

# **The Impact of Lean on the Mining industry: A Simulation Evaluation Approach**

**27<sup>th</sup> Annual INCOSE International Symposium (IS 2017)**  
**Adelaide, Australia, July 15-20, 2017**

**By**  
**Shingai Aggrey Maunzagona**  
**Presented by: Arnesh Telukdarie**



# Introduction – Mining industry



- Mining important in the African economies due to its contribution to forex earnings and employment creation (IDC, 2013)
- Mining industry profitability has reduced due to rising costs (social and environmental demands) and the downtrend of the mineral prices (Wijaya, Kumar & Kumar, 2009)
- The downtrend of mineral prices which reduces the profitability of mining companies also has a damaging effect on economies dependent on mining (Wills, 2006).
- Due to these challenges, It is imperative that mining organizations increase operational efficiency and reduce production costs so as to survive and remain profitable.
- Companies are increasingly being forced to explore alternative solutions to increase the viability of doing business (Gamme & Aschehoug, 2014).

# Definition of Mining

Newman et al. (2010) detail the five stages of mining which are prospecting, exploration, development, exploitation, and reclamation. The following table briefly describes the activities involved in each stage.

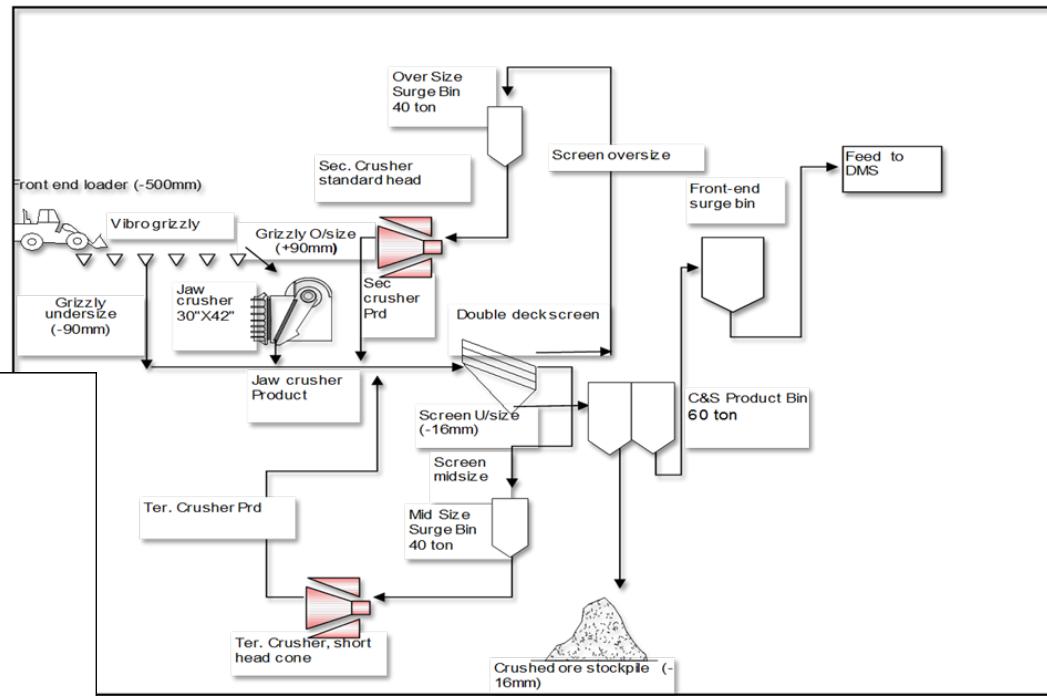
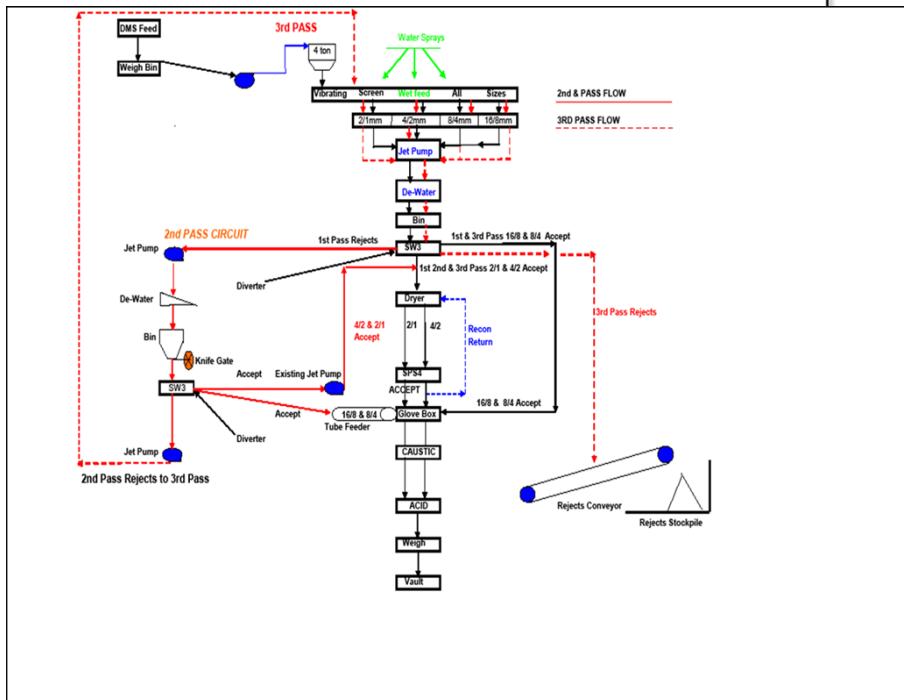
- Table: Mining stages (Newman et al., 2010)

| Stage        | Activity                                                                                                                                                                                      |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Prospecting  | Geologists utilize visual analysis and physical measurements of the earth's structure to identify mineral deposits.                                                                           |
| Exploration  | Geologists deduce the value of the mineral concentration and variability by drilling holes and conducting measurements.                                                                       |
| Development  | Permission is obtained to own the land and initial preparations are conducted by clearing the top material through sinking of shafts into the earth's surface                                 |
| Exploitation | Ore is extracted from the ground and it is transported to the surface in Articulated Dump Trucks (ADTs). Afterward, it can be stockpiled, conveyed directly to a processing plant, or dumped. |
| Reclamation  | Restoration of the mined area to its natural state as much as possible.                                                                                                                       |



UNIVERSITY  
OF  
JOHANNESBURG

# Introduction – Mineral price trends


Rough diamonds global prices and forecast per carat (Paulzimnisky.com, 2016)

## Synopsis of the case study: A diamond production process

The researcher utilizes one of the leading diamond mining companies in Southern Africa as a basis for the study. Therefore, it is important to understand its operations. The production chain of the mine is therefore summarized below.

- Mining operations
- Crushing and Screening plant
- Dense Media Separation (DMS) plant
- Recovery Plant



UNIVERSITY  
OF  
JOHANNESBURG

# Introduction to Lean

- Lean principle has been adapted to by various industries to eliminate waste (time, cost and resources)
- The implementation of Lean principle usually starts with mapping current process performance level using Value Stream Mapping (VSM) (Das et al. 2014)
- A value stream mapping is a collection of all activities that are required to achieve product flow, beginning with the raw materials and ending with the finished products (Mahmood, 2015)
- The real benefit of Value Stream Mapping is that it enables single point optimization and enables the practitioners to build a realistic system based on material and information flow across the value chain (Liker & Meier, 2006)

## Lean in the mining industry

There is not much documentation regarding Lean implementation and optimization in the mining industry. A few companies have initiated a systematic adoption of the Lean principle, and there is also limited evidence that illustrates broad acceptance of Lean production in the mining industry (Castillo et al., 2014). Wijaya et al. (2009) suggest that the mining industry should adopt the Lean principle for two primary reasons:

- The mining industry has declined in profitability due to social and environmental demands of sustainable development. Reducing production costs helps to compensate this effect
- Both automotive and mining industries rely on efficient industrial processes, value stream efficiency, efficiency of their operations and have a strict focus on safety. Lean has managed to improve all those aspects of the automotive industry

# Introduction DES

- **Discrete Event Simulation (DES)** is the process of simulating the behavior of a complex system as an ordered sequence of well-defined events (Anylogic, 2016)
- Simulation has emerged as a complementary tool for the design and improvement of Lean processes (Venkat & Wakeland, 2006)
- Simulations are utilized for the modeling of production processes for a major product category and to validate the current state VSM as well as evaluating alternative scenarios of the future state VSM (Venkat & Wakeland, 2006)
- For purposes of this study, DES is chosen to model the diamond production section of the mine as the mine can be considered a process with a sequence of process steps

## Definitions

| Output                                  | Formula                                                                                                  |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------|
| Total cycle time                        | Mining cycle time + crushing and screening cycle time + DMS plant cycle time + recovery plant cycle time |
| Mining cycle time                       | Drilling and blasting time + loading and hauling time                                                    |
| Crushing and screening cycle time       | Primary crushing time + secondary crushing time + tertiary crushing                                      |
| DMS plant cycle time                    | 50 ton per hour DMS time, 90 ton per hour DMS time + 10 ton per hour DMS time                            |
| Recovery plant cycle time               | Sizing time + x-ray sorting time + hand sorting time + acid cleaning time + caustic fusion time          |
| Crushing and screening plant throughput | WIP/ (crushing and screening cycle time/60)                                                              |
| DMS plant throughput                    | WIP/ (DMS cycle time/60)                                                                                 |

# Research Objectives

To evaluate the impact of applying the Lean principle in a mining company using simulation modeling

The study aims to address the following research questions:

- What effect does the Lean principle have on mining operations?
- How can simulation modeling be used as a tool for lean evaluation scenarios?

## Case Study

- Since the Lean management principle was adopted from the automotive industry, it is imperative to look at the **differences** between the mining and the automotive industries so as to know how to apply Lean relevantly to the mining sector. Dunstan et al. (2006) detail a comparison of the two industries in the following manner:
- **Table: Comparison between the mining and automotive industries (Dunstan et al., 2006)**

| Mining Industry                             | Automotive industry                |
|---------------------------------------------|------------------------------------|
| Physically constraining environment         | Ambient environment                |
| Inherently variability                      | Stable work environment            |
| Geographically spread-out teams             | Compact plants                     |
| Inherent variability in raw material supply | Consistent supply of raw materials |
| Remote locations                            | Located in large centers           |

- The study utilizes one of the diamond mining companies in Southern Africa
- The areas of focus are mining, crushing and screening plant, dense media separation plant
- and recovery section.

# Research Methodology

Sample data collection

VSM Construction

Simulation model configuration

Variance analysis

Lean simulation optimization

## Discrete Event Simulation (DES)

The idea of DES method is that the modeler considers the modeled system as a process, i.e. performing a sequence of operations across entities (Anylogic, 2016). The typical output expected from a discrete event model is:

- Utilization of resources
- Residence time of the entities in the system
- Waiting times
- WIP Queue lengths
- Process throughput
- Bottlenecks

For purposes of this study, Discrete Event Simulation is chosen to model the diamond production section of the mine as it is a process with a sequence of process steps.

| <b>Seven Original Wastes</b>                                                                     | <b>Role of DES</b>                                                                                   |
|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| 1. Transportation: movement of products that are not needed for processing                       | Modeling the process flow and measuring transportation times                                         |
| 2. Inventory: unprocessed Work in process and finished product.                                  | Modeling inventory queues                                                                            |
| 3. Motion: people or equipment moving or walking more than is required to perform the processing | Modeling the interconnection between resources (people and equipment) and the process                |
| 4. Waiting (Delay): waiting for the next production step                                         | Modeling queues that evolve as a result of variability in interconnected processes                   |
| 5. Overproduction: production ahead of demand                                                    | Modeling the link between variabilities in demand and production                                     |
| 6. Over-processing: resulting from poor equipment or product design creating activity            | Modeling the process flow and measuring utilization of resources and processes                       |
| 7. Defects: the effort applied in the inspection and fixing of defects                           | Modeling of variability in defect occurrence, identification and its impact on the flow of processes |

# Setting up the simulation

## Simulation setup using Anylogic

- States include, Normal operations, Minimum and maximum

## Initial tests to determine most significant

- Secondary trials to determine optimum

| Trial | Iteration                                  |
|-------|--------------------------------------------|
| 1     | Current state                              |
| 2     | Top two significant variables at minimum   |
| 3     | Top three significant variables at minimum |
| 4     | Top four significant variables at minimum  |
| 5     | Top five significant variables at minimum  |

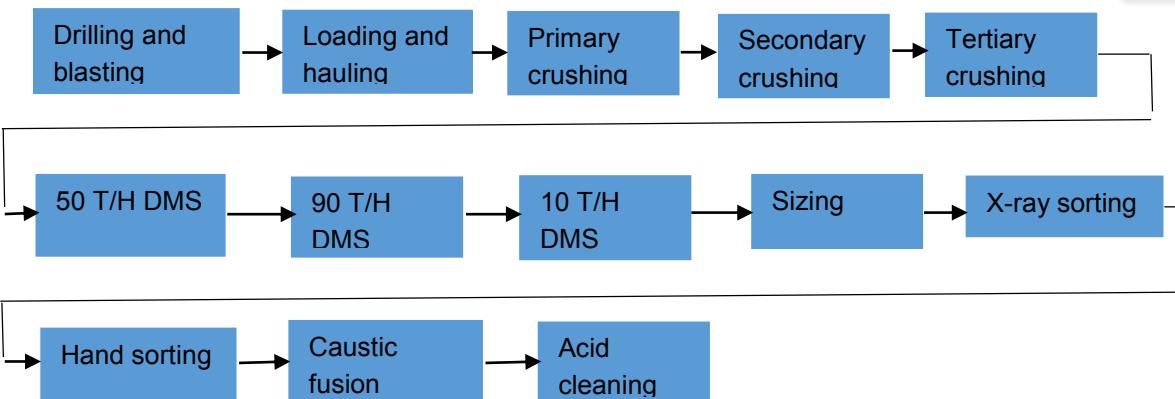



Figure 1: Process steps in the simulation model

## Synopsis of the outputs for the simulation model for the current study

- The study identifies key performance indicators for the case diamond mine production set up. These key performance indicators are chosen to be the simulation outputs so as to observe how they are affected by Lean optimization of cycle times. These are; sectional cycle (process) times, which comprise of total cycle time, mining cycle time, crushing and screening plant cycle time, DMS plant cycle time, recovery plant cycle time, Lead time and plant throughputs which comprise of crushing and screening plant throughput and DMS plant throughput.

### Cycle (Process) times

- Cycle time is total time to move a unit of work from the start to the end of a physical process. When referring specifically to plant operation, it is the time required to complete an entire operation on one part from entering the machine to the exit of the machine (Agrahari et al., 2015). The cycle time outputs for the case study are; total cycle time, mining cycle time, crushing and screening plant cycle time, DMS plant cycle time and recovery plant cycle time. For study purposes, the researcher observes a batch of ore (one ton).

### Lead time

- According to Bharath & Prakash (2014), Lead time is the time spent between the original customer order and the final delivery of the product to the customer.

### Plant throughput

- There is a need to improve plant throughput to meet production targets (Alden et al., 2006). According to Emerson Process Management (2003), The study investigates how Lean simulation optimization affects plant throughput outputs. The plant throughputs under investigation in the diamond mine case study are; crushing and screening plant throughput and DMS plant throughput.

## Drilling and blasting

|                                  | Target        | Current state |
|----------------------------------|---------------|---------------|
| Drilling and blasting cycle time | 606.7 minutes | 666.7 minutes |

## Loading and Hauling

|                                | Target     | Current state |
|--------------------------------|------------|---------------|
| Loading and hauling Cycle Time | 18 minutes | 25 minutes    |

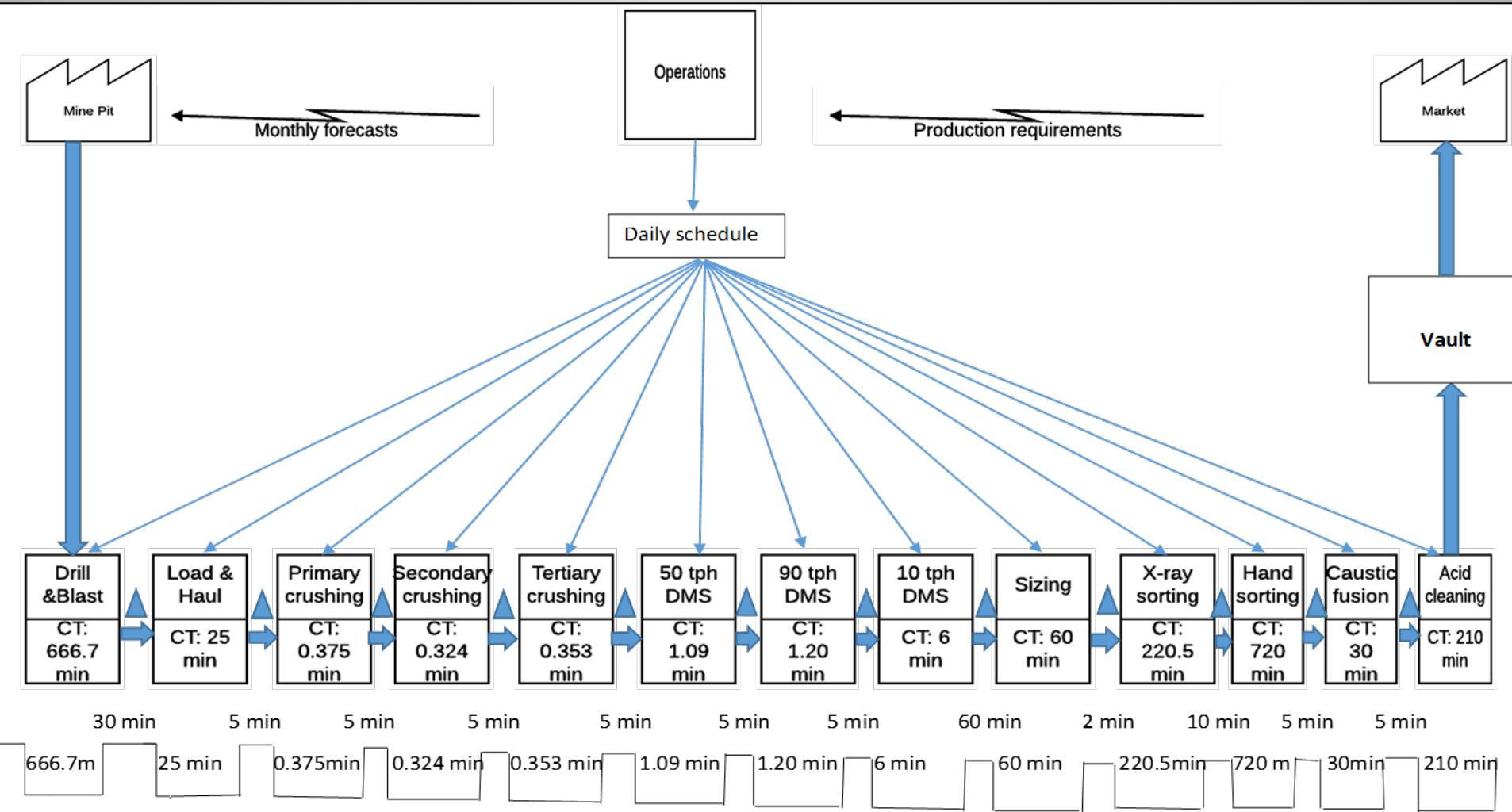
## Crushing and Screening Plant

|                              | Target            | Current state     |
|------------------------------|-------------------|-------------------|
| Primary crusher throughput   | 220 tons per hour | 160 tons per hour |
| Primary crusher cycle time   | 0.273 minutes     | 0.375 minutes     |
| Secondary crusher throughput | 245 tons per hour | 185 tons per hour |
| Secondary crusher cycle time | 0.245 minutes     | 0.324 minutes     |
| Tertiary crusher throughput  | 190 tons per hour | 170 tons per hour |
| Tertiary crusher cycle time  | 0.316 minutes     | 0.353 minutes     |

## Dense Media Separation (DMS) plant

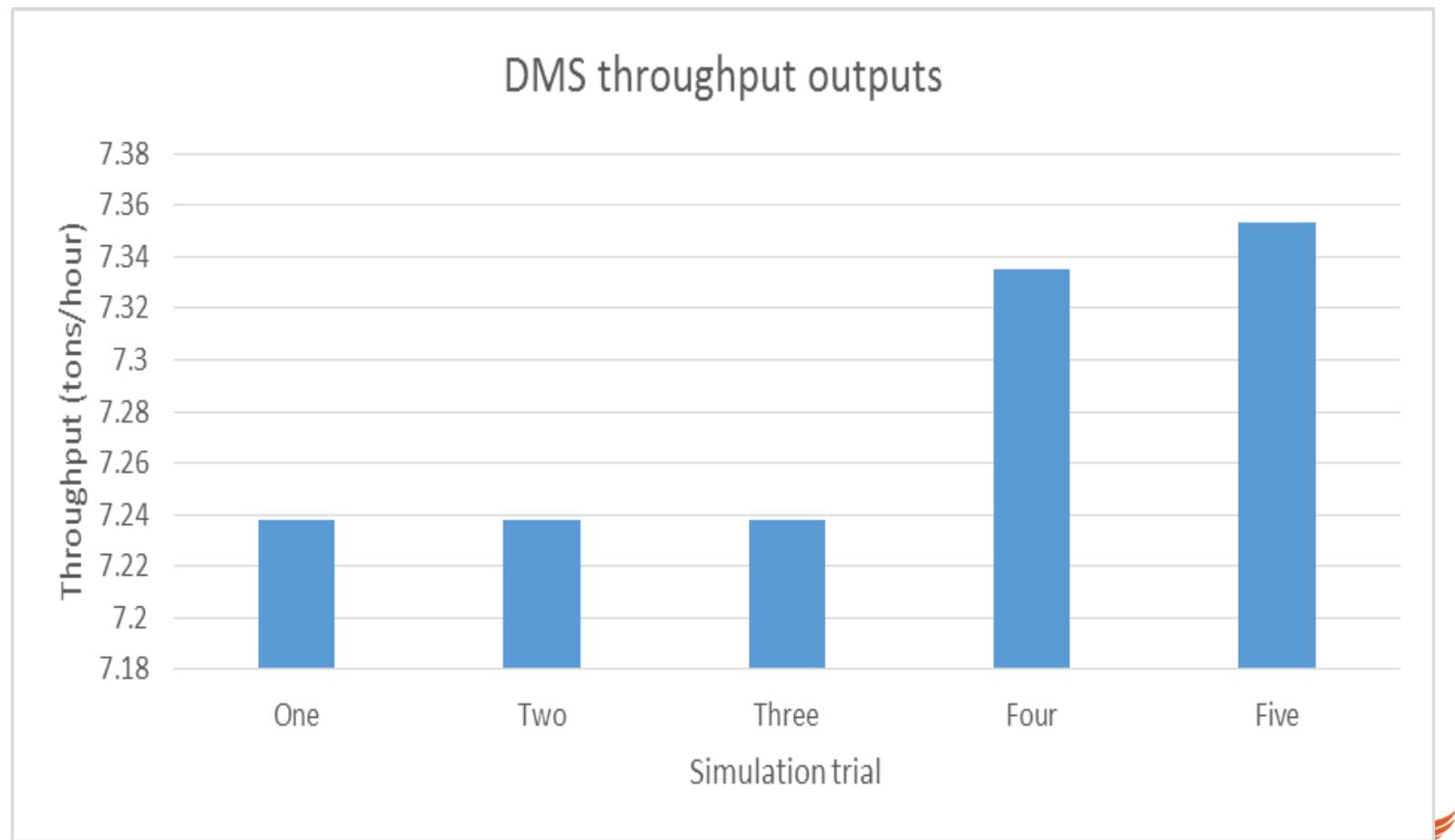
|                          | Target           | Current          |
|--------------------------|------------------|------------------|
| 90 T/H module throughput | 55 tons per hour | 50 tons per hour |
| 90 T/H module cycle time | 1.09 minutes     | 1.20 minutes     |
| 50 T/H module throughput | 56 tons per hour | 55 tons per hour |
| 50 T/H module cycle time | 1.07 minutes     | 1.09 minutes     |
| 10 T/H module throughput | 12 tons per hour | 10 tons per hour |
| 10 T/H module cycle time | 5 minutes        | 6 minutes        |
| Total DMS cycle time     | 7.18 minutes     | 8.27 Minutes     |

## Recovery plant data

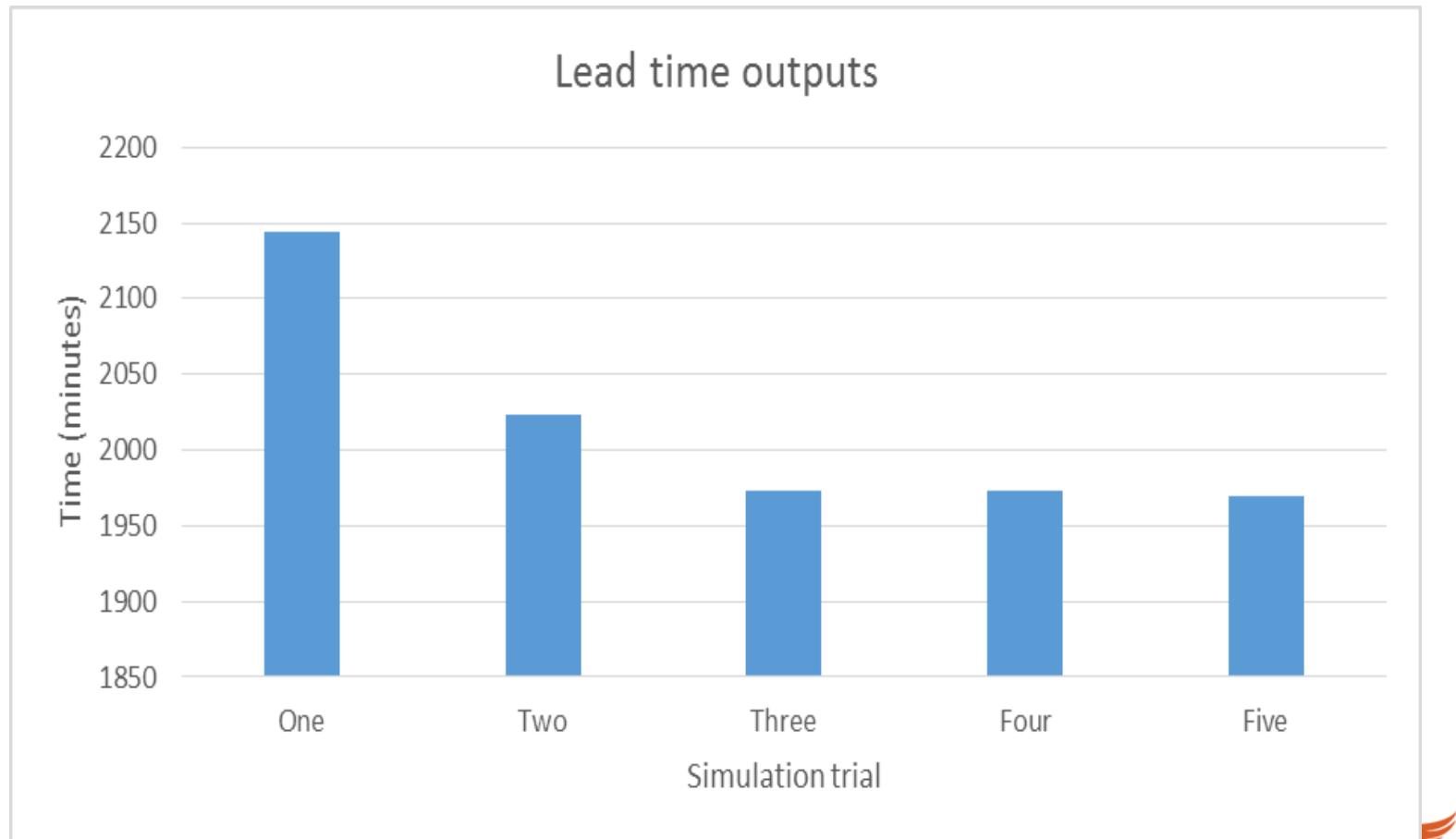

|                                                | Target Cycle times | Current Cycle times |
|------------------------------------------------|--------------------|---------------------|
| Sizing                                         | 10 minutes         | 60 minutes          |
| x-ray sorting (first, second and third passes) | 220.5 minutes      | 220.5 minutes       |
| Caustic fusion                                 | 30 minutes         | 30 minutes          |
| Acid cleaning                                  | 210 minutes        | 210 minutes         |
| Hand sorting                                   | 720 minutes        | 780 minutes         |



# Results Setup – Variance analysis table


|                                 | Drilling & blasting | Loading & hauling | Primary crushing | Secondary crushing | Tertiary crushing | 50tph DMS | 90tph DMS | 10tph DMS | sizing | Hand sorting |
|---------------------------------|---------------------|-------------------|------------------|--------------------|-------------------|-----------|-----------|-----------|--------|--------------|
| <b>Normal lead time</b>         | 2144                | 2144              | 2144             | 2144               | 2144              | 2144      | 2144      | 2144      | 2144   | 2144         |
| <b>Minimum lead time (50%)</b>  | 2114                | 2140              | 2143             | 2144               | 2144              | 2144      | 2144      | 2143      | 2119   | 2114         |
| <b>Variance (50%)</b>           | 30                  | 4                 | 1                | 0                  | 0                 | 0         | 0         | 1         | 25     | 30           |
| <b>Minimum lead time (100%)</b> | 2084                | 2137              | 2143             | 2143               | 2144              | 2136      | 2134      | 2143      | 2094   | 2084         |
| <b>Variance (100%)</b>          | 60                  | 7                 | 1                | 1                  | 0                 | 8         | 10        | 1         | 50     | 60           |

# Results




CT = Cycle time min = minutes

# Results



# Results



# Key Findings

When Lean is correctly implemented to reduce cycle times, lead time is reduced the plant throughput increases

Simulation modeling complements Lean tools such as Value Stream Mapping in providing a Lean evaluation framework.

The experiment proved that simulation modeling is a useful tool in testing the impact of applying Lean before the actual implementation.

# Recommendations

Adaptation of (FINITE) Lean in the mining industry to improve process efficiency, reduce lead times and improve plant throughputs

Simulation modeling as a complimentary tool for Lean evaluation in mining companies

The simulation modeling technique to test how key performance indicators will be impacted by lean optimization before actual implementation

For future study purposes, a more holistic and integrated study is suggested, expanding the scope to production, maintenance, logistics and management of the whole mining process.

Lean simulation optimization of all these elements is suggested to improve the organization's efficiency.

# References

Liker, J. and Meier, D. (2006). *The Toyota Way Field book: A practical guide for implementing Toyota's 4Ps*. New York: McGraw-Hill.

IDC. (2013). *The interface between the mining and manufacturing sectors in South Africa*. [online] Available at: [http://idc.co.za/images/Content/IDC\\_research\\_report\\_Interface\\_between\\_Mining\\_and\\_Manufacturing.pdf](http://idc.co.za/images/Content/IDC_research_report_Interface_between_Mining_and_Manufacturing.pdf) [Accessed 14 Apr. 2016].

Paulzimnisky.com. (2016). *Rough Diamond Price Chart - Paul Zimnisky | Diamond Industry Analysis*. [online] Available at: <http://www.paulzimnisky.com/rough-diamond-price-chart> [Accessed 23 Oct. 2016].

Wijaya, A., Kumar, R. and Kumar, U. (2009). Implementing lean principle into mining industry: Issues and challenges. In: *International Symposium on Mine Planning and Equipment Selection*. Banff.

Anylogic. (2016). *Case studies: Chelyabinsk Metallurgical Plant Uses a Simulation Model of Electric-Furnace Melting Shop*. [online] Available at: <http://www.anylogic.com/case-studies/chelyabinsk-metallurgical-plant-uses-a-simulation-model-electric-furnace-melting-shop> [Accessed 2 Apr. 2016].

Venkat, K. and Wakeland, W. (2006). Using simulation to understand and optimize a lean service process. [online] Available at: <http://www.cleanmetrics.com/pages/Lean-Simulation.pdf> [Accessed 1 Apr. 2016].

**THANK YOU**

**QUESTIONS**

