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META-PURPOSE

This is the second in a series of papers that will provide examples of how to use a
Model-Based Systems Engineering (MBSE) approach to implementing the processes
outlined in the INCOSE Systems Engineering Handbook and ISO/IEC/IEEE
15288:2015.

The first paper in the series series provided a Drone System example of how to
implement the following systems engineering technical processes:

« Stakeholder Needs and Requirements Definition

» System Requirements Definition

» Architecture Definition

and provided simple examples of some of the key outputs associated with these
processes (presented in an earlier poster session).

This paper focuses on providing a Drone System example of how to implement the
following processes, methods, and analysis areas:

» (Technical) System Analysis Process

» (Technical Management) Decision Management Process

* Modeling and Simulation Methods

+ Reliability, Availability, and Maintainability Analysis

» Cost Effectiveness Analysis

It also illustrates some key pedagogical points:

+ Relationships between analysis, system architecture decisions, and modeling and simulation

* Relationships between analytical models and Monte Carlo simulation 4
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PURPOSES

* Drone System Purpose: The “Drone System” shall provide
continuous surveillance and/or delivery service over a given area.

» Analysis Purpose: Determine the most cost-effective design (i.e.,
minimum number and type of drones and charging stations)
required to satisfy the system’s “availability” (i.e., percent time that
Ndr drones are “on station”) requirement.
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ANALYSIS APPROACH

» |dentify and document (from DSI):
o User and System Requirements
o Reference System Architecture (& Design)
o Concept of Operations

o Relevant Measures of Effectiveness and KPPs
« Ao, MTBMs, MDTs

o Relevant Design and Environmental Factors
* Nd, Nchg, Nctl, Tofd, MTBMd, MDTd

» |dentify and document
o Reference Design
o Design Options
o Simplifying Assumptions
» Develop Ao model
o Deterministic Model
o Analytical Stochastic Model
= |dentify Design Options
» Perform Design Trade-off Analysis
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DRONE SYSTEM ARCHITECTURE
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DRONE SYSTEM OPERATIONAL CONCEPT (1)

= The Operational Concept may be succinctly captured in Use Case
Narratives and Activity Diagrams (from DSI):

Use Case ID & Name: UC 1 — Provide drone services
Trigger: A drone 1s called into service.

Main Success Scenario:

1. The drone maintainer moves the drone from the storage area to the launch area, verifies

that 1t 1s flight ready, and notifies operator.
The drone operator controls the flight of the drone.
The drone executes its mission (deliver package or perform surveillance).

Th§| drone operator returns the drone to the launch/landing area.
En
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Use Case ID & Name: UC 2.1 — Maintain the Drone

Trigger: A drone has returned to base (landed).

R

End

The drone maintainer moves the drone to the maintenance area.

The drone maintainer performs any required maintenance on the drone.
The drone maintainer connects the drone to the recharging station.

The charging station recharges the drone.
The drone maintainer moves the drone the storage area.
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DRONE SYSTEM OPERATIONAL CONCEPT (1)

» And illustrated schematically as follows:
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REFERENCE DESIGN

» Based on the requirements identified in the User Needs and
Requirements section (which requires 5 drones flying at all times)
and the system architecture provided on Slide 9, the following
reference design is proposed:

o Nd = 10 drones.

o Nchg = 6 charging stations.
o Nctl = 5 control stations.

o Mean MTBMd = 90 min.

o MDTd =90 min.

12
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DEFINITIONS & SIMPLIFYING ASSUMPTIONS

= System Failure: having fewer than Nrfd drones in = Response Model Diagram:
the air
= Metrics: Input Variables Output Variables
o Ao: System availability = MTBFs/(MTBFs+MDTs) (“Factors”) (“Metrics”)
o MTBFs: Mean time between system failure (fewer than Nrid
Nrfd drones operating) —
o MDTs: Mean system down time Nd Aoss <
= Design Parameters (Factors): MTBM | Response (MITBFs & MDTS) g
o Nrfd: Required number of simultaneously flying drones — > Model >
« Nrfd = 5 d for our system MDTd
o Nd = number of drones in the system
* Nd = 10 d for reference architecture
o Nchg: Number of charging stations
o MTBMd: Mean time between drone maintenance (aka
the average flight time).
+  MTBMd = 90 min for reference case
+ Simplifying assumption: TBMd is exponential
« This is analogous to a component “failure.”
o MDTd: Mean time to move drone to and from storage
and to perform recharging/maintenance
« MDTd = 90 min for reference case
« Simplifying assumptions:
» Recharging time dominates MDTd
= DTd is exponential 13
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DETERMINISTIC MODEL

The
Institute for

Systems

Research

THE A. JAMES CLARK SCHOOL of ENGINEERING
UNIVERSITY OF MARYLAND




SIMPLE DETERMINISTIC MODEL/ANALYSIS

= Use a timeline analysis

= Example for MTBMd = 90 min, & MDTd = 90 min

o ForNd =54,
» optimal solution is to run all five drones for 90 min, return and repair for 90 min
* =>A0 =90 min/(90 min + 90 min) = 0.5

o ForNd =10,

» optimal solution is to run five drones for 90 min, return and repair for 90 min; while these are
down, run the other 5 drones

* =>Ao0 =360 min/(360 min + 0 min) = 1.0
o => Need 5 charging stations.

Time Slot
Drone # 30 | 60 | 90 | 120 | 150 | 180 | 210 | 240 | 270 | 300 | 330 | 360
1 1l 11t lololol1]1]1]o]ol]lo
2 t 1 Jololol 1] 1] 1]o]ol]o
3 1|11t ]ololo|l1]1]1]o]ol]lo
4 111t ]ololol1]1]1]o]ol]lo
5 1l 11t lololol 1] 1] 1]o]olo
6 oo ol 1ttt ]ololol] 1] 1]1
7 olo ol 1|l 1] 1]oflolol1]1]1
8 olojo |l 1]t t1t]ololol 1] 1]1
9 olo ol 1|1 ]1]oflolol 1] 1]1
10 oo ol 1|1 1]o]ololf1|1]1
DroneTotal | 5 | 5 | 5 | 5| 5|5 | 5| 5|5 ]|5]|5]|5 15
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ANALYTICAL STOCHASTIC MODEL
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ANALYTICAL STOCHASTIC MODEL/ANALYSIS

* In our problem, Nrfd of Nd drones need to be operating; when one
goes down, it needs to be recharged (and the number of charging
stations is limited to Nchg).

= This problem is analogous to determining the availability (or mean
time between system failure) of a “k-out-of-N” “cold standby”
system with Nr repair crews (a classic RAM problem).

= A“Markov Chain” model yields the results provided on the following
slide (Kuo & Zuo, 2003).
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K-OUT-OF-N, COLD STANDBY, NR REPAIR CREWS
AVAILABILITY MODEL

= Availability:

Drone System
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Drone3

Vv

10 KWV =R .
MTBFs(k of N;CS; Nrc RCs) _k— E Y )N— —i
i=0 ( l) Drone4

Drone5

» Mean System Down Time:

Drone6

MDTd
N—-k+1

MDTs(k of N;CS; Nrc RCs) =

Drone7

Drone8

Drone9

Drone 10

Ve e
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EXCEL INSTANTIATION

= The model was implemented as follows in
Excel (example for reference design):

Outputs (Metrics)

= Legend:

Inputs (Factors) Calculations

k= 5 i i (N-i)! Y Term
N= 10 0 1 3628800 | 3.968E-03
MTBMd = 90 1 1 362880 | 3.968E-02
MDTd = 90 2 2 40320 | 1.786E-01
MTBMd/k = 18 3 6 5040 | 4.762E-01
r=MTBMd/MDTd

= 1 24 720 | 8.333E-01
k! = 120 120 120 [ 1.000E+00
(N-k)! = 120 Sum = 2.53

o Green = factor value (input)

o Blue = metric value (output)

= Note that the model permits
one to change:

o Number of drones

o Number of repair crews
(chargers)

o Drone flight fime (or MTBMd)

o Drone maintenance (recharge)
time.

= The stochastic model for the
reference design results in:
o Aosssm =0.75
o Vvs. Aossdm =1.0

for the deterministic model.
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TRADE-OFF ANALYSIS
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TRADE-OFF ANALYSIS DESIGN OPTIONS

» Trade-off Analysis Scope: » Results:
o Full trade space: Vary Nd, Nch, o Design Options that meet the
MTBMd, MDTd (& over larger requirement:
range of values) « DO3: Nd =15, MDTd =90
o lllustrative trade space: Vary « DO5: Nd =12, MDTd = 60
Nd & MDTd (for brevity) o Different from deterministic
« Assume reference values of Nch = solution (Nd=10, MDTd =90)

5, MTBMd =90 min

Trade Space

Design MDTd
Option Nd (min) MTBFs MDTs Aoss
1 10 90 45.6 15 0.752
2 12 90 75 11.3 0.87
3 15 90 184.8 8.2 0.958
4 10 60 74.8 10 0.882
5 12 60 168.2 7.5 0.957
6 15 60 728.3 5.5 0.993 1
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CONCLUSIONS AND NEXT STEPS
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CONCLUSIONS

Deterministic models generally provide misleading (optimistic) results.
The analytical stochastic model indicates that there are two (lower cost)
options that meet the Aoss requirement:

o Nd =15, MDTd = 90 min

o Nd =12, MDTd = 60 min

Study shortfalls:
o Unrealistic distributions are used for down times and drone flight times.
o Trade-space analysis is incomplete.

o Without a system cost model, one cannot determine which design option is
actually “lowest cost.”

o The trade-off between cost and Aoss has not been addressed.

Study provides simple instructional example of:
o How to tie trade-off analysis to architecture and requirements

o How to structure and approach the initial stages of a trade-off analysis (and the
use of simplifying assumptions)

o Some shortfalls of incomplete analysis -
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NEXT STEPS

Develop an executable analytical stochastic model within SysML.
Perform a “full-scale” cost-effectiveness trade-off analysis using a

Multi-Attribute (objective) Value Function (MAVF) Model.

o Perform an Aoss trade-off analysis over entire design space (Nd, Nch,
MTBMd, MDTd).

o Develop a cost model.
o Develop MAVF model using Aoss and Cost as the “metrics.”

Develop Monte Carlo (MC) simulation that permits more realistic
distributions for MTBMd and MDTd.

o Determine impact of more realistic distributions on the Aoss results.
Perform sensitivity study on “optimal solution.”

Discuss these refinements within the context of a “Spiral Approach” to
systems analysis, modeling, and simulation process(es).

| intend to address these steps in my next one or two papers next
year (assuming an interest in the topic).
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BACKUP SLIDES
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SIMPLIFYING ASSUMPTIONS

The principal system performance requirement is “Nrfd drones shall be flying at
all times” (in our case, 5 drones). (Nrfd is the required number of flying drones.)

A “System Failure” is defined as having fewer than Nrfd drones flying.

The “Mean System Down Time” (MDTs) is defined as the mean time that it takes
the system to return to Nrfd flying drones.

The system (and its users) will operate 24/7.

The (steady state) operational availability of the system (Aoss) is defined as the
probability that Nrfd drones are flying (at any given moment).

The mean time between failure (MTBF) for the drone, charging station, and
control station elements are significantly greater than the mission duration and as
such may be ignored.

For availability modeling purposes, a drone completing its required time on
station will be considered an “effective critical failure” (for that drone) since it will
require an immediate maintenance action (post-flight preventative maintenance
and charging). As such, the principal “reliability” metric of interest is the mean
time between maintenance for the drone (MTBMd).

The mean down time for a drone (MDTd) is the sum of the times associated with
moving the drone to and from the launch area and performing pre-flight checkout
and drone maintenance.

26
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NEEDS AND REQUIREMENTS

= From DSI:

o Customer/User Statement of Need (SON): “A drone system is needed that is
capable of providing reliable and timely drone delivery or surveillance capability
to a given area.”

o Mission profile/assumptions (implicit user requirements):
» The expected demand will be five missions per hour (and must be met).
« Each mission will require a devoted drone.
» The area of operations will have a radius of 10 mi.
» The operating base will be in the center of the area of operations.
* Delivery packages will weigh up to 5 Ibs.
» Drones will be maintained and refueled/recharged after each flight.

o Derived system requirements:
« Adrone shall have a fully loaded time of flight of at least one hour.
» The drone shall be capable of performing surveillance missions.
» The drone shall be capable of performing package delivery missions.
« The drone shall be capable of carrying packages of up to 5 Ibs.
» The drone system shall have an operational availability of Ao = 0.95.
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