
Engineer
Your
Competitive
Advantage

A Feature Ontology to Support
Feature-based Product Line Engineering

Charles Krueger, PhD, CEO, BigLever
Paul Clements, PhD, VP of Customer Success, BigLever

27th Annual INCOSE International Symposium (IS 2017)
Adelaide, Australia
July 15-20, 2017

Copyright © 2017 BigLever Software, Inc.

Product Line Engineering (PLE) Defined

2

4 taking advantage of the commonality shared across the family

4 efficiently and systematically managing the variation among the systems

Product Line Engineering:
the engineering of a product line using

a shared set of engineering assets,
a managed set of features, and

an automated means of production…

Product Line:
a family of similar products or systems with variations

in features and functions

Copyright © 2017 BigLever Software, Inc.

PLE is a move away from product-centric duplication,
branch & merge, clone-and-own, N2 coordination

3

…
Product B

Product C

Product D

Product E

Product N

Product A

Copyright © 2017 BigLever Software, Inc.

Feature-based PLE Factory Workflow

4

Shared PLE Asset
Supersets

Product A
Asset Subsets

Product N
Asset Subsets

Product B
Asset Subsets

…

Copyright © 2017 BigLever Software, Inc.

What’s a Feature?

5

Copyright © 2017 BigLever Software, Inc.

Features

•  “A distinguishing characteristic that sets products in a product
line apart from each other” [3]
-  This can range from large scale customer facing capabilities — like

autonomous driving on an automobile — to fine grained implementation
details like algorithm tradeoffs in range detection

•  Engineering realization of distinguishing characteristics
-  Products are differentiated by differences in all of the places where the

digital engineering representations of any two products differ from each
other.
-  Requirements objects, model elements from design specs, test cases,

lines of software, mechanical parts in a Bill of Materials, paragraphs or
sections in a user’s manual, slides in training courseware, and much
more

[3] Kang, K.; Cohen, S.; Hess, J.; Novak, W.; & Peterson, A. “
Feature-Oriented Domain Analysis (FODA) Feasibility Study” (CMU/SEI-90-TR-021, ADA235785). Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon, 1990.

6

Copyright © 2017 BigLever Software, Inc.

Features

•  In a product line comprising thousands to tens of thousands
of instances there may easily be millions of these
differences.

•  While these are undeniably “distinguishing characteristics,”
albeit tiny ones, and undeniably important to manage
correctly, they cannot be features: No organization could
create and manage a bank of millions of features.

•  More precisely, there cannot be a one-to-one
correspondence between a feature and a variation in an
engineering artifact.

7

Copyright © 2017 BigLever Software, Inc.

Features are Abstractions

•  There must be a one-to-many correspondence between
features and engineering artifact variation.

•  Another word for a one-to-many mapping is abstraction [4].

•  Features are abstractions of variations; one feature can
configure multiple artifact-level variations.

[4] 	Saitta,	Lorenza,	and	Zucker,	Jean-Daniel,		Abstraction	in	Arti-icial	Intelligence	and	Complex	Systems,	
Springer	Science	&	Business	Media,	2013.	

8

Copyright © 2017 BigLever Software, Inc.

A Feature Ontology for Feature-based PLE

9

Copyright © 2017 BigLever Software, Inc.

Ontology

•  An ontology is an “explicit formal specification of the terms in
a domain and relations among them” [1], in order to “share
common understanding of the structure of information
among people or software agents” [2].

	
	
	
	
	
	

[1] 	Gruber,	T.R.	(1993).	A	Translation	Approach	to	Portable	Ontology	SpeciPication.	Knowledge	Acquisition	5:	
199-220.	

[2] 	Noy,	Natalya	F.,	and	McGuinness,	Deborah	L.,	“Ontology	Development	101:	A	Guide	to	Creating	Your	First	
Ontology,”	Stanford	University,	Stanford	University,	Stanford,	CA,	94305,	
http://protege.stanford.edu/publications/ontology_development/ontology101-noy-mcguinness.html,	
downloaded	09	November	2016.	

10

Copyright © 2017 BigLever Software, Inc.

Feature-based PLE Feature Ontology

•  Based on abstraction levels, where each level comprises:
-  Data structure for the feature model at that level
-  Multiple feature profile instances of the feature model
-  Abstraction provided to the next higher level in the ontology

•  Must reduce complexity from ranging from 1,000,000
options and variants down to 10 options and variants

•  Oriented around the diverse feature management roles and
responsibilities across an enterprise
-  Implementors, designers, architects, chief engineers, product

management, product marketing, portfolio management, manufacturing,
service, IoT operations, sales, corporate strategy

11

Copyright © 2017 BigLever Software, Inc.

Level 0
Asset Variation Points

•  Purpose and roles
-  Asset engineers create feature-based variation points to implement

differentiating characteristics

•  Data structure for the feature model
-  Each variation point is either optional or comes in multiple variants

•  Feature profiles
-  Variation point behaviors result in different possible instantiations

•  Abstraction provided to the next higher level
-  None. Feature abstractions much be discovered.
-  Why, why, why…

12

Copyright © 2017 BigLever Software, Inc.

Level 1
Primitive Standalone Features

•  Purpose and roles
-  Feature engineers create feature abstractions for root-cause functional

and non-functional variation
-  Can be derived bottom-up or top-down

•  Data structure for the feature model
-  Each feature has a name and a type, such as boolean, enumeration, set,

record, integer, …

•  Feature profiles
-  Profiles are defined according to the possible instantiations of the feature

type

•  Abstraction provided to the next higher level
-  The feature names, types, and profile instantiations are directly provided

13

Copyright © 2017 BigLever Software, Inc.

Level 2
Component Feature Model

•  Purpose and roles
-  Feature and component architects modularize primitive features into

component feature models

•  Data structure for the feature model
-  Tree structured aggregation of primitive features

•  Feature profiles
-  A named list of desired profiles are defined according to possible

instantiations of the feature model

•  Abstraction provided to the next higher level
-  Component Feature — component feature model is encapsulated with

named feature profiles and the bundle is given an abstract feature name

14

Copyright © 2017 BigLever Software, Inc.

Level 3
Subsystem Feature Model

•  Purpose and roles
-  Feature and subsystem architects modularize component feature models

into subsystem feature models

•  Data structure for the feature model
-  List structured aggregation of component features

•  Feature profiles
-  A named list of desired profiles are defined according to possible

instantiations of the feature model

•  Abstraction provided to the next higher level
-  Subsystem Feature — subsystem feature model is encapsulated with

named feature profiles and the bundle is given an abstract feature name

15

Copyright © 2017 BigLever Software, Inc.

Level 4
System Feature Model

•  Purpose and roles
-  Feature catalog and system architects modularize subsystem feature

models into system feature models

•  Data structure for the feature model
-  List structured aggregation of component and subsystem features

•  Feature profiles
-  A named list of desired profiles are defined according to possible

instantiations of the feature model

•  Abstraction provided to the next higher level
-  System Feature — system feature model is encapsulated with named

feature profiles and the bundle is given an abstract feature name

16

Copyright © 2017 BigLever Software, Inc.

Level 5
System-of-systems Feature Model

•  Purpose and roles
-  Feature catalog and portfolio owners modularize system feature models

into system-of-system feature models

•  Data structure for the feature model
-  List structured aggregation of component, subsystem, and system

features

•  Feature profiles
-  A named list of desired profiles are defined according to possible

instantiations of the feature model

•  Abstraction provided to the next higher level
-  System-of-Systems Feature — system-of-systems feature model is

encapsulated with named feature profiles and the bundle is given an
abstract feature name

17

Copyright © 2017 BigLever Software, Inc.

Level 5++
Feature Bundle Overlay

•  Purpose and roles
-  Product marketing portfolio designers overlay marketing feature bundles onto system-of-

system feature models

-  System-of-system feature models with feature bundle overlays are used by upstream and
downstream operations, such as portfolio planning, manufacturing, sales, IoT, service, and
more

•  Data structure for the feature model
-  Overlay on a subset of the system-of-system feature model that constrains desired

marketing feature combinations

•  Feature profiles
-  A named list of desired bundle profiles are defined according to possible instantiations of the

overlay model

•  Abstraction provided to the next higher level

-  Bundle combines multiple system, subsystem, and component
members into one

18

Copyright © 2017 BigLever Software, Inc.

Feature Ontology Abstractions Levels

19

Level Abstraction Purpose and Roles Complexity
Potential

5++ Feature Bundle
Overlay

Product marketing portfolio designers overlay marketing
feature bundles onto system-of-system feature models 210

5 System-of-Systems
Feature Model

Feature catalog and portfolio owners modularize system
feature models into system-of-system feature models 250

4 System
Feature Model

Feature catalog and system architects modularize
subsystem feature models into system feature models 2100

3 Subsystem
Feature Model

Feature and subsystem architects modularize component
feature models into subsystem feature models 2250

2 Component
Feature Model

Feature and component architects modularize primitive
features into component feature models 21,000

1 Primitive
Standalone Feature

Feature engineers create feature abstractions for root-
cause functional and non-functional variation 210,000

0 Asset
Variation Points

Asset engineers create feature-based variation points to
implement differentiating characteristics 21,000,000

www.biglever.com  

