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Problem

Systems and networks in the 215t century are required to be resilient in the face of
uncertainty and systemic and external disruptions

Predictabllity, flexibility and adaptability are essential for verifiable, resilient
behavior of systems and system-of-systems networks

For predictable system operation, system (model) has to be verifiable in terms of
both static properties and dynamic behavior

For flexibility, system (model) needs to be modifiable by an external agent

m For adaptability, system (model) needs to have the ability to self-adjust (i.e., self-
restructure, self-reorganize, self-reconstitute)

These requirements lead to the need for formal and probabilistic modeling to
address tradeoffs between system (model) verifiability, flexibility and adaptability

This recognition provided the impetus for our research
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Research Overview

m Objective
» develop a formal modeling approach for designing resilient systems

m Approach

» based on Resilience Contract (RC), a formal, probabilistic construct
» RC = Traditional Contract + flexible assumptions + Partially Observable
Markov Decision Process + in-use learning

m Application
» planning and decision making in multi-UAV swarm and spacecraft swarm
» problem of interest to both DOD and civilian sector

m Sponsor
» DOD Systems Engineering Research Center (SERC)
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Resilience Contract

www.incose.org/symp2018 4



Resilience Contract

m A hybrid modeling construct for stochastic/probabilistic systems
» partial observability, noisy sensors, uncertain environment

m Incorporates flexible assertions to allow for uncertainty in the knowledge
of system state and state of the environment
» flexible assertions: relax “assume-guarantee” in traditional contract

» Partially Observable Markov Decision Process for uncertainty handling
m Has in-situ learning capability

» developed at design time, trained during operational use (“learning”)

» In-use learning (hidden states, transitions, emissions)

m Addresses key design trade-offs
» correctness (V&V) vs flexibility/adaptability (resilience)

m Applications

» multi-UAV swarms
» system-of-systems (SoS) networks (e.g., self-driving cars)
» closed-loop mission assurance
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Resilience Contract (RC)

Known and Controllable Part Defined by Contract Assertions

Pas

Unknown and Uncontrolled “Hidden” Part Learned During System Use
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| Observed
| output, O,

Policy
Execution

Inputs I

RC evaluates POMDP reward;
typical responses:
* Keep going

* Stop
* Enforce trajectory to a
safe state

*  Notify support team



Rationale

m Engineered resilience is a “messy” problem

» incompatible with invariant methods

» requirements can be imprecise (especially initially)

» actions can be unclear (especially initially)

» system states can be ambiguous (partial observability, uncertainty)
m Want a formal methodology consistent with theorem-proving

> key tradeoff: flexibility (messy problem) vs. correctness (V&V)

m RC Approach: probabilistic + formal modeling

» relax assumptions and guarantees in traditional contract — enables dealing with messiness
while being compatible with formal V&V

» POMDP accounts for invariant knowledge and makes provision for in-use learned knowledge
» POMDP is a means for decision making based on belief state and action policy

RC functions like a closed-loop control system — outcomes of actions are observed and used
to determine next actions

A\
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Partially Observable Markov
Decision Process (POMDP)

m Defined by:
> set of; states S, actions A, observations O
» transition model, reward model, observation model

m Rationale for Use
» many real world problem environments are not fully observable

» partial observability implies current state not necessarily known, system state may
not be fully identifiable

» agent cannot execute optimal policy with respect to what is known for that state
(this is why heuristics become important)

» Markov assumption invariably holds

m Markov assumption
» optimal policy depends only on current state
» applies to transition model
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Exemplar POMDP Model

degraded

unknown,
unobservable
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safe

E, (0)= probability of emitting
0 when in state i

S idiied



Enabling Technologies
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Layered Architecture

User Interface
-Initial Conditions -Disruption Injects -Visualization

Probabilistic Behavior Model

-Sensors  -UAV -Environment
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POMDP Model Formulation

m Probabilistic Database:
» Transition Matrix
» Observation Matrix
» Reward Matrix
> Belief State Initialization
m Mathematical Formulas:
» Belief State Update:
p(ols’) Xsesp(s'la, s). b(s)
Ysiesp(ols).p(s'|a, b)

» Immediate Reward or Expected Reward with Observation = o:
R(a), = Y.sesb(s), * Reward_mat(s, a)

b(s) =
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Commands/direction

Waypoint
Generation
Algorithm

Physical —
System Visualize
*» Dashboard

» Dronekit + AnylLogic
* Modeled Java + VTK OB

- HW
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Technology Platform: Simulation Workflow
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Hardware Testbed
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lllustrative Example
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MDP Model:

QC Flight Example 1

obstacle

I blocks
B goal
B unsafe
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A QC navigates from
start position to goal

by observing and
avoiding obstacles.



MDP Model:
QC Flight Example 2

obstacle

Bl blocks
B goal
Bl unsafe
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Z axis

A QC detects a critical
fault condition and lands



POMDP Waypoint Navigation
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Multi-Vehicle Monitoring and Control Demo
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Multi-UAV Monitoring and Control Dashboard "2

m Demonstration
» customizable dashboard for monitoring and control of simulated/physical vehicles

m Underlying technologies
» dronekit platform with visualization facilities

» quadcopters (hardware) and quadcopter simulation models

m Key capabilities
» simulated vehicles exhibit behavior of physical vehicle (real hardware)
» same commands used to control simulated and physical vehicles (quadcopters)
» can easily replace simulated vehicles with physical vehicles
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Mission Log Mission View Quadcopter Camera View

Qc1 Quadcopter Con trols
| Launch | North |
Qcz
Wesl Home |
QC3
Yaw Left South

Qc1 Qc2
Battery: - AT% Battery: - 3% Battery: - 55%
Locatien (m): -3.1E,-7.7 N, 0.Dup Location {m): -0.2E,-7.8N,0.0up Location (m): 2.8E,-7.6N, 0.0up
velocity (m/s); -0.01E, 0.20 N, -0.00 up velocity (m/fs): -0.16E, 0.14 N, -0.00 up velocity (m/s): -0.17E, 0.13N, -0.00up
Attitude (deg): roll-0.5, pitch -0.5, yaw 40.1  Attitude (deg): roll-0.5, pitch 0.5, yaw-2.7 Attitude (deg): roll-0.5, pitch -0.5, yaw -6.0
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| essons Learned
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. essons Learned

POMDP model able to perform simple actions with incomplete knowledge

Just enough fidelity in physics models reduces computational complexity

» less computation-intensive

» adequate realism (selective fidelity) for seamless interaction with probabilistic model
Language compatibility in technology platform essential for smooth integration
» Java — Python integration

Combination of contracts, hierarchical POMDP, and heuristics prevent state
space explosion

» provide required inputs from physics model to POMDP
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Research Contributions
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Research Contributions

m Resilience Contract — a hybrid modeling construct for stochastic systems

m Experimentation testbed - for system/SoS design, integration and evaluation

» identify and resolve mismatches between probabilistic decision-making and
physics modeling layers

» e.g., vehicle physics model and POMDP model can run at different time scales
« dynamic physics model runs every 0.01 seconds to assure requisite accuracy
« POMDP model runs at a slower rate (issues high level commands)
 right sampling rate for POMDP is determined experimentally
« overall response time to action command needs to be minimized

m Exemplar Demonstration — multi-UAV monitoring and control

Copyright © 2014-2018 Azad M. Madni



Summary

m Resilience — a key requirement of 215t century systems/networks to cope with disruptions
» growing system and operational environment complexity
» need for long-lived, adaptable and self-adaptive systems

m Current approaches — ad hoc, inadequate for V&V, do not scale

» difficult to verify model correctness and validate behaviors
» difficult to assess their long-term impact

m Innovative Approach — combines formal and probabilistic system modeling
» resilience contract - combination of formal and probabilistic modeling
» tradeoff between system model correctness (verifiability) and model flexibility (resilience)

m Demonstration — multi-UAV monitoring and control in testbed and actual environment
» experimentation testbed — explore resilient design options
» smart dashboard — monitoring and control of simulated and physical vehicles
» simulated and physical vehicles
» plan view and individual quadcopter view

m Way Ahead — continue development of the overall approach and prepare for transition
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Way Forward:
Near-Term

m Disruptions

» Random injections
» Random Fault Behavior
» Random Duration
» Random Severity

m Time

» CPS require strong time semantics
» Time-critical events
» Hard, semi-hard constraints

m Learning

» New (unseen before) states
» Update transition and emissions
» Update policy
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