USING MBSE TO
EVALUATE AND

PROTECT THE
ELECTRICAL GRID AS
A SYSTEM OF SYSTEMS

Matthew Hause
Engineering Fellow, MBSE Specialist
MHause@PTC.com

February 24th, 2017



\

-~ O -
O - o3
.m4v,_. O c
=y > 0O
.W..& I\ m_l.vﬂ
O D S.m_lu
= m DS
O %M
> -
- (-
O O
- a: O
%) N

E—

Connected Products
Smart Cities, Fields, &

loT/Smart,
Worksites

\

o



o

. PR 5\
I ] - =

//

DIGITAL ENGINEET (GHE



AGENDA @ pic

« Systems of Systems (SoS)

The Unified Architecture Framework (UAF)

The Electric Grid Model

Linking SoS o systems

Analysis modeling techniques

Questions?




MODEL COMPONENTS @ pic

« The transmission network
— The high voltage network comprising generating plants, substations,
transmission lines, circuit breakers, high voltage transformers, etc.
— Often at multiple voltage levels such as 69kv, 138kv, and 345kv.
— Large geographically dispersed systems
— Multiple operators and regulators
« Overlapping responsibilities and control

— Generally very reliable, resilient, dependable and flexible
« However, most are run for profit so resources are limited

— Thousands of interconnections and points of failure

— Qutages can be catastrophic
* Northeast US and Canada blackout of 2003
» European blackout of 2006
« South Australia Blackout of September 2016



THE ELECTRIC GRID AS AN SOS @ pic

Operational independence
— The US national grid is operated by approximately 500 companies.

— Independent operators, government institutions, municipal companies, not for profit, etc.
— Operate independently to support their customers. Support of the overall is of secondary.

Managerial independence
— Each entity must comply with different standards, rules, laws and regulations. The North American Electric
Reliability Corporation (NERC) oversees all of them.

Evolutionary development
— New systems, tfechnologies or ConOps may be infroduced by any of the companies as required to evolve and
adapt to the changing environment, latest technology needs or stakeholder requirements. This will affect both
the individual system as well as the SoS.

Geographical distribution
— Consists of about 300,000 km (186,411 mi) of lines and connects to Canada and Mexico.

Lifecycle independence
— Even within individual companies there will be multiple system lifecycles across asynchronous acquisition and
development efforts, involving legacy systems, developmental systems, and technology insertion to meet their
customer need:s.



MODELING THE ELECTRIC GRID WITH THE UAF @ pfc

* The Unified Architecture Framework® (UAF®)
— Is a generic and commercially orientated architecture framework.

— Flexible framework that can be customized to different domains
— Defines Enterprise Architecture (Systems of Systems)

« A standard framework for defining many different aspects of complex
architectures

« Supports an MBSE approach based on SysML

« Same pattern applied across different stakeholder domains




S ptc

* Rows map to different levels of focus
« Columns relate to standard means of expression
* |IC RA and some sub views can be mapped onto it

Structure & . . . -
Taxonomy . . Behavior Information Parameters Constraints Roadmap Traceability
Connectivity

Strategic Business Vie g, Monetizing, Infor
Operational Usage View, Underste oS from Operation: . stive
: : . . To-Be
Services Functional View, lentifying Cognitive
Personnel _ _ _ g
& Implementation View, Clcpatain all forms'S and Edge Archite rfaces,

Resources Ivior Continuous

Security ( |ty Analysis Availability

Projects

Standards

Requirements




THE ELECTRIC GRID ARCHITECTURE
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THE EXAMPLE MODEL — AN ELECTRICAL NETWORK @ ptc

« Power systems are complex, enormous systems

« Different models are possible
— The physical network
— The telemetry and Supervisory Control and Data Acquisition (SCADA) system
— The telemetered view via the SCADA system
— The analyzed view via the load flow program
— A simulated view for performing what-if scenarios based on current data
— A historical view for reviewing the cause of problems and network outages
— A model of the human operators making decisions
— Etc.

« Consequently, arich source for modeling



THE ELECTRIC GRID ARCHITECTURE @ ptc

Multi-Level Model

Capability Based

Defines logical and then Physical Architecture

Supports all SysML Capabilities




ELECTRIC GRID CONCEPT DIAGRAM @ ptc

« Defines system entities and their relationships

ov-1a [High Level Operational Concept] Electric Grid Concept [Standard]J
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ELECTRIC GRID CONCEPT DIAGRAM - GRAPHICS

ov-1a [High Level Operational Concept] Electric Grid Concept [Graphic]J
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ELECTRICAL NETWORK - STAKEHOLDER VIEW

« Use cases represent goals, actors are stakeholders

UCD Stakeholder Use CasesJ
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ELECTRIC GRID CAPABILITY TAXONOMY @ ptc

* Defines the enterprise level capabilities.

cv-2 [Architectural Description] Capabilities [Enterprise]J




ELECTRIC GRID LOG

« Defines logical entities
(Performers)

« Performer interfaces
and interactions

« Shows the high-level
abstract view

CAL ARCHITECTURE

ov-2 [Operational Context] Electric Grid Operational Context [LogicaI]J
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RENEWABLE ENERGY GENERATION SYSTEMS @ ptc

« Taxonomy of implementing systems

sv-1 [Architectural Description] Generation [Renewable]J




THERMO-ELECTRIC GENERATION SYSTEMS @ pic

« Taxonomy of implementing systems

sv-1 [Architectural Description] Generation [Thermo]J




CAPABILITIES MAPPING DIAGRAM @ ptc

sv-5 [Architectural Description] Generation [Capability Map]J

* Mapping of capabilities to
implementing systems
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S ptc

SYSTEM TO CAPABILITY MAPPING

ing

the capability — system mappi
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GRID ACTIVITY SEQUENCE

(«Activity (System)»

 Functional View Sra Sequence

« Defines the sequence
of activities, inputs,
outputs, logic, etc.
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SIMPLE NETWORK TOPOLOGY @ pic

Simple network showing generation, fransmission, and distribution systems

ibd [block] Electrical Network Context SmaIIJ
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SOS TO SYSTEMS MODELING

TASK: MODIFY THE WASHING MACHINE TO TAKE ADVANTAGE OF OFF-
PEAK POWER TARIFFS

2
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SMART, CONNECTED WASHING MACHINE @ pfc

« Implementation View
« People, systems, interactions, interfaces and connections

ibd [Block] Home [ibd]J

A

-V ahil

Online Engineer

>
: Control

: ControllF

: Status WA : WirelesslF

| WA : WirelesslIF
_ - —_
W\ s IF

WA : Wireless Access




WASHER USE CASES @ pfc

« Usage View

« Standard washer use cases, plus online access, health monitoring and
deferred washing

uc [Package] Use Cases [Wash Sequence]J

Load Clothes

i
Set Program |‘
l«extend»
|
Wireless Perform Wash
Access v
) A Deferred
Wash
Unload
Clothes

High Capacity
Wash
@ Delicate Wash

I




LIFECYCLE USE CASES

« Usage View includes use cases and misuse cases, actors and bad actors

uc [Package] Use Cases [Lifecycle]J
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WASHER ACTIVITY SEQUENCE

« Functional View
« System Activities for the
wash seguence

* |Includes door open
during wash sequence

Execute Wasl| I

ptc



WASHER COMPONENTS IMPLEMENTATION @ ptc

* Implementation View

« Shows “Good"” and “Bad” actors and their interactions with the system
* Also shows internal connectivity

ibd [Block] Washing Machine [EMEA High Capacity]J
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WASH SEQUENCE @ pic

* Shows the sequence of interactions between the actor and the internal
washing machine systems
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OPERATIONAL USE CASES @ pic

« Usage View
e Let's revisit the deferred wash use case

uc [Package] Use Cases [Wash Sequence]
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LOAD LIMITING PATTERNS @ pfc

« Load Shedding Pattern
— Reduces electric demand through voluntary curtailment of electric loads.

— Normally during peak load times from 10am to 2pm.

— Credits are awarded to participating customers for the amount of load reduction they
provide.

— Typically done manually, but can involve remote access by company to furn off water
heaters, turn off/down A/C

— Also available for commercial customers such as factories

« Demand Conftrol Pattern
— A different pattern for Deferred Wash

— Customer will request wash at off-peak time

— To avoid 2 million washers turning on at once, customer requests permission to wash.
— Demand Control App interacts with Provider and SCADA system

— Grants permission if load OK

— Otherwise, washer waits a set period and requests again.

« Both patterns require cyber security evaluation



SMART GRID INDUSTRY DEVICES @ pfc

« Taxonomy of smart grid industry devices (supply side)

sv-1 [Architectural Description] Smart Grid [Industry]J
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HOME SMART GRID DEVICES @ pfc

« Taxonomy of smart grid industry devices (consumer side)

sv-1 [Architectural Description] Smart Grid [Home]]




WASHER DEMAND CONTROL @ pic

« Washing machine connected to the smart grid systems

ibd [Block] Electrical Grid System [ibd]J
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DEFERRED WASH SEQUENCE @ pfc

« Implementation View
« Customer programs deferred wash.
« At off-peak time, washer will request permission to wash.
 Demand control system will either approve or reject.
« System will poll until approved or canceled.
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UAF SECURITY VIEWS @ pic

* The security domain (Sc) describes security assets and security enclaves. Sc
views define the hierarchy of security assets and asset owners, security
constraints (policy, laws, and guidance) and detail where they are located
(security enclaves).

« Stakeholders: Security Architects, Security Engineers. Systems Engineers,
Operational Architects.

« Concerns: addresses the security constraints and information assurance
atfributes that exist on exchanges between resources and
OperationalPerformers

 Definition: illustrates the security assets, security constraints, security conftrols,
families, and measures required to address specific security concerns.



SYSTEM CYBER CONTROLS

S ptc

« Describes processes that apply or implement security controls/enhancements to assets
located in enclaves and across enclaves.

 The cyber defense software provides access control policy and procedures and account
management for the C2 system and the control system.

Sc-Pr [Architecture Description] Security ProcessesJ
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SECURITY CONSTRAINTS FOR COMMUNICATIONS SYSTEM & ptc

« Shows how risk and risk mitigation may be associated with systems and information/data.

» Describes the security constraints for the emergency dispatch system. It defines the risk
probabilities, who owns the risk and the mitigating elements.

Sc-Ct [Architecture Description] Security Constraints’

«valueType (enumeration)»
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" ZlLow
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. High
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KDM’

Analytics Working Together to Build Confidence

Risks Analysis

Djenana Campara
Chief Executive Officer
Member, Object Management Group Board of Directors

Chair, System Assurance Task Force



Ecosystem Foundation: Common Fact Model
Data Fusion & Semantic Integration
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THE INDUSTRIAL INTERNET CONSORTIUM SMART GRID & pic

TEST BED
s S e
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Augmented Reality in Power Systems
Path to Cyber Physical Systems

Shawn Hanegan

Systems Engineering Domain Leader
Schneider Electric
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Track 1 (MIBSE) Data Collection—Using Model-Based Facilitation

3. System of Innovation (SOI)

Learning & Knowledge 2. Target System (and Component) Life Cycle Domain System
Manager for LC Managers

Life Cycle Manager of
LC Managers *

Learning & Knowledge 'ﬁ 1
Manager for Target

LC Manager of

Target System

‘1. Target System

(Substantially all the 1ISO15288 processes are included in all four Manager roles) @ Target

Environment

Bill Schindel, ICTT System Sciences
schindel@ictt.com

Understand your systems.

C 6 ICTT System Sciences”

Vi.e.1l

Copyright © 2016 by W. D. Schindel. Permission granted to use with attribution.




Electrical Power Domain : System 1, System 2
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Electrical Power Domain : System 2, System 3
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Common Recovery Model (CRM) for
Electric Utility System Outage Recovery

Presented by: Casey Shull November 29", 2016

Team Leader / Operations Manager Crisis and Outage Recovery Major OH Engineering
Indianapolis Power & Light Co.
Purdue University Doctoral Student




CRM Basic Model

All electric utilities have plans and methodologies in place to restore electricity due to small
events, generally weather related, causing outage. Collection of existing plans and data
can help to develop CRM.

Electrical Transmission
Distribution System

Identify Sensitive
Electronic Devices

N

Identify Electrical Devices

Determine Resources
Needed

Identify Outage Area
Recovery by Priority

Develop System Model For

PURDUE

POLYTECHNIC




CRM iterative process

Restore power to priorities identified by MBSE model. Aggregate priorities (total power) to
provide “black start” power to generation.

System n

generation

PURDUE

POLYTECHNIC




15t Century Grid @A

Management — Big Data
Analytics

Joseph Marvin
Prime Solutions Group, Incorporated
November 29, 2016

LIMITED RIGHTS

Contract Number HQ0147-14-C-7718

Contractor Name: Prime Solutions Group, Inc.

Contractor Address: 1300 S Litchfield RD, Suite A1020, Goodyear AZ 85338
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Research(SBIR) Program clause contained in the above identified contract. Any reproduction of technical data or
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What Problems Are We Addressing

A

PRIME SOLUTIONS GROUP, INC.

* “Advanced technologies to plan, manage, monitor,

and control electricity delivery are needed to enable E o b

safe and reliable two-way flow of electricity and LI
information, support growing numbers of distributed 5 T R
energy resources, and support customers participating ‘; L

in electricity markets as both power suppliers and s I
demand managers.” SN B

 RD&D opportunities exist... “Develop high-fidelity

AN ASSESSMENT OF ENERGY

planning models, tools, and simulators and a TECHNOLOGIES AND RESEARCH

OPPORTUNITIES

common framework for modeling, including
databases.”

Navember 28-30 at Wolstein Center
Cieveland, Ohio
www energytech2016.com

2




What’s new in our work?

Enterprise approach looking down upon the ‘network of networks’ a‘sscciat’&wth
generation, transmission, distribution, and consumption.

Embraces and exploits uncertainty quantification to define our knowledge bounds
enabling confidence in trust and risk adjusted decision making.

Builds upon advanced tools and capabilities around graph-based models, simulation
and optimization... This technique uses them differently.

Our approach exploits modern computer science:

* Big Data Analytics (parametric and graph-based) including access to legacy data store and
streaming data.

* A hybrid IT infrastructure of both storage (structured and unstructured) and software.




Uncertainty Quantification
Forward Propagation of Mixed Uncertainty

Voltage Variance (Y1) and Feeder Looses (Y2) s

as a function:

* CloudCover (Percentage of 24 hr period in
which clouds were present, evenly distributed
over 24 hr period)

* SolarAreaFactor (0-30) -> SolarArea(SqFt)
= SAFactor/0.0114

* SolarPenetration (0-100%)

* Temp Offset (TMY_Temp-20 to
TMY_Temp+20)

* Cooling setpoint (69-79)

Dakota’s Latin Hypercube uncertainty

quantification technique

o ' pts 26t 59 00 « #|Tivm. CousCove

Voltagﬂé Va"riance — Cloud Cover - Time
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PRIME SOLUTIONS GROUP, INC.

Optimal and bounded
performance subspaces, voltage
variance

PSG Data Visualizer
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Model Integration

* LM’s Cyber Attack * MIT’s Global IT
Simulation Tool Infrastructure
* Network topology * Network topology
* Model Recon phase (IP * Data Movement (VPN
Scan, OS Probe, Access)
Phishing, etc.)  Remote Desktop
* Model specific CVEs e Control & Operate
(Black Energy, KillDisk) e Tools & Tech
GenlM

Copyright © 2016 Lockheed Martin Corporation




Adapting it to Cyber

Cyber Attack Simulation — Network Map +
Application Map + Use Cases

App Server.
Overload

— Ay Servet OV |

3
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- . T TR http://cybersecurity.mit.edu/pickup/simulator/MIT
R Global_IT_Simulator.pdf
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THINGWORX ANALYTICS
END-TO-END DEEP DIVE
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THE ANALYTICS VALUE CHAIN: DATA TO INSIGHTS S thingworx:

Data Insights

Core Analytics

Storage S .
Visualization
Access / Integration / Deployment

Ingestion of Aggregation, Modeling leverages different Core Analytics Presentation
data sets intfo | transformation and based on the use cases of the insights
PB for real- integration of the ~Advanced Analytics~ to the end

time or long- collected data to user.
g In the form of reports,
Tl?!lg;eghgrgweosrj prg plqre ford D;:‘;;r;z;/ Predictive Prescrip.tive charts, dashboards,
T e ey modaeiing an el analytics analytics or mashups
for storage processing.
/ Includes data management : :
and data qualty validation
Y,

G J/

@ pTC Source: ABlLResearch, Edge Analytics in loT 1Q 2017, Gartner Analytic data science platforms
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Limited by Human
Performance

Less Accessibility
Corporate-wide

Static Modeling
Approach
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AUTOMATION MAKES
TRADITIONAL PROCESS
LESS BURDENSOME &
MORE SCALABLE

Linear Regression
Decision Trees
Random Forrest
Neural Net
Logistic Regressio
Gradient Boost




SIMULATION-BASED DIGITAL TWIN VALUE

As Designed
MULTIPHYSICS SYSTEMS SIMULATION

Digital Signatures
Systems
é —Normal —Anamoly —Sensed
Platform |
Multiphysics

-
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As Operated
INTEGRATED IOT ASSETS & ECOSYSTEMS

>:< thingworx

Prognostics/Life
Performance Mgt./Opt.
Diagnostics/FMEA/RCA
Fleet Optimization




Agent Based Modelling
Capability at University of
Wollongong

Contact Professor Peter Campbell
pcampbel@uow.edu.au
0429 080 141




Modelling Experience

* The staff at UOW have developed ABM based applications to address a
range of social, defence and infrastructure related issues including:

* Modelling the travel and work behaviour of 113,000 residents of the Randwick and
nearby suburbs of Sydney for transportation options re quality of life

* Freight rail traffic into Port Kembla from NSW source regions
* |ED red teaming in Afghanistan

e Passenger movement across rail platforms

* Large scale hospital operation

 |IPB for special operations missions

* Interdiction of drug trafficking across the Caribbean

* ABM modelling tools used include Repast Simphony, Net Logo and Any
Logic



SUMMARY AND CONCLUSION @ pic

« A variety of tools are used in the electrical industry for designing, managing,
con’golling, running, evaluating and forecasting the electric grid and its
needs.

 Specialty tools developed over a number of years that are well suited to the
energy industry of the 20th century.

* The electric grid of the 21st century needs to cope with the smart grid,
cyber-aftacks, space weather, Electro-Magnetic Pulse (EMP) weapons,
proliferation of clean energy sources, phase-out of fossil fuels, etc.

- We need fo approach the problem from a systems engineering point of
view

 Systems engineering will provide that new way of thinking, and MBSE for SoS
with UAF and SysML integrated with specialty tools will provide the means 1o

redlize the solutions.



QUESTIONS AND ANSWERS @ pic

Thanks for your attention! .

Speaker




Thank You!

Matthew Hause
PTC

E-mail:
mhause@ptc.com




| Unlqck thﬁ‘value created by the convergence ' _
e e physical and digital worlds Al




