

# Perspectives on Managing Emergent Risk due to Rising Complexity in Aerospace Systems

Dr. Dianne J. DeTurris and Andrew M. Palmer  
Aerospace Engineering  
California Polytechnic State University  
San Luis Obispo, CA

# Use Perspective to Manage Complexity

- Understand how complexity affects the system
- Using perspective to cast the system in a socio-technical context
- Measuring and managing complexity through addressing emergent risk
- Prevent late failures in system development with complexity management throughout the lifecycle

# Systems Engineering Today

As it is taught and practiced, is fundamentally concerned with

- **identifying the separable elements** or blocks of a proposed design
- **characterizing the intended relationships** between and among those elements
- **verifying** that the actual configuration is fabricated and operated as intended in its environment

Dr. Michael D. Griffin, 2010

NASA Administrator 2005-2009

Pentagon Undersecretary of Defense for Research and Engineering

# No Small Feat for Large Complex Systems

Think about modern transport aircraft, launch vehicles, spacecraft, submarines

**“The systems engineering methods, processes, and tools which have developed over the last half-century to formalize and systematize it as an essential engineering discipline are not to be slighted.”**

- Griffin

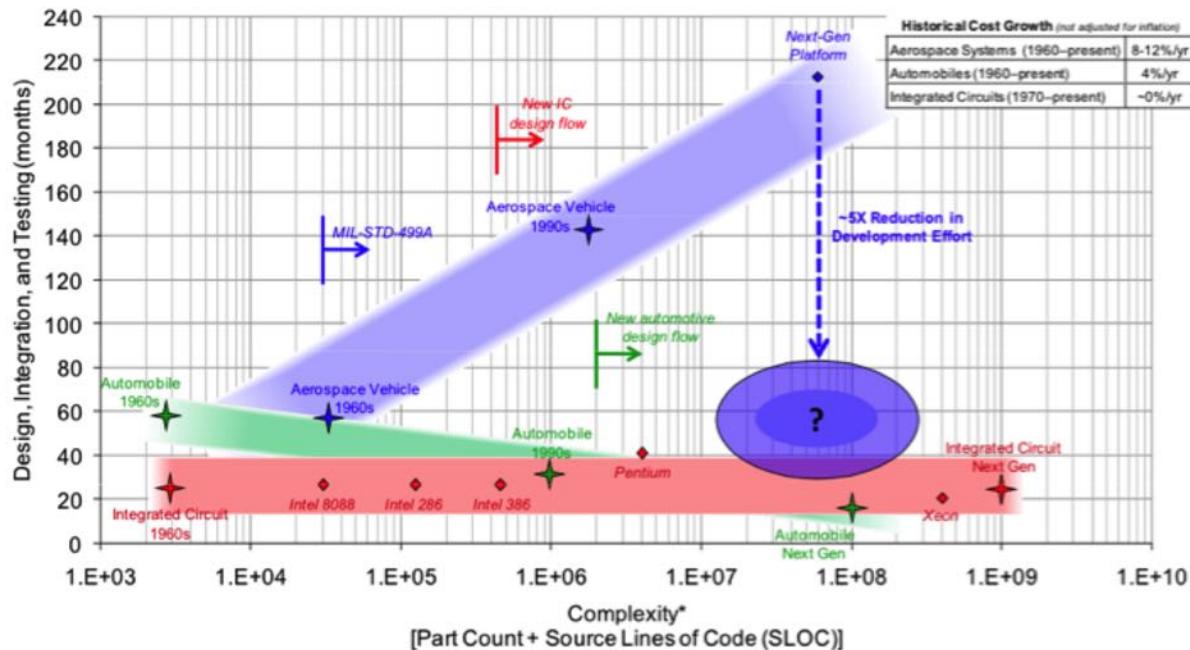
# Yet failures continue to occur...

- Often of the most glaring and consequential nature
- Commonly at the boundaries or interfaces between elements
- Often due to uncontrolled, unanticipated and unwanted interactions between elements
- In many cases between elements thought to be entirely separate

- Griffin

# Complexity - A Reality of Modern Engineering

APPROVED FOR PUBLIC RELEASE. DISTRIBUTION UNLIMITED.




## Historical schedule trends with complexity

Development time vs. Complexity for

- Aerospace
- Automobiles
- Integrated Circuits

Complexity is a reality for everyone and one that has not been addressed in the aerospace community



Note (\*): Not a great metric. But that's what we have today. META will come up with better metrics.

# Trend of Fighter Aircraft Production Cost

- From Augustine's Laws
- Adjusted for constant dollars



# Behind Schedule and Over Budget is Normal

GAO 2014

Defense Acquisitions

## Cost and Schedule Changes for Programs in DOD's 2014 Portfolio

Fiscal year 2015 dollars (in billions)

|                                                  | 4 year comparison (2009-2014) | Since first full estimate (Baseline to 2014) |
|--------------------------------------------------|-------------------------------|----------------------------------------------|
| Change in total research and development cost    | \$17.4 billion<br>6.5%        | \$98.5 billion<br>52.8%                      |
| Change in total procurement cost                 | \$57.3 billion<br>5.3%        | \$357.8 billion<br>45.8%                     |
| Change in total other acquisition costs          | \$2.2 billion<br>21.7%        | \$1.2 billion<br>10.4%                       |
| Change in total acquisition cost <sup>a</sup>    | \$76.9 billion<br>5.7%        | \$457.5 billion<br>46.8%                     |
| Average delay in delivering initial capabilities | 7.0 months<br>8.5%            | 28.9 months<br>36.5%                         |

Source: GAO analysis of DOD data. | GAO-15-342SP

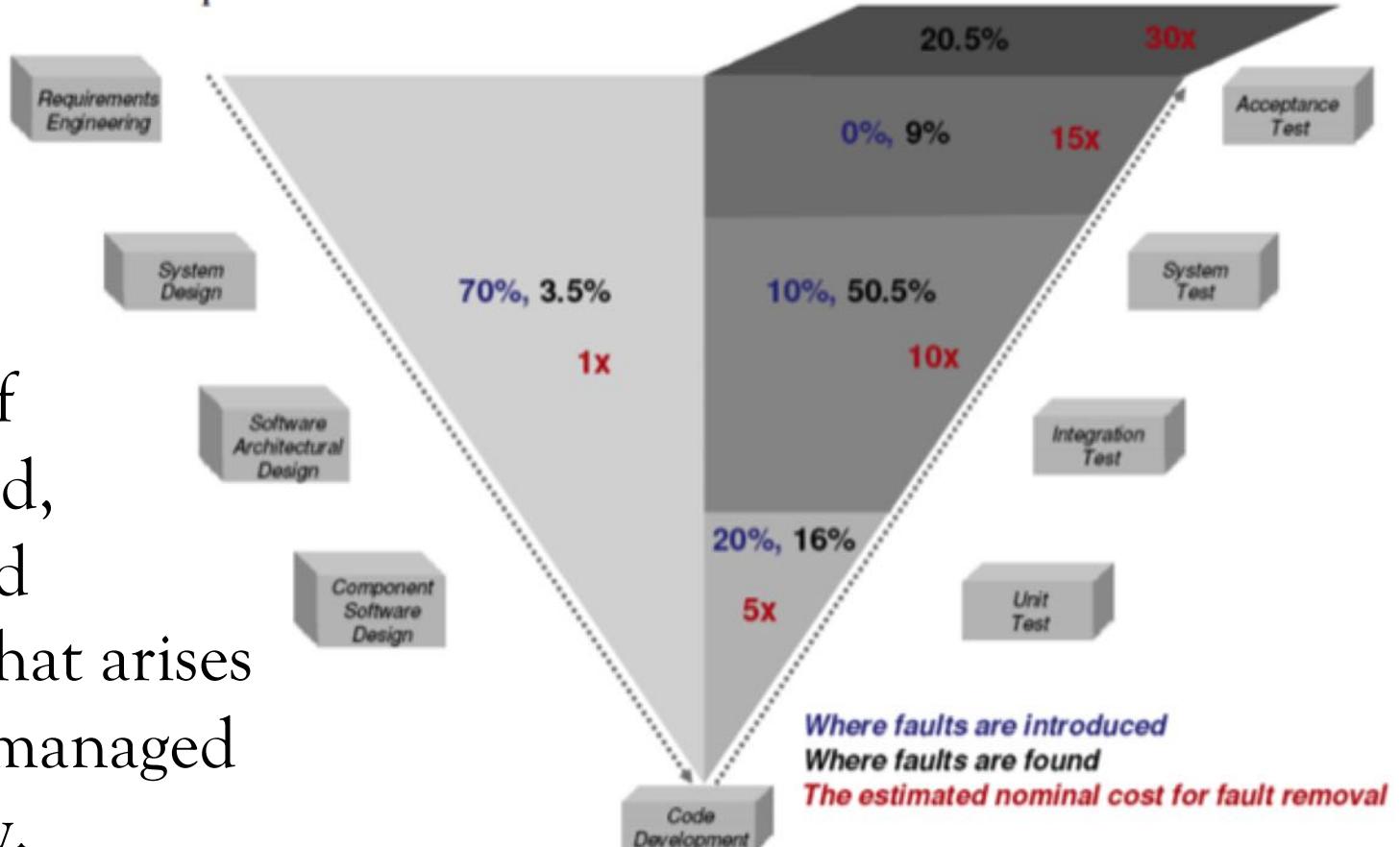
Notes: Data were obtained from DOD's Selected Acquisition Reports and acquisition program baselines. In a few cases data were obtained directly from program offices. Some numbers may not sum due to rounding.

<sup>a</sup>In addition to research and development and procurement costs, total acquisition cost includes acquisition-related operation and maintenance and system-specific military construction costs.

# Scope Creep and Deficiency is Common

Programs with the Largest Development Cost Percentage Increases over the Past Year

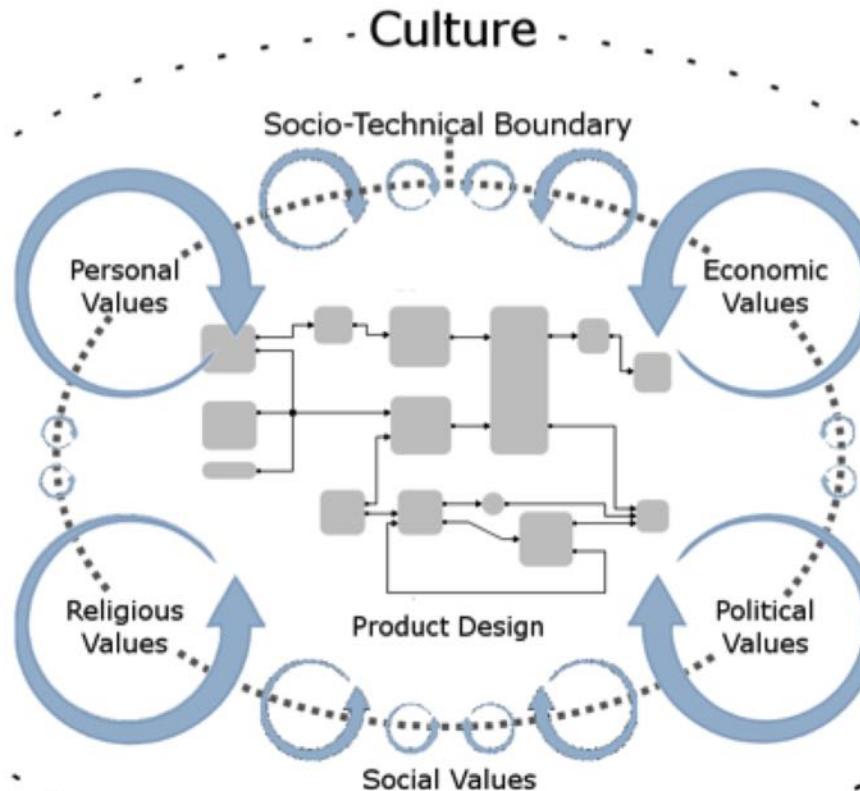
Fiscal year 2016 dollars (in millions) <http://www.gao.gov/assets/680/676281.pdf>


| Program                                                   | Percentage increase in development cost over the past year | Amount of development cost growth over the past year | Initial capability achieved | Primary cause for development cost increase |
|-----------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------|-----------------------------|---------------------------------------------|
| AIM-9X Block II Air-to-Air Missile                        | 45%                                                        | \$172                                                | No                          | Deficiency                                  |
| MQ-8 Fire Scout                                           | 36                                                         | 325                                                  | Yes                         | Unplanned capability                        |
| Evolved Expendable Launch Vehicle                         | 21                                                         | 528                                                  | Yes                         | Unplanned capability                        |
| Navy Multiband Terminal                                   | 18                                                         | 135                                                  | Yes                         | Unplanned capability                        |
| Patriot Advanced Capability-3 Missile Segment Enhancement | 9                                                          | 80                                                   | No                          | Unplanned capability                        |
| Family of Advanced Beyond-Line-of-Sight Terminals         | 9                                                          | 215                                                  | No                          | Deficiency                                  |
| DDG 51Arleigh Burke Class Guided Missile Destroyer        | 6                                                          | 364                                                  | Yes                         | Unplanned capability                        |
| Global Positioning System III                             | 6                                                          | 180                                                  | NA                          | Deficiency                                  |
| Next Generation Operational Control System                | 5                                                          | 190                                                  | No                          | Deficiency                                  |
| LHA 6 America Class Amphibious Assault Ship               | 4                                                          | 17                                                   | No                          | Unplanned capability                        |
| Littoral Combat Ship Mission Packages                     | 4                                                          | 93                                                   | No                          | Deficiency                                  |
| EA-18G Growler Aircraft                                   | 4                                                          | 85                                                   | Yes                         | Unplanned capability                        |

# Interaction Challenges Due to Complexity

| Fourth generation combat aircraft (e.g. F/A-18) | Fifth generation combat aircraft (e.g. F-35) |
|-------------------------------------------------|----------------------------------------------|
| 15 subsystems                                   | 130 subsystems                               |
| $10^3$ interfaces                               | $\sim 10^5$ interfaces                       |
| 40% functions managed by software               | 90% of functions managed by software         |

# Emergent Risk in Complex Systems


The risk of unintended, unexpected behavior that arises due to unmanaged complexity.

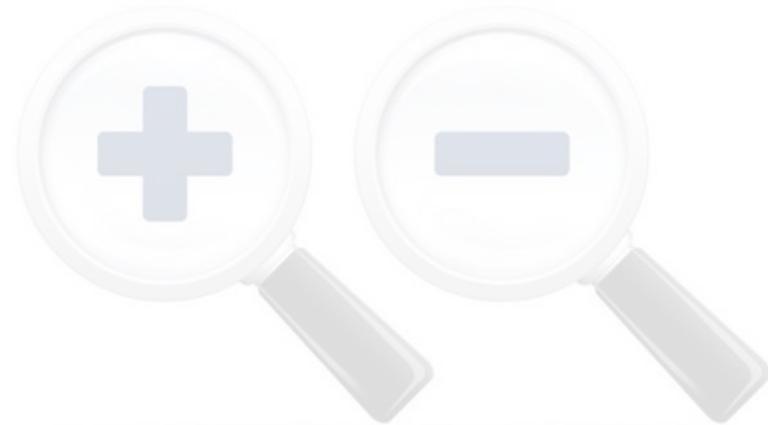


# Socio-Technical Boundary

System ↔ People  
Interacting with  
System (all  
Stakeholders)

Values  
Context  
Culture




# Perspectives

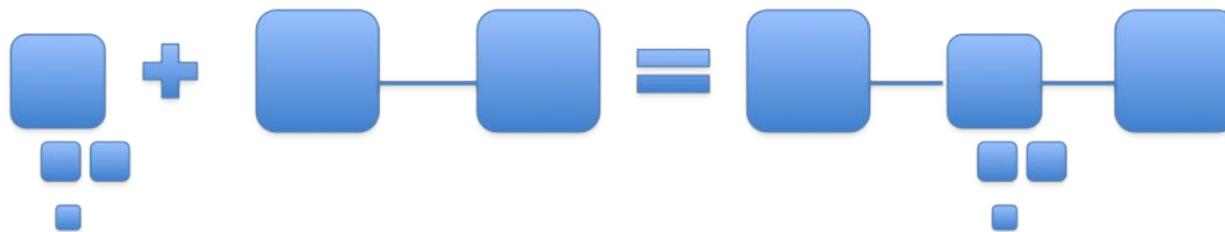
Ways in which to view and manipulate system properties:

- Systems Thinking
- Sensemaking
- Incremental Development
- Estimating Emergent Risk
- Quantitative Measurement
- Paradigm Shift

# Systems Thinking Perspective

- Zoom in, zoom out
- Pay attention to feedback
  - Especially time delayed
- Challenge assumptions
  - Attitudes and beliefs
- Pay attention to what is important, not just what is quantifiable



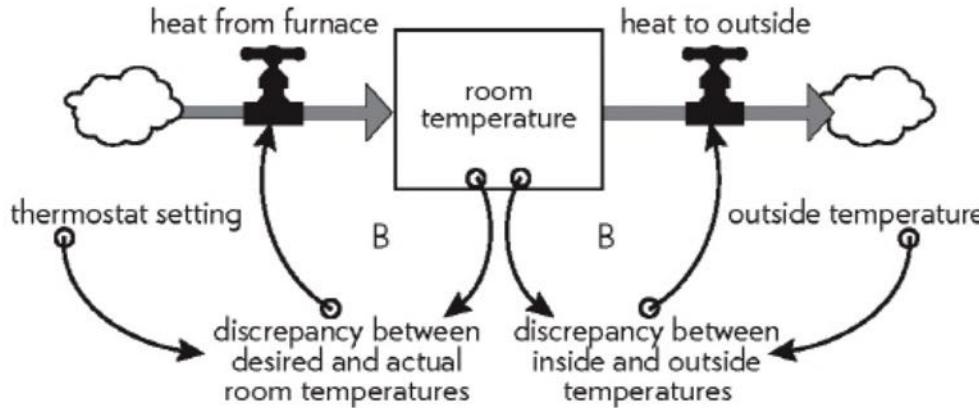

<https://www.linkedin.com/pulse/zoom-out-significantly-increase-your-learning-see-others-jay-kshatri>

# Systems Thinking: Four Simple Rules

- 1) Distinctions - any idea or thing can be distinguished from other ideas or things
- 2) Systems - any idea or thing can be split into parts or lumped into a whole
- 3) Relationships - any idea or thing can relate to other things or ideas
- 4) Perspectives - any idea or thing can be the point or the view of a perspective

# Use Simple Rules as Visualization Tool

- Shapes for distinction
- Lines for relationships
- Point of view for perspectives

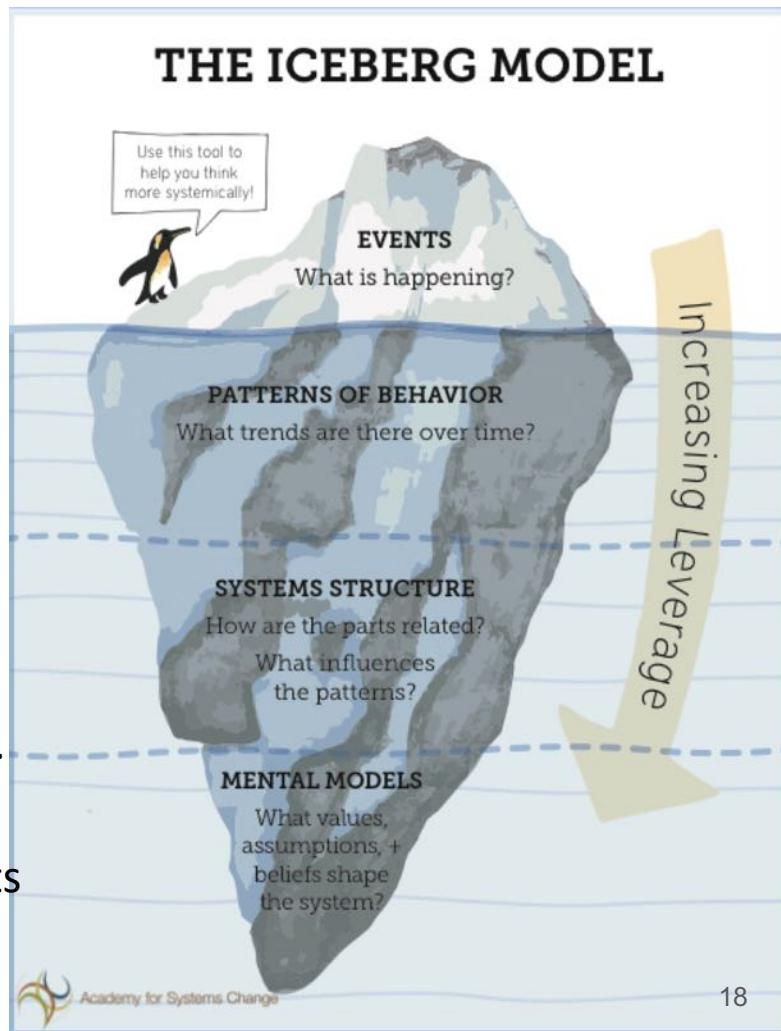



a whole with  
two parts,  
one of which  
has a part

a relationship  
between two  
things

a distinguished,  
systematized relationship  
between two things

# Example: Temperature Regulated by Thermostat and Furnace




- One stock with two competing balancing loops
- Feedback is used to maintain a balance
- Time delay between setting and room temperature

# Places to Intervene in a System

(in increasing order of effectiveness)

9. Constants, parameters, numbers (subsidies, taxes, standards)
8. Regulating negative feedback loops
7. Driving positive feedback loops
6. Material flows and nodes of material intersection.
5. Information flows
4. The rules of the system (incentives, punishments, constraints)
3. The distribution of power over the rules of the system.
2. The goals of the system
1. The mindset or paradigm out of which the system — its goals, power structure, rules, its culture — arises



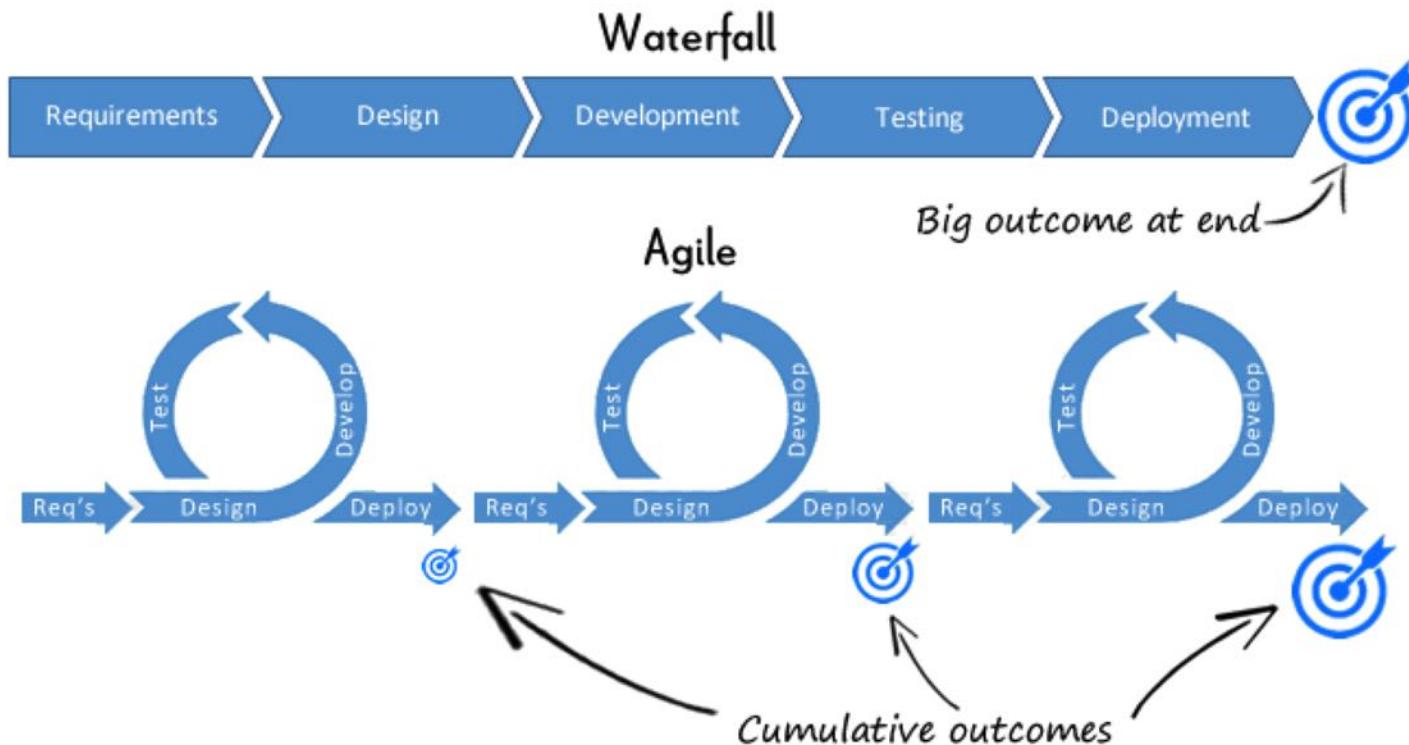
# What is Sensemaking?

- Making sense of an ambiguous situation
  - creating situational awareness and understanding in situations of high complexity or uncertainty in order to make decisions
  - a motivated, continuous effort to understand connections (which can be among people, places, and events) in order to anticipate their trajectories and act effectively

# Cynefin Framework for Sensemaking

- Cynefin means place of belonging, habitat
- Categorize problem in terms of complexity in order to get a solution method
- Cynefin stems from complexity science
- Ferrari vs. the rainforest

# Cynefin Domains


- Simple
- Complicated
- Complex
- Chaotic
- Disordered



# Incremental Development Perspective

- Nimble, dexterous, and swift
- Adaptive and responsive to new, sometimes unexpected information that becomes available during system development
- Cross functional teams developing in short cycles
  - *Agile is a good example*

# Traditional Waterfall and Agile



# Agile - Processes and People

- A good process will not save the project from failure if the team doesn't have strong players
- A bad process can make even the strongest of players ineffective
- A group of strong players can fail badly if they don't work as a team

# Estimating Emergent Risk Perspective

- Emergent risk is the risk of unintended, unexpected behavior that arises in a complex system during any part of a product's lifecycle
- Complexity Breeds Fragility
  - The lower bound of complexity in aerospace is necessarily higher due to the tightly coupled nature of high risk systems and the increased need for risk mitigation, such as launch vehicles

# Examples of Emergent Risk

## The Study of Vulnerability

- Barings Bank in 1995 a single trader hides trades
- Boeing 777 in 2006 flies out of control due to defective software
- Comair Airline in 2004 has to stop for several days because of overloaded crew-management system
  - In August of 2016, Delta had a similar problem, overloaded reservation software

# Emergent Risks in Industry

- Software bugs like backwards compatibility
- Tiny glitch cascades to catastrophic event
- Weakness at organizational boundaries
- Internal weakness or loophole

or

- Intentional sabotage

# Find the Circuit Breaker

“The bad news is that complex, interconnected systems generate many, sometimes unexpected or counterintuitive vulnerabilities. But the good news is that if a small, localized, single event can trigger cascading failures, then perhaps a small, localized single intervention could act as a circuit breaker.”

## Search for the Circuit Breaker by:

- Having two people work on the same code
- Incentivizing feedback for problems
- Teambuilding
- Designing in robustness
- Open testing
- Disconnecting (literally)

# Incentivize Feedback: US Aviation Safety Reporting System

- In the case of a regulation violation, aviators can submit reports on the incident without fear of consequences
- Self-reported incident information cannot be used by FAA enforcement authorities
- Anonymized information is available to 150,000 aviation professionals and enthusiasts
- The goal is process improvement from feedback, in this case safety

# Quantitative Measurement Perspective

- Uses size, coupling, and modularity properties to quantify complexity
- Case study of three spacecraft
- Three key capabilities
  - identify complex subsystems
  - classify misrepresentations
  - trade studies of Commercial off the Shelf (COTS) and non-COTS components

# Aspects of System Complexity

- 1) **Level of abstraction**-visualization at different levels of detail
- 2) **Type of representation**-structural or functional
- 3) **Size**-number of components and interactions
- 4) **Heterogeneity**-diversity of components and interactions
- 5) **Coupling**-interdependency between components
- 6) **Modularity**-strength of coupling, density of interconnection
- 7) **Uncertainty**-potential to exhibit emergent behavior
- 8) **Dynamics**-behavior across timescales
- 9) **Off-design interactions**-happen outside of design range

# Coupling Complexity Metric

- Create a weighted structural network that shows the coupling
- Add feedback loops
- Assign weights
- Calculate complexity coupling value
- its a model...

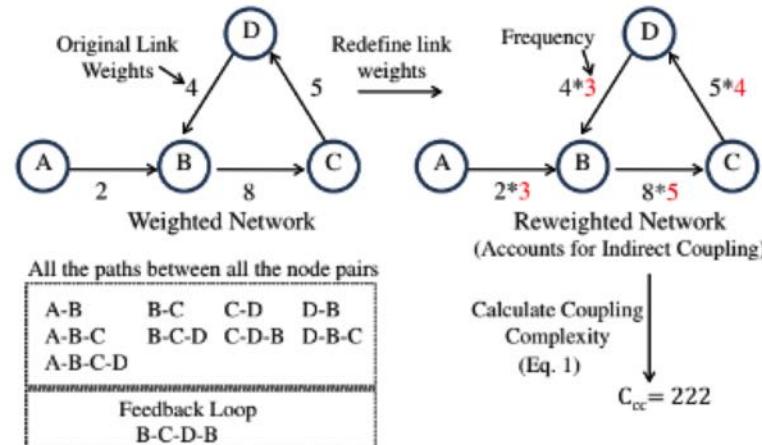
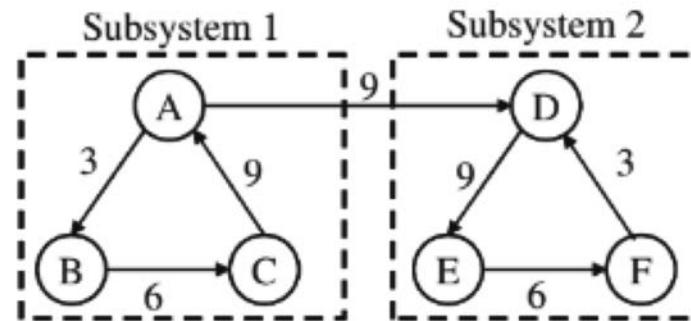




Fig. 1 Illustration of coupling complexity metric

$$C_{cc} = \sum_{s=1}^c \left( n_s \sum_{i=1}^{n_s} W_{is} \right) + \sum_{k=1}^m W_k \quad (1)$$

# Integration Complexity Metric

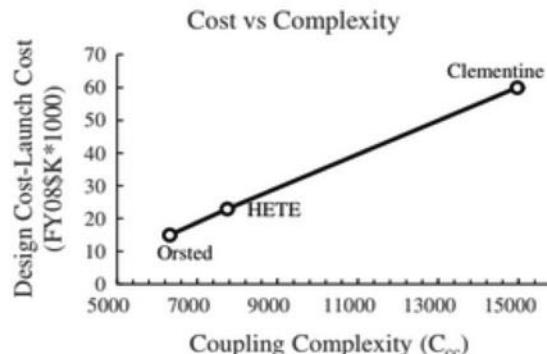
- Capture the modular decomposition process
- Quantify integration
- Assign weights
- Calculate system complexity metric



$$C_{SS1} = 54$$

$$C_I = C_{cc} - C_{SS1} - C_{SS2} = 9$$

$$C_{cc} = 117 \quad a_I = 9/108 \quad C_{sc} = 108.75$$


**Fig. 2** Illustration of system complexity metric

# Study Complexity of Spacecraft

- Apply the model to show how it works
- Sensitivity studies
- Quantitative data on spacecraft complexity

**Table 1** Complexity of spacecraft

| Mission                 | Orsted<br>Magnetic<br>field | HETE<br>Gamma ray<br>burst | Clementine<br>Moon & 1620<br>geographos |
|-------------------------|-----------------------------|----------------------------|-----------------------------------------|
| Cost (FY08\$K*1000)     | 15                          | 23                         | 60                                      |
| Weight (Kg)             | 60                          | 125                        | 232                                     |
| No. of components       | 47                          | 59                         | 68                                      |
| No. of interactions     | 58                          | 71                         | 92                                      |
| Complexity ( $C_{cc}$ ) | 4,893                       | 7,749                      | 14,962                                  |



**Fig. 5** Correlation of cost with complexity

# Complexity Paradigm Shift Perspective

- Designing from a complexity paradigm is more competitive due to different values
  - Size vs. **Speed**
  - Control vs. **Role Flexibility**
  - Role Clarity vs. **Innovation**
- Speed and flexibility are better metrics for managing both organizational and product complexity

| ‘Classic Science’ Model | Complexity Science Model |
|-------------------------|--------------------------|
| Linear                  | Non-linear               |
| Hierarchical            | Non-Hierarchical         |
| Reductionist            | Holistic                 |
| Controlling             | Self-Organizing          |
| Structured              | Flexible                 |
| Uniform                 | Diverse                  |
| Centralized             | Networked                |

McMillan, E., “Considering Organisation Structure and Design From a Complexity Paradigm Perspective”, Figure 4, 2002.

# Conclusion

- Draw a socio-technical boundary around the system to see the overall system perspective
  - includes values, context and culture
- Use perspective to manage the emergent risk
  - Systems Thinking
  - Sensemaking
  - Incremental Development
  - Estimating Emergent Risk
  - Quantitative Measurement
  - Paradigm Shift

