

28th Annual **INCOSE**
international symposium

Washington, DC, USA
July 7 - 12, 2018

Case Study: Agile Systems Engineering at Lockheed Martin Aeronautics Integrated Fighter Group

Rick Dove

Paradigm Shift International

Bill Schindel

ICTT System Sciences

Ken Garlington

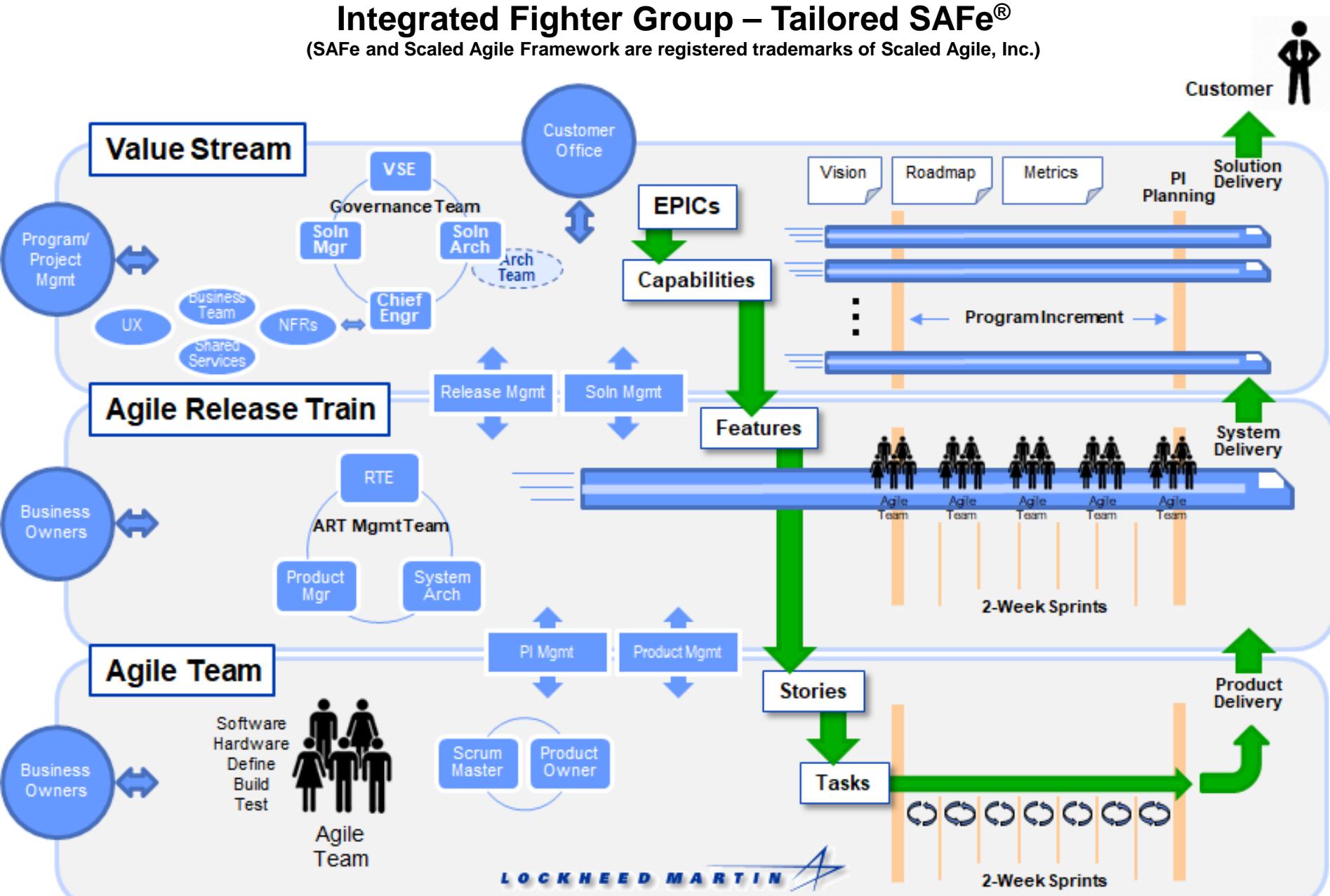
Lockheed Martin Corporation

Overview

Integrated Fighter Group (IFG), in Fort Worth, Texas.

- F16 and F22 weapon system capability evolution (hardware/software).
- Faster changing threats need urgent/rapid defense response.
- Tailoring baseline of Scaled Agile Framework (SAFe®).
- 1,200 people involved/trained: executives, managers, developers.
- Oct 2015 analyzed 2 years of transformation experience, updated 2017.
- Agile process facilitated by aircraft Open System Architecture: reusable cross-platform components, faster response to new needs.
- Process synchronizes internal tempo-based development intervals with external mixture of agile/waterfall subcontractor development.

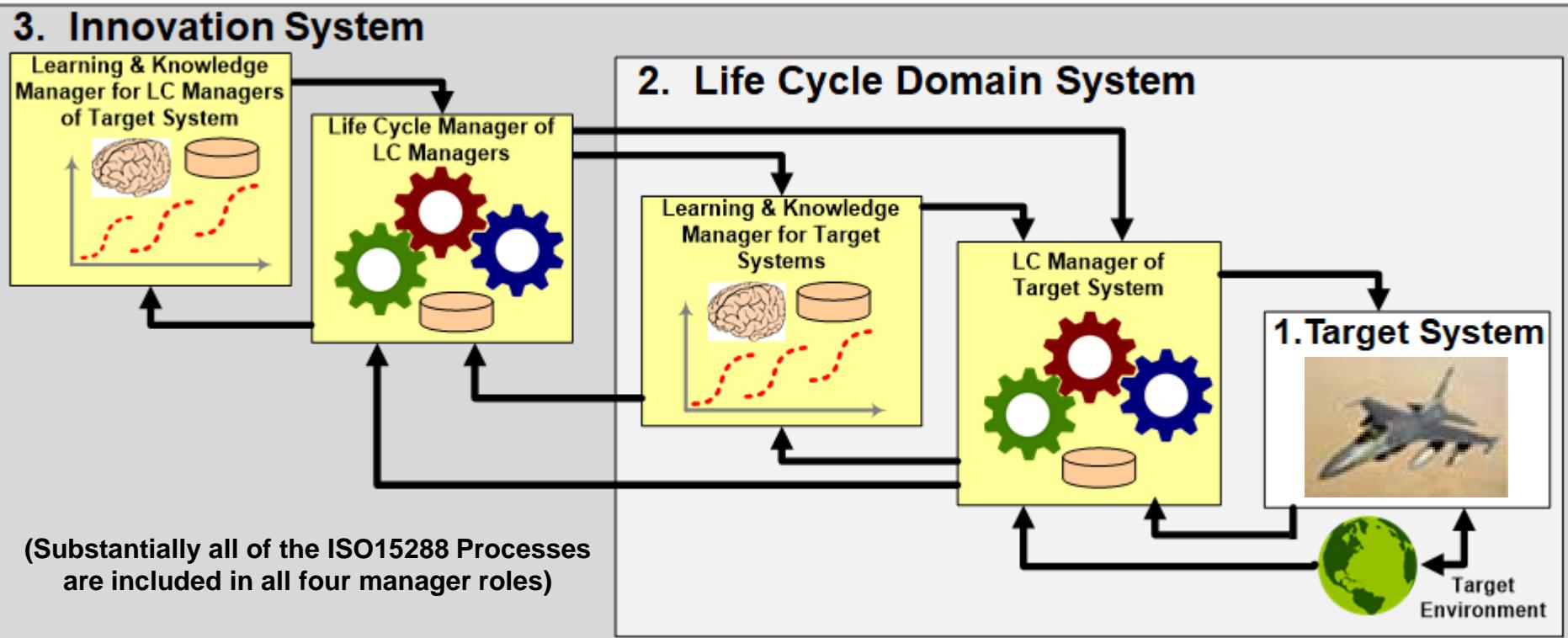
**Emphasis: agility as purpose & outcome of
embedded *system of innovation*.**


Introducing concepts of:

- process instrumentation
- information debt
- preliminary systems integration lab

IFG-TS Operational Model

Integrated Fighter Group – Tailored SAFe®


(SAFe and Scaled Agile Framework are registered trademarks of Scaled Agile, Inc.)

Agile SE Life Cycle Model (ASELCM) Pattern

System Reference Boundaries

(Logical/behavioral, not physical, boundaries)

Environment CURVE – Characterization

Caprice: Unknowable situations

CC1: Urgent pre-emptive customer needs, sometimes called Quick Reaction Notice events

CC2: Changes in business environment, e.g., congressional funding commitments or legal requirements

CC3: Project scope change

Uncertainty: Randomness with unknowable probabilities

CU1: Effectiveness of process tailoring

CU2: Contract/customer compatibility with agile approach

CU3: Management support/engagement in agile approach

CU4: Team-member engagement with agile approach

Risk: Randomness with knowable probabilities

CR1: Cultural incompatibility

CR2: Ability to keep and attract talent

CR3: External stakeholder schedules (e.g. certification)

CR4: Systems of Systems requirements changes

Variation: Knowable variables and ranges

CV1: Multiple-project resource conflicts (e.g. test facilities, key people)

CV2: Subcontractor development compatibility

CV3: System of Systems integration integrity

CV4: Requirements of differing importance levels

Evolution: Gradual Successive Development

CE1: OSA/OMS emphasis

CE2: Customer mission needs

CE3: New compelling technology availability

Proactive Response Requirements

What must the process be creating or eliminating during its operational life?

- RC1: A safe environment for people to take prudent risks (CR2) <-Tied to CURVE
- RC2: Risk identification and mitigation plans at project and functional level (CC2/3, CU4)
- RC3: Loading plans with spare capacity for unknowns/inaccurate planning (CV1)
- RC4: Architectural development horizon to accommodate variation (CC3, CV4, CE2)
- RC5: Experience accumulation (CU1)

What performance will the process be improving during its operational life?

- RI1: System level optimization vs. local/functional optimization (CU1/4, CR1)
- RI2: Responsiveness to customer needs (CC1)
- RI3: Stakeholder, developer, and supplier alignment (CU2/3, CR1/3, CV2)
- RI4: Customer acceptance rate from acceptance testing events (CC1)
- RI5: Agility of existing integrated system (CU1, CE1)
- RI6: Awareness of evolving process effectiveness (CU1)
- RI7: Effectiveness of distributed knowledge exchange (CU1, CR2, CV2)

What anticipated events will require a change in process infrastructure?

- RM1: Evolution of customer missions (CE2)
- RM2: Cybersecurity and related standards (CC3, CU2, CR3)
- RM3: DoD Open Missions approach (CE1)

What modifications might need made during operational life?

- RA1: Personnel that make up a team (CV1, CR2, CV4)
- RA2: Test infrastructure to maintain throughput (CV1)
- RA3: Modification in project-specific details of the operational model (CU1)
- RA4: Addition of subcontractor with new technology and/or process expertise (CE3)
- RA5: Reallocation of work between prime contractor and other entities (CC1, CV1)

Reactive Response Requirements

What can go wrong that will need a systemic detection and response?

RW1: Leadership and stakeholder churn that change vision and expectations (CC2, CC3, CU3)

RW2: Non detection of variances (CU4, CV1, CV3)

RW3: Insufficient identification and management of opportunities and risks (CR1, CR4)

What process variables will need accommodation?

RV1: Tailored process self-improvement and policing (CU1, CU4)

RV2: Alignment and coordination of PI Planning (CC1, CC3, CU1, CV4)

RV3: Organizational acceptance and adoption of tailored process (CU3, CU4, CR1)

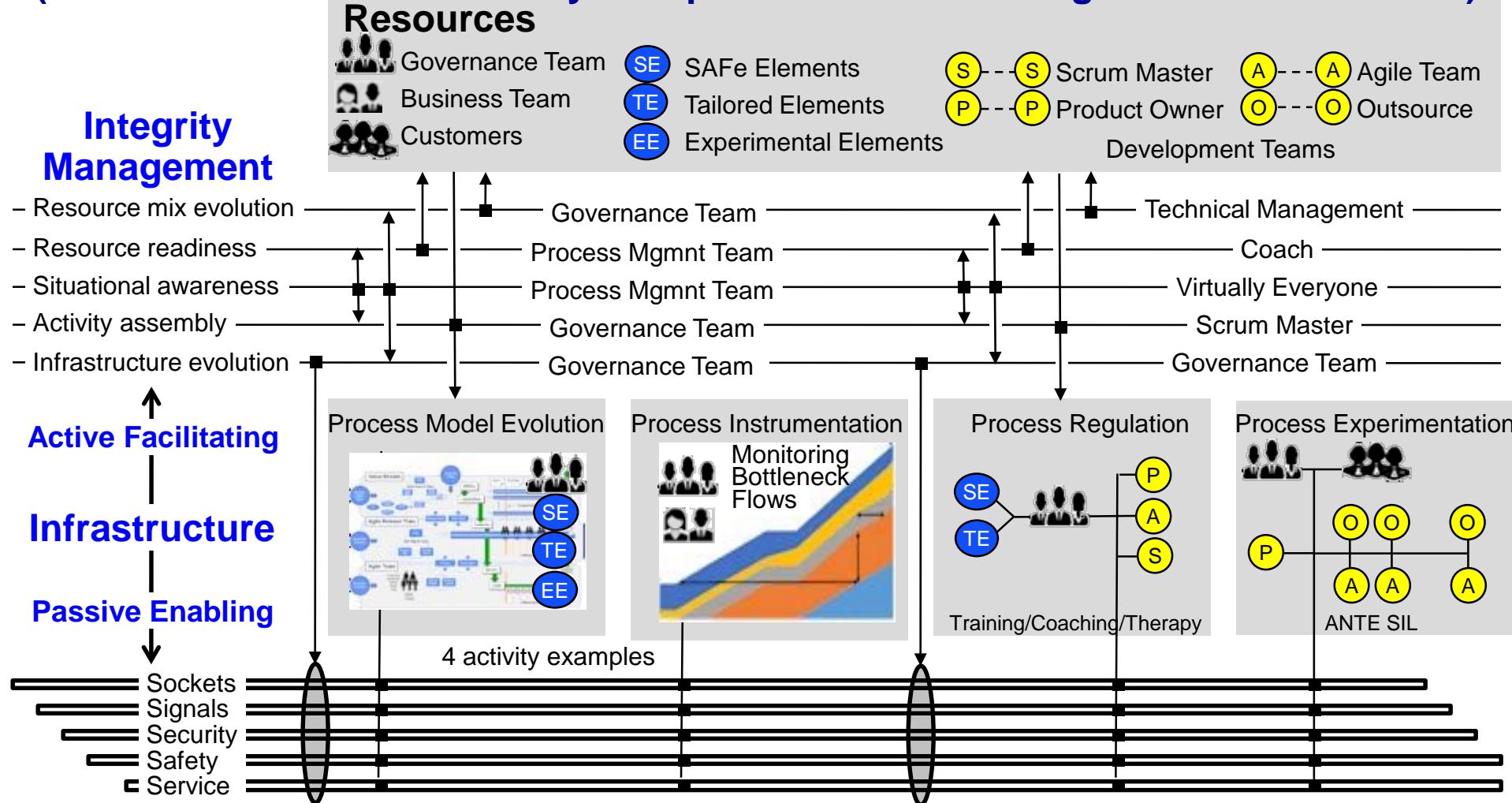
What elastic-capacity will be needed on resources/output/activity/other?

RE1: System test capacity (CV1)

RE2: Development capacity band to avoid disruption when work is more than expected in volume or difficulty (CC1, CC3, CV3, CV4)

What types of resource relationship configurations will need changed during operation?

RR1: Team-personnel assignments among multiple weapon systems (CC1, CR2, CV1)


RR2: Work reassessments to match team capacities (CU1, CR2, CV1)

RR3: Priorities for requirements (CC3, CV1, CV4)

RR4: Acquisition procedures/policies/contract for situational and objectives reality (CC1, CU2, CE2, CE3)

Agile Architecture Pattern for IFG-TS

(Process Conformance activity is depicted as it was during 2015 transformation)

Sockets: Roles, Teams, Meeting formats, ANTE/Simulation frameworks

Signals: Flow, Info debt, Process conformance, Experiment results, Contract performance

Security: Executive commitment, Governance, Cultural consistency

Safety: Information radiators, No-penalty measurement, Flow monitoring/mitigation, Real-time status information, 2-3 PI look-ahead

Service (ConOps): Operational model, Cadence, Customer/User involvement, Experimental learning, Systems 1-2-3 AAPs

Process Model Evolution

Examples:

- Tested capability-based work breakdown structure for one aircraft platform with a wait-and-see on others (now adopted)
- 12-week program increments (now variable at 12-14 weeks),
- Long-term teams (now adopted partially)
- Weighted-shortest-job-first (SAFe concept inappropriate for IFG)
- “Preliminary” systems integration laboratory (discussed later).

Process evolution continues:

- Additional process changes (unsharable)
- Contracting approaches that support evolving process agility
- Favorable evolution in team-member engagement with the approach

Process Instrumentation

Workflow management critical to avoid schedule-threat bottlenecks.
Instrumentation provides awareness and bottleneck prediction.

Examples:

- Test facility bottlenecks mitigated by managing queue size.
- Team loading bottlenecks mitigated by assigning tasks to less-loaded teams (rather than most-expert teams).

Automated cumulative process-flow metrics, with queue size predicting cycle time in a test facility.

See Don Reinertsen. 2009. *The Principles of Product Development Flow*.

Process Regulation

Emphasis on training, coaching, and therapy for process conformance.

1200 people at IFG had been trained on SAFe and IFG-TS.

Training started at the executive level and worked its way down the chain.

Initially an “external” dedicated transformation team of 4 full-timers and 2-to-6 part-timers managed process configuration and conformance.

With time process ownership transitioned to the “internal” Engineering and Technology group, and the transformation team was eliminated.

Coaching was important in the first few years, with little necessary now as the concepts have been assimilated and acculturated.

Explicit training continues for new team members, with emergence of peer-peer informal knowledge distribution and coaching.

Process Experimentation

A “preliminary” system integration lab (SIL) is of particular note .

In 2015 IFG was in early experimentation with a preliminary SIL concept, called the Agile Non-Target Environment (ANTE).

The ANTE is conceptually similar to a Live, Virtual, Constructive (LVC) environment, used to compose early integrated systems.

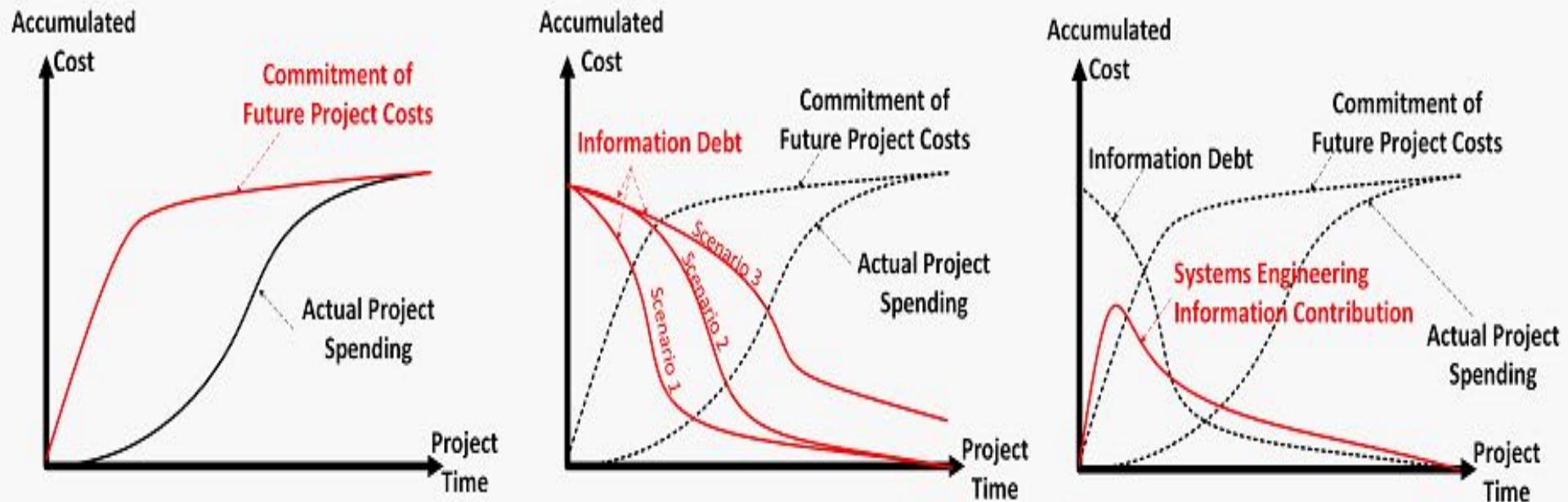
ANTE systems consist of real devices, simulated devices, IFG software work-in-process, and operators.

ANTE also employs lower-fidelity open-market devices with similar capability but lower performance than what is eventually expected.

Subcontractors are required to provide device simulations to IFG ANTE specs.

By mid-2017 ANTE was declared a successful experiment based on customer feedback that values:

- Early and incremental demonstration of working concepts
- Advanced exposure to difficulties in need of attention


Response Requirement Fulfillment Examples

RSA Req (Figure 5)	Lockheed Martin Case Study Example
RA3	Working with customer on evolution of acceptable agile methods, including contract issues
RC2	Higher level of attention to general LMC competitive capabilities
RA4	Subcontractor performance monitoring and adaptation
RC2	CONOPS of evolving LMC Aircraft Operations & Maintenance
RC5	Accumulation of agile methods
R16	Evolving customer appreciation and assimilation, with contract accommodation evolution
RA3	Variation of configuration of cadence increment time length
RC1	Training class on SAFe framework and LMC Aircraft Operations and Maintenance
RA3	Selection of Scrum versus Kanban at the team level
RV1	Training, coaching, and therapy for processes
RE1	Adjust cycles to accommodate shared facility resources
RE2	Loading of flow across enterprise to manage bottlenecks

Readable In the Paper – Visual Concept Here

	S3L	S3M	S2L	S2M	S1
RC1: A safe environment for people to take prudent risks (CR2)	>>	>			
RC2: Risk identification and mitigation plans at project and functional level (CC2, CC3, CU4)	>>	>			
RC3: Loading plans with spare capacity for unknowns/inaccurate planning (CV1)	>>	>	*	*	
RC4: Architectural planning/development horizon to accommodate variation (CC3, CV4, CE2)			>>	>	*
RC5: Experience accumulation (CU1)	>>			>>	
RI1: System level development productivity vs. local/functional optimization (CU1, CR1, CU4)	>>	>			*
RI2: Responsiveness to customer needs (CC1)	>>	>			*
RI3: Stakeholder, developer, and supplier alignment (CU2, CU3, CR1, CR3, CV2)	>>	>			*
RI4: Customer acceptance rate at initial operational test (CC1)	>>	>			*
RI5: Agility of existing integrated system (CU1, CE1)			>>	>	*
RI6: Awareness of evolving process effectiveness (CU1)		>	*	*	
RI7: Effectiveness of distributed knowledge exchange (CU1, CR2, CV2)	>>	>	*	*	
RM1: Evolution of customer missions (CE2)			>>	>	*
RM2: Cybersecurity and related standards (CC3, CU2, CR3)			>>	>	*
RM3: DoD Open Missions approach (CE1)			>>	>	*
RA1: Personnel that make up a team (CV1, CR2, CV4)	>>	>	*	*	
RA2: Test infrastructure to maintain throughput (CV1)	>>	>	*	*	
RA3: Modification in project-specific operating model (CU1)	>>	>	*	*	
RA4: Addition of subcontractor with new technology expertise (CE3)	>>	>	*	*	
RA5: Reallocation of work between prime contractor and other entities (CC1, CV1)	>>				
>> Learner >>					
> Manager >					
* Performer *					
RW1: Leadership and stakeholder churn that change vision and expectations (CC2, CC3, CU3)	>>	>			
RW2: Non detection of variances (CU4, CV1, CV3)	>>	>			
RW3: Non detection of variances (CU4, CV1, CV3)	>>	>			
RW4: Priorities for requirements (CU3, CV1, CV4)	>>	>			
RR4: Acquisition procedures/policies/contract for situational and objectives reality (CC1, CU2)	>>	>			

On Information Debt

(a) When Project Costs Are Committed versus Incurred

(b) Information Debt is Reduced Over the Course of Project

(c) Systems Engineering Information Is Generated to Reduce Information Debt

Future costs of a project become committed early by SE decisions. One of the traditional arguments for early stage SE investment.

Will project end with outstanding information debt: a “working system” but an interest penalty caused by shortage of needed information?

SE information must be generated (e.g., reqs, architectures, risk assessments, etc.) early enough in the project.

ASELCM Project References

Case Study: Agile Systems Engineering Process Features Collective Culture, Consciousness, and Conscience at SSC Pacific Unmanned Systems Group. Dove, R., W. Schindel, C. Scrapper. 2016. Proceedings International Symposium. International Council on Systems Engineering. Edinburgh, Scotland, 18-21 July. www.parshift.com/s/ASELCM-01SSCPac.pdf

Case Study: Agile SE Process for Centralized SoS Sustainment at Northrop Grumman. Dove, R., W. Schindel. 2017. Proceedings International Symposium. International Council on Systems Engineering. Adelaide, Australia, 17-20 July. www.parshift.com/s/ASELCM-03NGC.pdf

Case Study: Agile Hardware/Firmware/Software Product Line Engineering at Rockwell Collins. Dove, R., W. Schindel, R. Hartney. 2017. Proceedings 11th Annual IEEE International Systems Conference. Montreal, Quebec, Canada, 24-27 April. www.parshift.com/s/ASELCM-02RC.pdf

Case Study: Agile Systems Engineering at Lockheed Martin Aeronautics Integrated Fighter Group. Dove, R., W. Schindel, K. Garlington. 2018. Proceedings International Symposium. International Council on Systems Engineering. Washington, DC, US, 7-12 July. www.parshift.com/s/ASELCM-04LMC.pdf

Introduction to the Agile Systems Engineering Life Cycle MBSE Pattern. Schindel, W., R. Dove. 2016. Proceedings International Symposium. International Council on Systems Engineering. Edinburgh, Scotland, 18-21 July. www.parshift.com/s/160718IS16-IntroToTheAgileSystemsEngineeringLifeCycleMBSEPattern.pdf

Agility in Systems Engineering – Findings from Recent Studies. Dove, R., Schindel, Bill. 2018. Working paper, 4-April-2018. www.parshift.com/s/ASELCM170415-AgilityInSE-Findings.pdf