_Adapted_Easy	DWR_Adopted_Easy	DWR_Implemented_Easy	DWR_Modified_Easy	DWR_Managed_Easy	DWR_Adapted_Nominal	DWR_Adopted_Nominal	
1	2017.05.26	17.30	Estimate for initial ROM	0.00	1.00	0.00	0.00	0.00	4.00	3.00	2.00
2	2017.05.26	17.30	Updated based on changes from XYZ	0.00	1.00	1.00	0.00	0.00	4.00	3.00	2.00
3	2017.05.26	17.31	Updated for submittal gate review	0.00	1.00	0.00	0.00	0.00	4.00	2.00	1.00

The metrics tables shows the history of metrics calculations.

A documentation column can be added to record rational and other data for each metric calculation.

UAV System Model Metric Table.xls...

FILE HOME INSERT PAGE LAYO FORMULAS DATA REVIEW VIEW Saulius Pa...

Clipboard

Conditional Formatting ▾

Format as Table ▾

Cell Styles ▾

Cells ▾

Editing ▾

R11

X ✓ fx

1 UAV System Model Metric

2 # Date DWR_Advanced_Easy DWR_Advanced_Nominal DWR_Managed_Easy DWR_Managed_Nominal DWR_Advanced_Difficult DWR_Managed_Difficult

3 1 2017.05.26 17.30 0 1 0 0 0 4 3 2 0 1 0 0 0 0 0 0

4 2 2017.05.26 17.30 0 1 0 0 0 4 3 2 0 1 0 0 0 0 0 0

5 3 2017.05.26 17.31 0 1 0 0 0 4 2 1 0 1 1 0 0 0 0 0

Report

READY

Run Cost Model and Analyze Estimate Result

The diagram illustrates a workflow for project management and analysis. It starts with a Business Modeler diagram titled 'Perform Open Enrollment' (P2.1) showing a process flow from 'Announce Open Enrollment' to 'Perform Early Bird Registration' (P2.3), which then leads to a decision point 'Take Decision if the Open Enrollment will be performed'. This decision leads to either 'Perform Open Enrollment' (P2.6) or 'Do not perform Open Enrollment'. If 'Perform Open Enrollment' is chosen, it leads to 'Confirm Open Enrollment' (P2.7), which then leads to 'Open Enrollment is canceled'. A large grey arrow points from the Business Modeler diagram down to a series of analysis tools.

Estimate Comparison

Hours | Dollars

	Baseline Estimate	Aggressive Estimate							
Personnel									
Personnel Experience	Normal	Normal							
Personnel Capability	Normal	Normal							
Machine Availability	Normal	Normal							
Tool Support	Normal	Normal							
Mobile Device Availability	Normal	Normal							
Schedule Consistency	Normal	Normal							
Completion Probability for CSM	1.0000	1.0000							
Average Hourly Rate	\$0.00	\$0.00							
Total Effort	\$0.00	\$0.00							
Effect by Work Elements (WES)									
1.1 Total Project Effort	\$0.000	\$0.000							
1.1.1 Project Management	111.111	111.111							
1.1.2 Systems Engineering	111.111	111.111							
1.1.3 Technical Management	10.405	10.405							
1.1.4 Platform Integration	7.885	7.885							
1.1.5 System Test and Evaluation	2.355	2.355							
1.1.6 Data Management	1.444	1.444							
1.1.7 Project Management	1.444	1.444							
1.1.8 General Support Equipment	0.444	0.444							
1.1.9 General Support Equipment	0.444	0.444							
1.1.10 Industrial Facilities	0.000	0.000							
1.1.11 Industrial Plant Costs	0.000	0.000							
Total Effort	\$0.000	\$0.000							
Effect by Function									
1.2 Engineering Effort	25.018	25.018							
1.2.1 Software Engineering Effort	111.111	111.111							
1.2.2 Mechanical Engineering Effort	111.111	111.111							
1.2.3 Electrical Engineering Effort	20.094	20.094							
1.2.4 Project Engineering Effort	4.444	4.444							
1.2.5 Program Eng. Management (PIM) Effort	15.758	15.758							
1.2.6 Project Engineering (PE) Effort	15.758	15.758							
Total Hours / Effort	355.71	355.71							
BAE SYSTEMS PROPRIETARY INFORMATION									
Rank	Assumption	Correlation							
1	Requirements (New, Official)	0.002							
2	Requirements (Adapted, Official)	0.049							
3	Requirements (New, Adapted)	0.221							
4	Requirements (Old, Official)	0.113							
5	Requirements (Old, Adapted)	0.114							
6	Requirements (Managed, Normal)	0.073							
7	Requirements (Managed, Adapted)	0.070							
8	Interface (New, Normal)	0.027							
9	Interface (New, Adapted)	0.020							
10	Interface (Adapted, Normal)	0.021							
11	Algorithms (New, Normal)	0.018							
12	Algorithms (Adapted, Normal)	0.017							
13	Algorithms (Managed, Normal)	0.007							
14	Scenarios (Managed, Normal)	0.005							
15	Interfaces (Managed, Normal)	0.004							
Total	Mean	Median	Mode	Standard Deviation	Variance	Skewness	Minimum	Maximum	
100,000	132,521	132,521	132,521	6,408	41,560,000	0	104,175	164,075	
	132,521	132,521	132,521	6,408	41,560,000	0	124,319	173,320	
	132,521	132,521	132,521	6,408	41,560,000	0	132,321	173,832	
	132,521	132,521	132,521	6,408	41,560,000	0	132,321	173,832	
	132,521	132,521	132,521	6,408	41,560,000	0	132,321	173,832	
10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
127,320	127,320	127,320	132,321	132,321	132,321	132,321	132,321	132,321	173,832
132,321	132,321	132,321	132,321	132,321	132,321	132,321	132,321	132,321	173,832
132,321	132,321	132,321	132,321	132,321	132,321	132,321	132,321	132,321	173,832
132,321	132,321	132,321	132,321	132,321	132,321	132,321	132,321	132,321	173,832
132,321	132,321	132,321	132,321	132,321	132,321	132,321	132,321	132,321	173,832

Developing Calibration Data

- Today, engineering organizations most likely will not have a database of cost data calibrated against COSYSMO sizing estimates.
- MBSE provides a practical approach to development of calibrated cost data:
 - Legacy systems with existing real cost data can be quickly modeled in SysML (to the level of detail required) to generate required sizing data.
 - The sizing data can then be applied through the calibration process to develop applicable CER parameters:

$$PH_{NS} = A \cdot SS^{1/E} \cdot CEM$$

- **PH_{NS}** = systems engineering effort in person-hours under nominal schedule
- **A** = productivity constant, typically derived from historical project data
- **SS** = system size, determined by the four size drivers
- **E** = nonlinearity for the productivity curve, representing a diseconomy of scale
- **CEM** = composite effort multiplier, determined by the fourteen cost drivers

Conclusion

- Parametric cost estimating can be seamlessly integrated into Model-Based Systems Engineering workflow:
 - Sizing data becomes a property of each model element
 - The model repository provides a single source of truth
 - Libraries can be created to maintain and revise reuse category and complexity consistent with changes in project lifecycles
- Required MBSE tool and language features are state of the practice:
 - All methods shown are existing features of the SysML language or the toolset

Key Benefits

- Seamless integration of cost estimation with the system design and modeling process:
 - Providing consistency and traceability.
 - Sizing data becomes a property of the model element.
 - Enabling rapid-turnaround “what-if” architecture trade analysis
 - Promotes Design-To-Cost.
 - Enables design reuse.
 - Economic impact early in system lifecycle and an integral part of architecture
 - Culture change for systems engineers:
 - Shift of mindset and right behavior in design
 - Systems engineering for economic goals
 - Application of Model Based Systems Engineering – LET THE TOOLS DO THE WORK

Future Work

- Develop Design Patterns and Guidelines for Sizing Estimation
 - Develop guidelines and standards for levels of abstraction, design patterns and identification of model elements that should be included or excluded from the sizing counts for calibration and cost estimation.
- Demonstrated Case Study
 - Present processes and lessons learned from application of parametric SE cost estimation on a real system
- Tool-Tool Data Exchange
 - Develop an export/report format that can be used as direct input to the calibrated cost estimation tools.
- Integrated Tool-Tool Interfaces
 - Develop a tool plug-in that launches the COSYSMO cost model from within the MBSE modeling tool and passes the data directly without an export/import process.
 - Includes COSYSMO profile, metrics definitions, etc

Questions?

Dr. Gan Wang, BAE Systems

Dr. Saulius Pavalkis, No Magic

Mr. Barry Papke, No Magic