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Bottom Line Up Front

This research provides a case study using ERS/ARDEC UAV data that demonstrates the potential of

Set-Based Design trade-off analytics in system decision making for Engineered Resilient Systems.
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Engineered Resilient Systems (ERS) is a Department of Defense (DoD) Program focusing on the effective
and efficient design of complex engineered systems. This thesis is funded by the ERS program.




An Engineered Resilient System

* “Aresilient engineered system is able to
successfully complete its planned mission(s) in
the face of a disruption (environmental or
adversarial), and has capabilities allowing it to
successfully complete future missions with
evolving threats”

Specking, E., Cilli, M., Parnell, G., Wade, Z., Cottam, B., & Small, C. (2017). Tech Report: Graphical
Representaiton of Resilient Engineered Systems.



Model Based Systems Engineering
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Integrated Trade-off Analytics Framework
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Model-Based Engineering

Trade-off analytics requires descriptive, predictive, and
prescriptive analytics using Model Based Engineering.

Modified from MacCalman,
Alexander D., Gregory S. Parnell
and Sam Savage. "An Integrated
Model for Trade-off Analysis."
Parnell, Gregory S. Trade-off
Analytics: Creating and Exploring
the System Tradespace. Wiley,
2016

Small, C., Parnell, G., Pohl, E.,
Goerger, S., Cottam, C.,
Specking, E., Wade, Z., (2018)
Engineering Resilience for
Complex Systems. In: Madni A.,
Boehm B., Ghanem R., Erwin D.,
Wheaton M. (eds) Disciplinary
Convergence in Systems
Engineering Research. Springer,
Cham, pp. 3-15



Set-Based Design
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Wade, Z., Parnell, G., Goerger, S., Pohl, E., Specking, E. “Designing Engineered Resilient Systems Using Set-Based
Design” 16th Annual Conference on Systems Engineering Research, Charlottesville, Virginia, May 8-9, 2018

Set-based design allows for further exploration of the design space over point-based design.




Set Drivers and Modifier ”f\

* In set based design, design decisions are
split into two categories.

— Set Drivers
— Set Modifiers

* The sets in Set-Based design are
determined by the set drivers.

Small, C., Parnell, G. S., Buchanan, R., Cilli, M., Pohl, E., Goerger, S., & Wade, Z. (2018). A UAV Case Study with Set-Based Design. 28th Annual INCOSE International Symposiu. 9
Washington,DC: International Council on System Engineering.
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UAV Case Study

Functional Performance Objectives
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UAV Case Study Design Decisions

Design Choice  optons |

Discrete Choice:

o 2ft to12ft.
Continuous choice:
e 300 m.to 1000 m.
Electro-Optical (EO) Sensor Discrete Choice:
Resolution e 200 Pixels X 200 Pixels
e 400 Pixels X 400 Pixels
e 600 Pixels X 600 Pixels
e 800 Pixels X 800 Pixels
Discrete Choice:
e 15 Degrees
e 30 Degrees
e 45 Degrees
Discrete Choice:
e 200 Pixels X 200 Pixels
e 400 Pixels X 400 Pixels
e 600 Pixels X 600 Pixels
e 800 Pixels X 800 Pixels
Discrete Choice:
e 15 Degrees
e 30 Degrees
e 45 Degrees

Operating Altitude

EO Sensor Field of View

Infrared (IR) Sensor Resolution

IR Sensor Field of View

Piston

1000 Pixels X 1000 Pixels
1200 Pixels X 1200 Pixels
1400 Pixels X 1400 Pixels
1600 Pixels X 1600 Pixels
1800 Pixels X 1800 Pixels

60 Degrees
75 Degrees
90 Degrees
1000 Pixels X 1000 Pixels
1200 Pixels X 1200 Pixels
1400 Pixels X 1400 Pixels
1600 Pixels X 1600 Pixels
1800 Pixels X 1800 Pixels

60 Degrees
75 Degrees
90 Degrees

In the Case
study there are
seven design
decisions
propagated to

value and cost.
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Case Study Value Measures
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In the Case study there 4 functions with 11

performance measures.




DoD Analysis of Alternatives
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Case Study Changes
e e

Initial Case
Study
Multiple
Changes

3 Design Choices

Value Model

Value Model

Value Model

7 Design Choices

Swing Weights

Cost Model

The case study was redeveloped
from the ground up and given new
design choices.

The set of design choices was
expanded as new combinations of
sensors were added.

None

None

None

New alternatives for sensor FOV
were added and altitude options

were reduced after a discussion

with Dr. Ham.

None

None

And entirely new set of physics
models was used. The only
remaining model was the probability
of detection.

None

None

None

New calculation for distance to
attack helicopter added or all
alternatives.

None

None

Cost model was changed to a
lifecycle cost model.

A completely new value model
and new cost model.

None

Preferences on value curves
were changed. Changing
preferences for alternatives.

The value curves were changed
once more to allow more feasible
solutions.

A new value measure (distance
from attack helicopter) was
added.

None

Swing weights were changed
after a discussion with Dr. Ham.

None

Similar to real
world AoAs, the
case study
changed several
times

However, the
integrated and
simultaneous MBE
methodology is
robust to changes.

15



Overview

Introduction

- ERS
— Trade-off Analytics Framework
— Set Based Design

Initial UAV Case Study
UAV Tradespace Tool

— Base model
— Perfect Options
— Uncertainty

Conclusions
Future Research

16



Influence Diagram for Integrated Trade-off Analytics: Current

Status

Descriptive Analytics

System Functions

Predictive Analytics

flm,s,D,R,t

Assessment s|nT
T

Performance Measures
p | DI le' m, S,t, i, M

Modelling &
Simulation
M|D, R,s, m, t, i

Ilities
i|D,R,fM

Prescriptive Analytics

Value
VID,R,m,sp,i,lL

Life Cycle Cost
C|D,R,M, i, L

Design
Decisions
D|r, T

Requirements
A —

Response Decisions
R|D,m,s,t

)

Service life
L|D,R

T~

Affordability
A

N

Key Influence

Uncertainty m

Decisions

¢

Conditional notation simplifies
chart by remaoving arrow and
indicates an influence

relationship.

Model-Based Engineering

We have expanded the case study and analysis to
include the entire trade-off analytics framework.

Modified from MacCalman,
Alexander D., Gregory S. Parnell
and Sam Savage. "An Integrated
Model for Trade-off Analysis."
Parnell, Gregory S. Trade-off
Analytics: Creating and Exploring
the System Tradespace. Wiley,
2016

Small, C., Parnell, G., Pohl, E.,
Goerger, S., Cottam, C.,
Specking, E., Wade, Z., (2018)
Engineering Resilience for
Complex Systems. In: Madni A.,
Boehm B., Ghanem R., Erwin D.,
Wheaton M. (eds) Disciplinary
Convergence in Systems
Engineering Research. Springer,
Cham, pp. 3-15
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UAV Case Study Updated Assessment Flow Diagram s

Legend

Functional Performance Objectives

We have included
uncertainty in the
performance, cost, and
preferences. In addition,
we have included a life
cycle cost model as well
as included resilience in
the performance
calculations.
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Small, C., Demonstrating Set-
Based Design Techniques: A
UAV Case study, Master’s
Thesis, Industrial
Engineering, University of
Arkansas, 2018
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Trade-Off Analytics Hierarchy

Cost vs Value
100
90
80 .
70 Integrated Value and Cost Model
: o w— Multiple Objective Decision Analysis
;’g 2,576 |Feasible Cost vs Value points
ig 97,424 |Total infeasible designs
°, " " . " Yt sst0s Prescriptive 95,549 |Infeasible designs with stocastic parameters
Cost ® ffcentpoins 1,874 |Infeasible designs with deterministic parameters
Wingspan (Ft.) vs. Cost [SMil.) Predicted design performace and costs
21,900,000 |Physics model calculations
98,070 |Designs with stochastic parameters
Predictive 1,930 |Designs with deterministic parameters
1,100,000 |Value measure estimates
100,000 |Cost estimates
L = .' — = Design definition and uncertainty specification
7 |Design Parameters
145,800 |Combinations of design parameters using bins
Ratwatond 100,000 |Designs generated by SIPmath
AT s vy 47 |Physics models and formulas
!;m’“""' 19 |Physics models with uncertainty
«Iml
BR300 Descri tive 4 |lllities
s g
2 |lllities with Uncertainty
11 |Vvalue Measures
8 |Value measures with uncertainty

Small, C., Buchanan, R., Cilli, M., Parnell, G., Pohl, E., Wade, Z., “A UAV Case Study with Set-
28" Annual INCOSE International Symposium, 7-12 July 2018, Washington, DC.

based Design,”

Analytics hierarchy provides transparency into the
complexity of the trade-off analytics

Using Excel and an
Excel add-in called
SIPmath from
Probability
Management, this
research has created
an integrated
tradespace tool to
apply the analytics
framework and
explore set-based

design.

19



UAV Tradespace Tool

UAV Integrated Set-Based Design Tradespace Tool

Research sponsored by ERDC ERS program and data provided by ARDEC (Dr. Matthew Cilli and his UAV team)

=

A
AN

Al
Air Vehicle
Wingspan Engine Typo Operating Altitude
Costvs Value Engine and Wingspan ., eugine p wingspan 1012 Costvs Value
ST Engine Type must be either € or : g Service Life 5 years
e . 100 Engine P: W 810 100
ngine P: Wingspan —
%0 %
Wingspan Engine Type | Operating Atitude 565 « Engine P Wingspan 68 Data
80
8
© Engine P Wingspan 4-6 o . Catcuiation
70 Uncertainty O
Payload « Engine P Wingspan 2-4 60 [Notional Dat
EO Imager IR Sensor o 0 g
o5 s E .. « Engine E Wingspan 10-12 2 so
ensor ensor = ..
Horizonal | Vertical | EO Sensor Pixel FOV IR Sensor Pixels |  Horizonal ] >
Pixel Width | HETE0R == = Field of View s B Vertical Pixels FOV | Field of View > 0 « Engine E Wingspan 8-10 40 « Setwithout
hoice: Choice: o setvithou
1 200 200 1 15 1 200 200 1 15 0 Engine E Wingspan 6-8 0
2 400 400 2 30 2 400 400 2 30 20 Engine E Wingspan 4-6 o
3 600 600 3 45 3 600 600 3 a5 10
« Engine £ Wingspan 2-4 o
N 800 800 N 0 4 800 800 N 0 o 137000 139000 141000 143000 145000 147000 149000
5 D T 5 . 5 D B 8 5 137000 139000 141000 143000 145000 147000 149000 Cost
i 0s
6 1200 1200 6 % 6 1200 1200 6 % Costin $K
7 1400 1400 7 1400 1400
8 1600 1600 8 1600 1600
9 1800 1800 9 1800 1800
4 800 800 6 %0 3 600 600 6 %0
Value Calculations Swing Weight Matrix Preference Uncertainty
Value Measure Weighted Value Score Critical to mission Important to mission Fixable with dollars Weight Percentage | Minus Plus Plus and Minus
UAS Weight a fssessed  yse i wi fosessed | ysed fi wi Assessed fi | M990 | usoq i | wi UAS Weight 20%  |FALSE|  TRUE FALSE
Time required to fly 10km (Mins) s o e e° | 100 8582 013 R 75 7176 019 |TimeReauredtoscan | g, 5891 | 009 Time required to fly 10km (Mins) 20% | TRUE | FALSE FALSE
Stoniieant [ probabilty of detect Time Required t
Time Requiredto scan day [ impactof | Py ofdetectinga | gy | gu59 on2 meReauredtosean| 5 | sqas | oos Time Required o scan day 20 | TRUE|  TRUE TRUE
variation
Time Reaqured o scan ight . probabiltyof detecting | g5 | g002 on2 oiference fomattock | 55 | 4130|008 Time Reaured o scan ight 20% | TRUE|  TRUE TRUE
Dwell Time (Mins) 7 Dwel Time (Mins) 20% | TRUE | TRUE TRUE
Percieved Area of SUAV at Alitude 3 Timereay e 1™ | 6o 5568 oog |PerdevesmeastsUnl 5 2993 | 004 Percieved Area of SUAV at Alitude 20%  |FALSE| TRUE FALSE
Some impact of
Difference from attack helicopter alitude 1 site variation Dwell Time (Mins) 0 5092 007 Difference from attack helicopter altude 20% | TRUE | TRUE TRUE
Probabilty of detecting a human day 3 s weight 50 68.94 010 Probabilty of detecting a human day 20% | TRUE | FALSE FALSE
Probabilty of detecting a vehicie day 7 Probabilty of detecting a vehicie day 20% | TRUE | FALSE FALSE
Minorimpact
Probabilty of detecting a human night o of site variation Probabilty of detecting a human night 20% | TRUE | FALSE FALSE
Probabilty of detecting a vehicie night 7 Probabilty of detecting a vehicie night 20% | TRUE | FALSE FALSE
Total Value o
Perfect Detection
100
%0
Cost Analysis Cost Uncertainty Performance Uncertainty Perfect Options 20
Initial Cost of UAVS $3.260 Uncertainty included in Cost? TRUE Uncertainty included in model TRUE Allow Perfect Options FALSE] 7
o Perfect Options
Uit Manpower Cost 56,250 Inclue Detorminist [ TRUE Include Determinist TRUE Porfoct Option _[Alowed? | Used?| 60
= © w - Perfect Detection
g Uncertainty in Performance Models Perfectly Avalable 2 s0 + Perfect Recoverablit
Unit Operations Cost Measure Percent Variation Alowed Percent Varied Uncertainty in liies. e e o FALSE | FALSE s pertec fecover y
+ Perfect Availbility
i L]
Maintenance Cost ERD Inital Cost of UAVs 5% 001 ity Bost Numberinuse | Performance Model | Deviations Perfecty Reiliable | £a st | FaLSE 30 Perfect Reiliability
| 20 ¥
‘Sustaining Support Cost 523% Unit Manpower Cost 5% 002 [Availabittity 0o7 | 96% Endurance | FALSE | FALSE Perfect Survivability
i t 56,913 Unit Operations Cost 5% 001 Reliability 097 | 95% Cruising Velocity | Perfectly Restorable | FALSE | FALSE o * Al Perfect Optinos
Total Cost in millions Eu2z8 Maintenance Cost 5% 002 Perfecty Detecting | rpue | FaLSE o
Sensors 137000 139000 141000 143000 145000 147000 149000
‘Sustaining Support Cost 5% 0,00 ‘Any Perfect Options FALSE
indirect Cost 5% 002 “All Perfect Options? FALSE Cost

Cabor Hours 7 ]

Using random
numbers generate
SIPmath, the
tradespace tool
uniformly explores the
entire design space.
In addition, the contro
panel allows the user
to select the level of
uncertainty on
performance, cost, an
preferences.
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PBD vs. SBD

Cost vs Value @® Point Solutions
100 ® Efficient Points
90 ® Engine E Wingspan 2-3.7
30 ® Engine E Wingspan 3.7-5.4
/70 ® Engine E Wingspan 5.4-7.1 Sets are
60 -
= Engine E Wingspan 7.1-8.8 dete_rmmed by
S 50 | | engine type and
40 @® Engine E Wingspan 8.8-10.5 Wingspan.
30 ® Engine P Wingspan 2-3.7 Deterministic
20 ® Engine P Wingspan 3.7-5.4 anaIySIS ShOWS
10 the value vs cost
0 @® Engine P Wingspan 5.4-7.1 for the 1 O sets.
9 10 11 12 13 14 ® Engine P: Wingspan 7.1-8.8

Cost ® Engine P Wingspan 8.8-10.5

Small, C., Buchanan, R., Cilli, M., Parnell, G., Pohl, E., Wade, Z., “A UAV Case Study with Set-based Design,” 28t
Annual INCOSE International Symposium, 7-12 July 2018, Washington, DC.

In iteration 2 of the case study, set-based design identified improved
solutions compared to a finite number of point solutions. 21




Value Vs Cost

Cost vs Value Engine and Wingspan . ¢z p wingspan 10-12

100 Engine P: Wingspan 8-10
90 * Engine P Wingspan 6-8
80 . .
Engine P Wingspan 4-6
70
* Engine P Wingspan 2-4
3 60
2 50 ¢ Engine E Wingspan 10-12
O
= 40 e Engine E Wingspan 8-10
30 Engine E Wingspan 6-8
20 * Engine E Wingspan 4-6
10
¢ Engine E Wingspan 2-4
0
137000 139000 141000 143000 145000 147000 149000

Costin SK

Throughout the changes, sets are still determined by engine type and
wingspan. Deterministic analysis shows the value vs cost for the 10 sets.
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Life Cycle Cost Model

Hardware Cost
Air Vehicle Recurring Unit Cost ($K 2013) = FlyWeight = 1.002
Air Frame Unit Recurring Cost ($K 2013) = PayloadWeight * 5.607
Propulstion Unit Recurring Cost ($K 2013) = (FlyWeight — PayloadWeight) = 1.808
Payload Average Unit Cost ($K 2013) = 0.5 x AirFrameUnitCost
Total Hardware Cost($K 2013) = TotalGroundStation + AirVehicleUnitCost +
PayloadAverageCost + PropulsionUnitCost + AirFrameUnitCost

Support Costs
Unit Level Manpower Cost ($K 2013) = 250 * 0.5 * NumberOfSystems
Unit Operations Cost ($K 2013) = (24676 + 0.8286 * 1156 * TotalAirCraftinventory) x 1/10
) 41223 + 0.1261 * AirElementsWeight * 1
Maintenance Cost ($K 2013) = (AgeOfAircraft * TotalAircraftInventory) *10
Sustaining Support Cost ($K 2013) = TotalHours"0.7303 * NumberOfSystems
Indirect Support Cost ($K 2013) = 2777 x ¢(0.01824+Number0fSystems)

Life Cycle Cost
Life Cycle Cost ($K 2013)
= TotalHardwareCost x NumberOfSystems
+ (Unit Level Manpower Costs + Unit Operations Costs + Maintenance Cost + Sustaining Support Cost + Indirect Support Cost) * Service Life

To explore the lifecycle of the we have expanded the cost model to a lifecycle cost model.

Richards, J. (2018, March 15). UAV Demonstration Cost Model Meeting. (C. Small, Interviewer)
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Incorporating Mission Resilience in
Performance Measures

@
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Small, C., Buchanan, R., Cilli, M., Parnell, G., Pohl, E., Wade, Z., “A UAV Case Study with Set-based Design,” 28" Annual INCOSE International Symposium, 7-

12 July 2018, Washington, DC.
Wade, Z., Parnell, G., Goerger, S., Pohl, E., Specking, E. “Designing Engineered Resilient Systems Using Set-Based Design” 16th Annual Conference on

Systems Engineering Research, Charlottesville, Virginia, May 8-9, 2018 (Submitted)

Using probability trees, we have incorporated mission resilience into
endurance and probability of detection performance calculations.
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Perfect Options
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Analyzing the effect of perfect ilities provides insight into resilience response decisions. 25
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Uncertainty

 |n this research uncertainty has been
incorporated into three areas:

— Performance
* Through physics based models
* Through the ilities

— Cost model
* |In each of the cost types

— Preferences
* In the un-normalized elicited swing weights
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Uncertainty

100
90
80
70
60
50

Value

40
30
20
10

0

137000

100
90
80
70
60
50

Value

40
30
20
10

0

137000

Cost vs Value Engine and Wingspan

o .-, ,;,f‘v,{‘ ¢
e %‘: ,
o T iw»‘ Ca '{(\;‘
.o, Wl . '
.'&."‘ S ."o' ‘o%ﬁ""’..ﬁ ¢
e o .

139000 141000 143000 145000 147000 149000

Costin SK

Cost Uncertainty

Cost vs Value Engine and Wingspan

139000 141000 143000 145000 147000 149000

Costin SK

Preference Uncertainty

* Engine P Wingspan 10-12

Engine P: Wingspan 8-10

* Engine P Wingspan 6-8

Engine P Wingspan 4-6

 Engine P Wingspan 2-4

« Engine E Wingspan 10-12

* Engine E Wingspan 8-10

Engine E Wingspan 6-8

* Engine E Wingspan 4-6

* Engine E Wingspan 2-4

« Engine P Wingspan 10-12

Engine P: Wingspan 8-10

 Engine P Wingspan 6-8

Engine P Wingspan 4-6

* Engine P Wingspan 2-4

* Engine E Wingspan 10-12

« Engine E Wingspan 8-10

Engine E Wingspan 6-8

* Engine E Wingspan 4-6

* Engine E Wingspan 2-4

Value

Value

100
90
80
70
60
50
40
30
20
10

0
137000

100
90
80
70
60
50
40
30
20
10

0
137000

Cost vs Value Engine and Wingspan

R . VDN
s 2y Y&, ¢ ;} L W
s St MR
S NN N a0, .
. ae .

139000 141000 143000 145000 147000 149000

Costin SK

Performance Uncertainty

Cost vs Value Engine and Wingspan

&

. ey 3 Sl . e o
* ooy 0
3.0 2 L S Y) o . ..'
L SR B
o s ST

»
RAEN
3

139000 141000 143000 145000 147000 149000

Costin SK

All Uncertainty

¢ Engine P Wingspan 10-12

Engine P: Wingspan 8-10

* Engine P Wingspan 6-8

Engine P Wingspan 4-6

* Engine P Wingspan 2-4

* Engine E Wingspan 10-12

* Engine E Wingspan 8-10

Engine E Wingspan 6-8

* Engine E Wingspan 4-6

* Engine E Wingspan 2-4

* Engine P Wingspan 10-12

Engine P: Wingspan 8-10

* Engine P Wingspan 6-8

Engine P Wingspan 4-6

¢ Engine P Wingspan 2-4

* Engine E Wingspan 10-12

« Engine E Wingspan 8-10

Engine E Wingspan 6-8

* Engine E Wingspan 4-6

¢ Engine E Wingspan 2-4

Small, C., Demonstrating Set-Based Design Techniques: A UAV Case study, Master’s Thesis, Industrial Engineering, University of
Arkansas, 2018

Overall incorporating uncertainty
increases the overlap in sets,
making them harder to
distinguish like real world
systems that can have wide
ranges of uncertain

performance and cost.

Some sets are impacted by
different types of uncertainty
more than others
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Contributions

Implemented Trade-off

analytics framework and SBD Methodology is robust to changes
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Due in large part to this research, the creator of the UAV case study has begun to incorporate major portions of this
methodology and Set-Based Design within his systems engineering trade-off analysis for the ARDEC. (Cilli, 2018)
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Future Work s

* There are four major areas for future research:

— In this study the sets drivers were determined by using a heuristic
method by looking at the impact of design decisions on the cost
and value tradespace. To increase the feasibility of set-based
design methodology, a repeatable, mathematical method of
defining set-drivers needs to be developed.

— The ability to generate the efficient frontier needs to be validated
through comparison with genetic algorithms.

— The resilience options research needs to be expanded to include
explicit resilience options as well as the cost of resilience options.

— In support of the ERS research effort at ERDC this tradespace
tool will be implemented in an online trade-off analytics tool
(TradeBuilder).
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Questions Py

My thesis provides a case study using ERS/ARDEC UAV data that demonstrates the potential of -'
Set-Based Design trade-off analytics in system decision making for Engineered Resilient Systems.

Implementing Trade-off analytics framework

, , Trade-off Analytics Framework and SBD in UAV Tradespace Tool
Incorporating ERS into AoAs
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