

28th Annual **INCOSE**
international symposium

Washington, DC, USA
July 7 - 12, 2018

Measuring Belonging in a System of Systems to Influence Architectural Decisions

Dr. Clifton Baldwin

Question

- *How can we understand better system-of-systems (SoS)?*
 - Specifically, the collaboration of constituent systems and its influence on the SoS architecture?
 - We call this collaboration “Belonging”

Evolution of the Belonging Attribute

Definition of Belonging

- The collaboration of goal-directed actions by constituent systems
- The Belonging attribute captures the transfer of benefit between individual systems and the collective
 - Represented mathematically, $B^* = \begin{bmatrix} b_{11} & b_{12} & b_{1n} \\ b_{21} & \dots & b_{22} \dots b_{2n} \\ \dots & \dots & \dots \\ b_{n1} & b_{n2} & b_{nn} \end{bmatrix}$

Problem

- How do we expand and validate this theory of Belonging?
 - Need well-defined, quantifiable data
 - Difficult to acquire data from engineered SoS
 - Security reasons
 - Proprietary reasons

Inspiration for the Target System

- Migrating Waterfowl
 - A well studied system-of-systems
 - Biology and Physics are well understood
 - Meets the System-of-systems definition
 - Each bird is clearly a system in its own right (has autonomy)
 - Both individual birds and the flock benefit from flock formation (has belonging)

History of bird flock simulations

- Reynolds (1987) BOIDS model
- Dimock and Selig (2003) extended Reynold's model to include aerodynamic effects
- Seiler *et al* (2003) modeled the behavior of trailing birds following the leader and estimated its effect on flock formation.
- Nathan and Barbosa (2008) looked specifically at rules to produce vee-shaped formations

None of these were suitable for our purpose

Agent Based Model Features

Physics
determines
range and fuel
consumption

Drag reduction
influences Flock
Formation

Agents adhere
to biological
requirements

Fuel Savings
captured in
Belonging Matrix

But, this is NOT about the Birds!!

Environmental Calculations

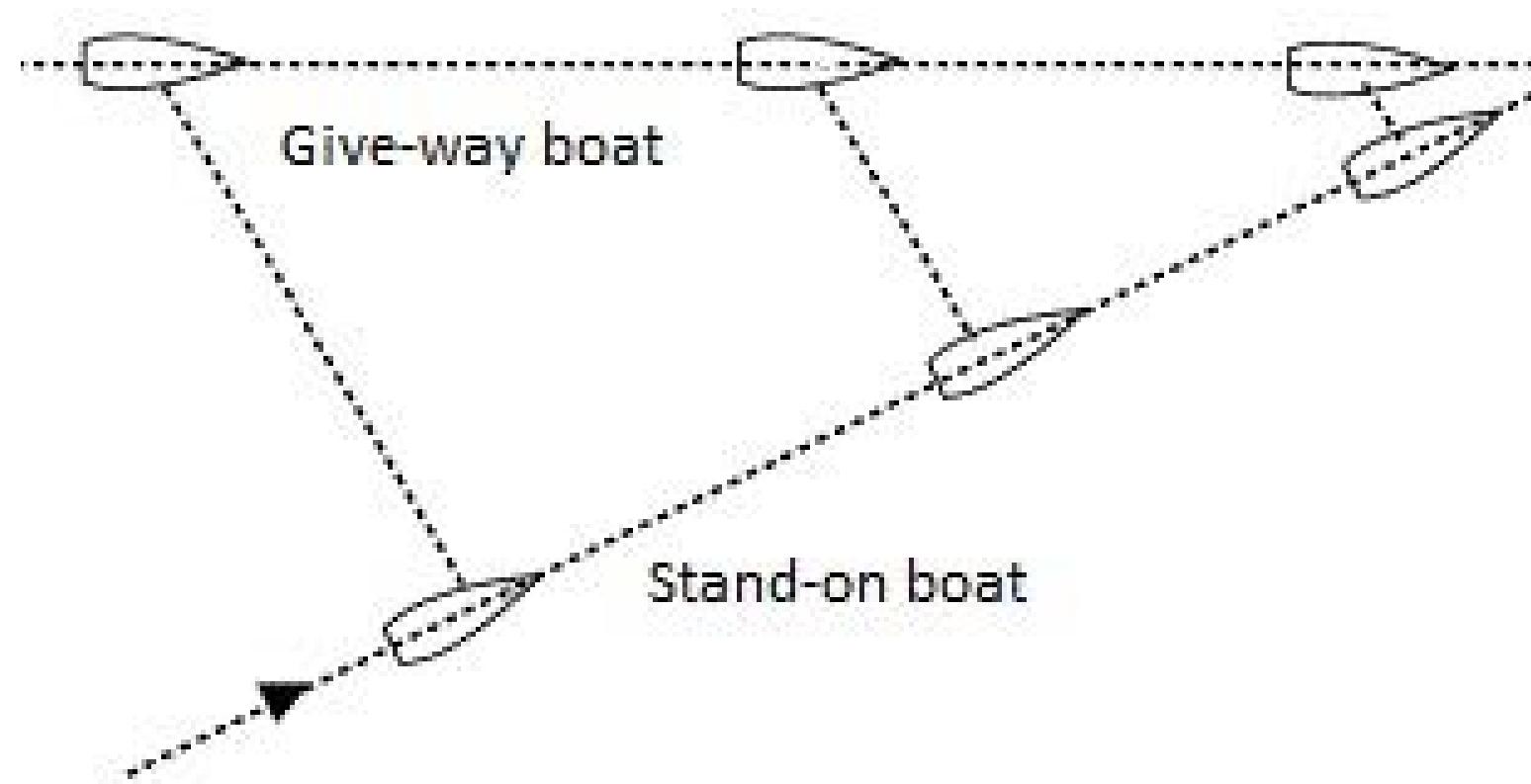
- Endurance form of Breguet range equation

$$E = \int_{W_i}^{W_f} \frac{L}{D} \cdot \frac{1}{C} \cdot \frac{dW}{W}$$

- Range version

$$R = V \cdot E = \frac{L}{D} \cdot \frac{V}{C} \cdot \ln \left(\frac{W_i}{W_f} \right)$$

- Specific fuel consumption

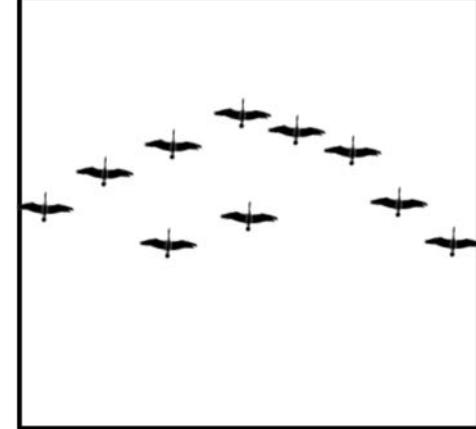
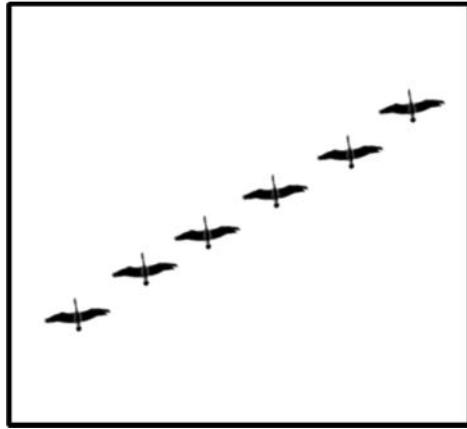

$$C = \frac{L}{D} \cdot \frac{1}{E} \cdot \ln \left(\frac{W_i}{W_f} \right)$$

- Drag effects

$$\Delta W' = F' \cdot \Delta W$$

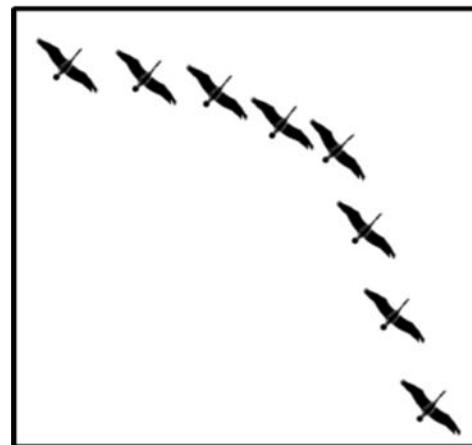
$$\Delta W'' = F'' \cdot \Delta W$$

But Birds Do Not Do Mathematics...



Constant Bearing, Decreasing Range

Doug Logan, [Collision Course with a Crossing Boat? How to Know.](#)

<http://www.boats.com/reviews/collision-course-with-a-crossing-boat-how-to-know/>



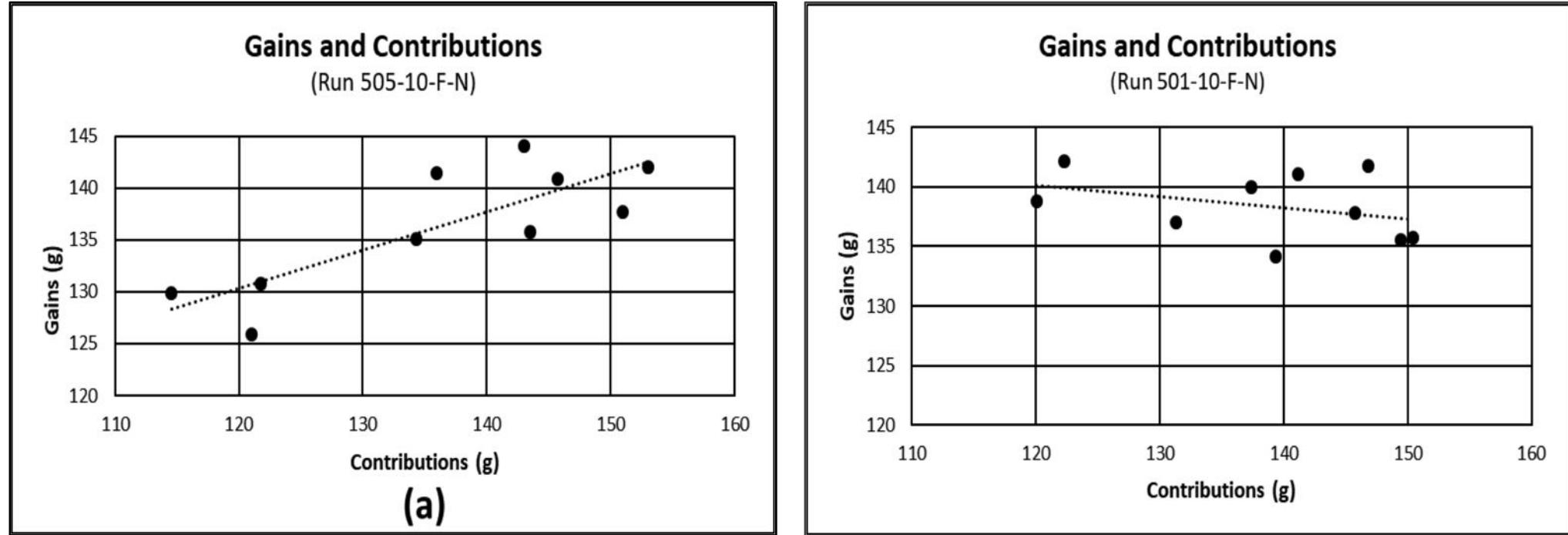
Simulation Output – Natural Formations

Examples of Gould and Heppner formation type (1): Column/Echelon (40% of observations). Left, from model Run 164-15-F (step3645). Right, photo of migrating Black Brants (Janusz Arts photo.)

Examples of Gould and Heppner formation type (8): Vee with birds inside, 1% of observations. Left, from model Run 164-15-F (step5950). Right photo Blog: Canadá Segundo os Brasileiros, 6 May 2015

Examples of Gould and Heppner formation type (2): Vee 17% of observations. Left, from model Run 171-10-F (step49423). Right, from "What Can Birds Teach Us About Leadership", Civil Society Cookbook, by Arseh Sevom.

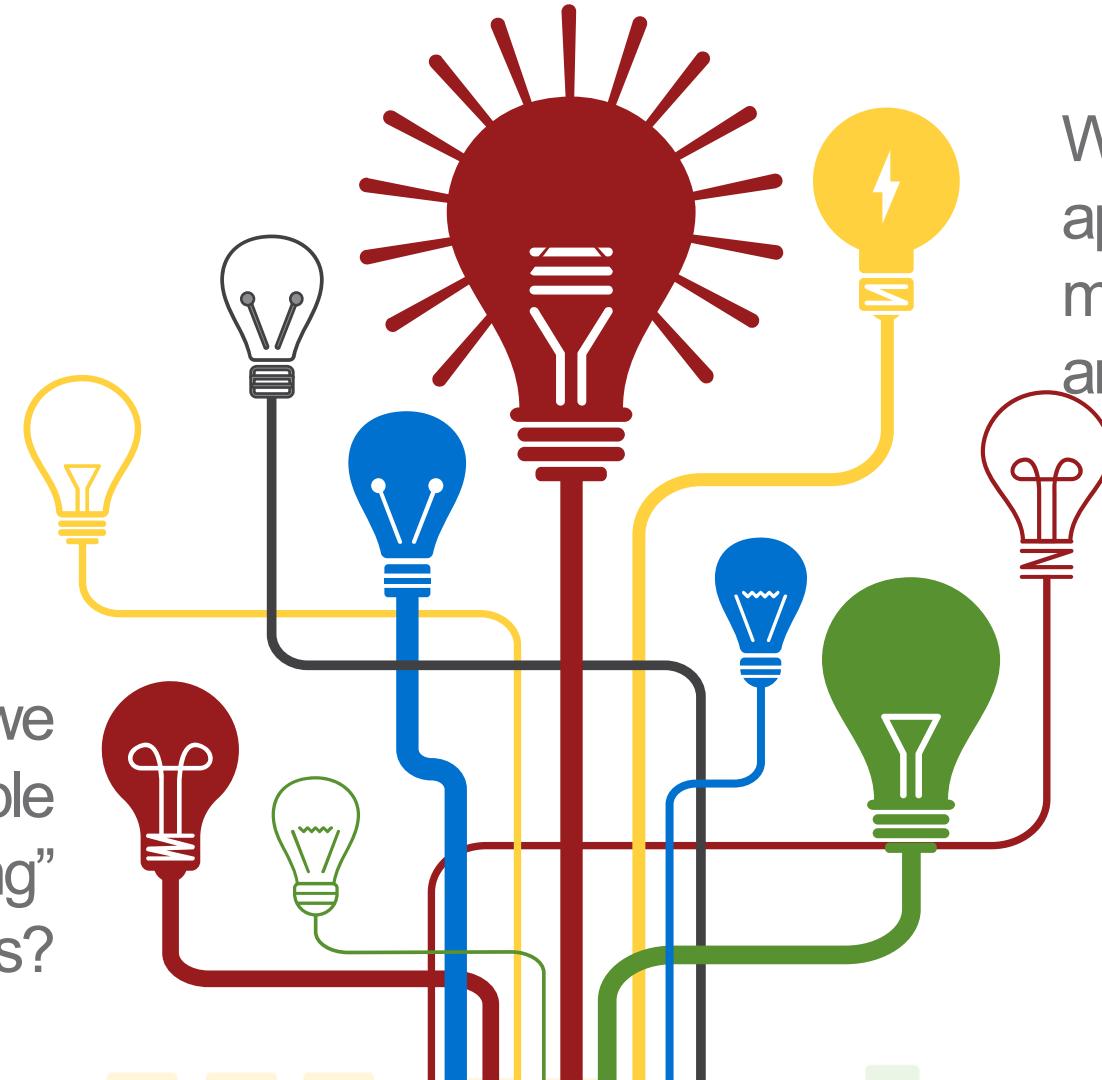
More Simulation Output



Photograph by Clifton Baldwin on October 24, 2016 in Bayville, NJ using 18 megapixel Schneider-Kreuznach camera on BlackBerry Priv

An Observation about System Architectures

- Gains and contributions for different starting conditions


- These reflect systems-of-systems with very different characteristics – although identical in all respects except the starting condition!
 - And expected architectures (i.e. formations) formed

Discussion Questions

What other elements could be measured as “belonging”?

How could we measure multiple “belonging” elements?

What would be an appropriate measurement of architecture?

To what other SoS could this model apply?

Bios

- **W. Clifton Baldwin, PhD, ESEP**
Clifton.Baldwin@stockton.edu
 - Stockton University
 - School of Natural Sciences and Mathematics
 - Data Science and Strategic Analytics Program
 - Federal Aviation Administration
 - NAS Systems Engineering
- **Wilson Felder, PhD**
Visiting Distinguished Service Professor
 - Stevens Institute of Technology
 - School of Systems & Enterprises

Selected References

Bajec, I. L., & Heppner, F. H. (2009). Organized flight in birds. *Animal Behaviour*, 78(4), 777–789.

Baldwin, W. C., Ben-Zvi, T., & Sauser, B. J. (2012). Formation of collaborative system of systems through belonging choice mechanisms. *IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans*, 42(4), 793–801.

Baldwin, W. C., & Felder, W. N. (2017). Mathematical characterization of system-of-systems attributes. In F.-J. Kahlen, S. Flumerfelt, & A. Alves (Eds.), *Transdisciplinary Perspectives on Complex Systems* (pp. 1–24). Springer.

Baldwin, W. C., Felder, W. N., & Sauser, B. J. (2011). Taxonomy of increasingly complex systems. *International Journal of Industrial and Systems Engineering*, 9(3), 298–316.

Boardman, J., & Sauser, B. (2006). System of Systems—the meaning of of. In *System of Systems Engineering, 2006 IEEE/SMC International Conference on* (p. 6–pp). IEEE.

Dimock, G. A. and M. S. Selig, “The Aerodynamic Benefits of Self-Organization in Bird Flocks,” presented at the 41st AIAA Aerospace Sciences Meeting and Exhibit /, Reno, NV, 2003, vol. 51, p. AIAA 2003-0608

Gould, L. L., & Heppner, F. (1974). The vee formation of Canada geese. *The Auk*, 494–506.

Heppner, F.H. (1974). Avian Flight Formations, *Bird-Banding* (Vol. 45, No. 2 Spring), pp. 160-169

Heppner, F. (1985). Visual Angle and Formation Flight in Canada Geese (*Branta canadensis*). *The Auk*, 102, 195-198.

Hummel, D. (1996). The use of aircraft wakes to achieve power reductions in formation flight. In *AGARD FDP Symposium on “The Characterization & Modification of Wakes from Lifting Vehicles in Fluid*. DTIC Document.

Lissaman, P., & Shollenberger, C. A. (1970). Formation flight of birds. *Science*, 168(3934), 1003–1005.

Maier, M. W. (1996). Architecting Principles for Systems-of-Systems. In *INCOSE International Symposium* (Vol. 6, pp. 565–573). Wiley Online Library.

Nathan, A., & Barbosa, V. C. (2008). V-like formations in flocks of artificial birds. *Artificial Life*, 14(2), 179–188.

Pennycuick, C. (1975). Mechanics of Flight. In D. S. Farner & J. R. King (Eds.), *Avian Biology* (pp. 1–75). New York, USA: Academic Press.

Portugal, Steven J. et. al. (2014). Upwash exploitation and downwash avoidance by flap phasing in ibis formation flight. (*Nature* vol 505, 16 January), 399–402.

Reynolds, C. W. (1987). Flocks, herds and schools: A distributed behavioral model. *ACM SIGGRAPH Computer Graphics*, 21(4), 25–34.

Seiler, P., A. Pant, and J. Hedrick, “A systems interpretation for observations of bird V-formations,” *J. Theor. Biol.*, vol. 221, no. 2, pp. 279–287, 2003.

Trowbridge, C. C. (1914). On the Origin of the Flocking Habit of Migratory Birds. *Popular Science Monthly*. (Vol. LXXXIV. No. 15 March), 209-217.

Watts, J. M. (1998). Animats: computer-simulated animals in behavioral research. *Journal of Animal Science*, 76(10), 2596–2604.

Weber, T. P., & Houston, A. I. (1997). Flight costs, flight range and the stopover ecology of migrating birds. *Journal of Animal Ecology*, 297–306.

Wilensky, U. (1999). NetLogo. Northwestern University, Evanston, IL: Center for Connected Learning and Computer-Based Modeling. Retrieved from <http://ccl.northwestern.edu/netlogo>

28th Annual **INCOSE**
international symposium

Washington, DC, USA
July 7 - 12, 2018

www.incose.org/symp2018