

Applying and analyzing A3 Architecture Overviews in a complex and dynamic engineering environment

Wilco Pesselse

Master Automotive Technology

Department of Mechanical Engineering

Control Systems Technology

Supervisors:

TU/e: dr.ir. T. Hofman

Daimler: dr. M. Simons

External: prof.dr. G.J. Muller

Content

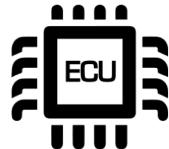
- Introduction
 - Company description
 - A3 Architecture Overviews
- Research methods
- Use case
 - Charging system
 - Current situation analysis
 - A3 Architecture Overviews created
- Results
- Conclusion

Daimler AG

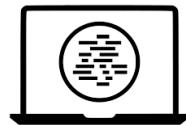
> 2.000.000
Cars

> 30
Vehicle models

> 280.000
Employees
worldwide

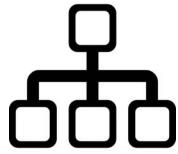


> €150 billion
Revenue

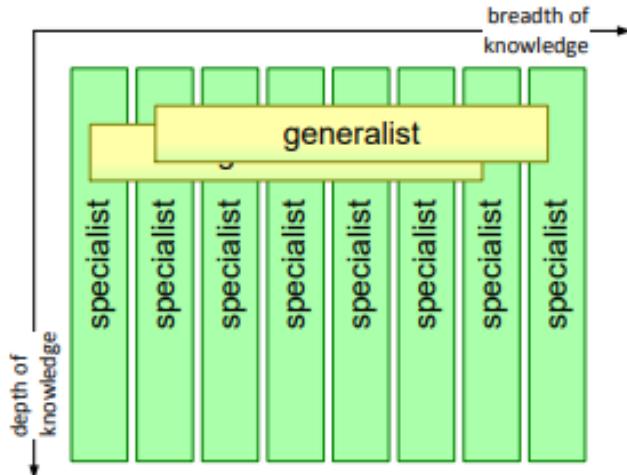

Technical complexity

> 180
Systems

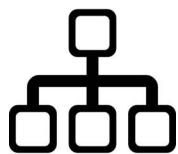
> 100
ECU's



> 100 million
lines of software
code



Source: <https://www.daimler.com/documents/company/business-units/daimler-mbc-ataglance-2017.pdf>


Partitioning

Specialists
&
Generalists

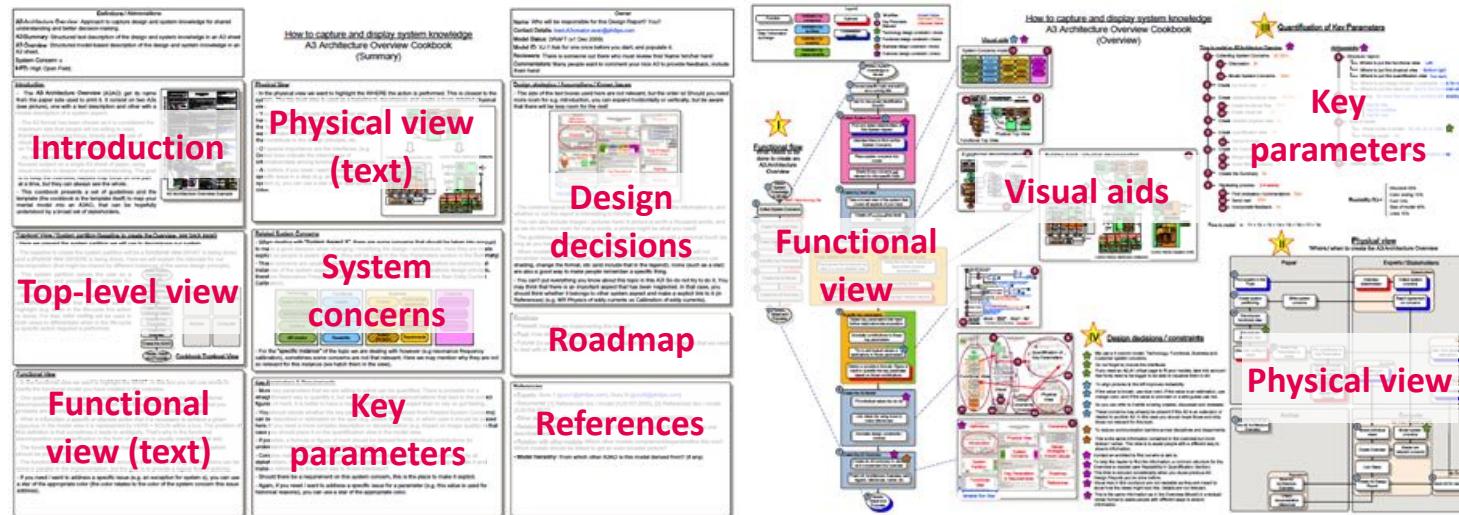
System architect

Designs the
architecture of a
(sub)system

Complex task

Communication with
many stakeholders

Source: <https://www.daimler.com/documents/company/business-units/daimler-mbc-at-a-glance-2017.pdf>


Daimler's goal

“Method to support the system architect to effectively communicate architectural information”

A3 Architecture Overviews

- Key characteristics
 - Architectural information
 - Complex systems
 - Complementary views
 - A3 paper size (297x420 [mm])
- Goal
 - Improve communication & documentation of architectural knowledge
 - Create and maintain system overview
 - Triggers discussion

Source: A3 Architecture Overview Cookbook, Daniel P. Borchers

Research goal

“To what extent can A3 Architecture Overviews aid the development process within a large, complex and dynamic engineering environment?”

“What are the impact factors that affect a successful implementation of A3 Architecture Overviews in this type of organization?”

Research method

Industry-as-laboratory

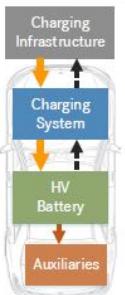
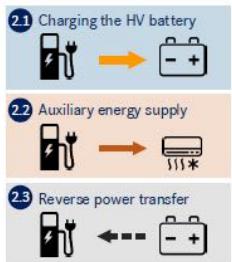
Representative use case

Multiple variations on cookbook

Feedback

Observations

Experiences



Surveys

HV CHARGING SYSTEM - CONTEXT

2 USE CASES

2.3 REVERSE POWER TRANSFER

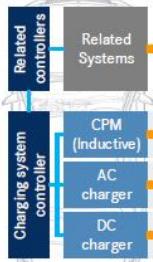
ABBREVIATIONS

GPM - Ground Pad Module
HV - High Voltage
LV - Low Voltage

Pre-con - Preconditioning
SOC - State of Charge
WPT - Wireless Power Transfer

DOCUMENT INFORMATION

Author: Wilco Pesselle
Date: 01.12.2017
DocID: ChgSys_A3AO_L0_D1


Model status: DRAFT (v0.5)
Reviewers: M. Simons, A. Lepple, C. Reuter, G. Muller, T. Hofman

3 CHARGING MODES

Mode	Type	Grid	Max. Power	Cable
1*	AC	Home/ Industrial socket	x - y [kW]	
2	AC	Home/ Industrial socket	x - y [kW]	
3	AC	Wallbox/Charging Station	x - y [kW]	
4	DC	Wallbox/Charging Station	Up to x [kW]	
		Wireless Power Transfer	x - y [kW]	

* Mode 1 is not used anymore due to safety reasons

4 MODULARITY & COMPATIBILITY

SIZE & WEIGHT
Size: a x b x c [mm] Weight: x [kg]
Size: a x b x c [mm] Weight: x [kg]
Size: a x b x c [mm] Weight: x [kg]

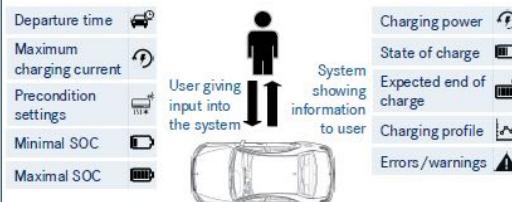
1 INTRODUCTION: Key architectural concerns of the charging system

The charging system provides electrical energy from an external source to the vehicle during vehicle standstill. This energy can be used to charge the HV battery 2.1 or to supply energy to other vehicle functions, e.g. low voltage network (12V) and preconditioning of the vehicle interior 2.2. Furthermore, the charging system supports reverse power transfer, meaning energy is transferred from the HV battery to the infrastructure, which has four different use cases 2.3.

Charging can be done conductive (AC or DC), inductive (WPT) or by a combination of these (parallel) and can be done at home or at a public charging station 3. Since not all vehicles are equipped with all charging options, a modular design is required, while all different options have to be both hardware and software compatible with all related systems 4. Each charging mode requires a physical component, which increases the weight of the vehicle and must fit in the vehicle 5. One of the most important concerns are the safety and security of the user and system, they must be protected at all time 6. Efficiency 7, charging mode, user settings 8 and total power available from the grid in each country 9 influence the charging time. Furthermore, the vehicle being active other than during driving affects the robustness requirements significantly 10. Communication with the user is done in-vehicle (User Interface) and/or using a smartphone app through the Daimler operated vehicle back-end 8.

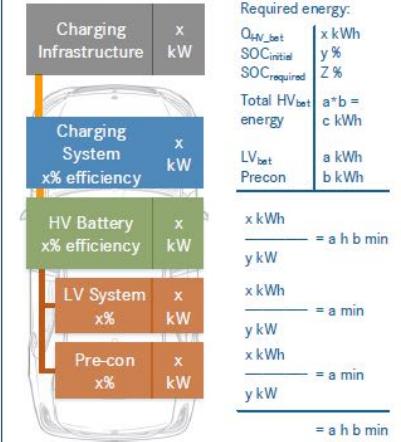
10 ROBUSTNESS

Total operating time charging (avg. x kW)	n [hours]
Total time preconditioning	n [hours]
Vehicle usage time	n [hours]
Total system awake time	n [hours]


Maximum charging cycles | n [cycles]

9 PLUG STANDARDS

	USA	EU	CHN	JPN
AC				
Type 1	Type 1	Type 2	GB-TAC	Type 1
DC				
Combo 1	Combo 1	Combo 2	GB-TDC	CHAdeMO
Com.	PLC	PLC	CAN	CAN


CC Connection Check
CS Connection Status
CP Control Pilot
PP Proximity Pin
PE Protective Earth
Lx AC Phase x

8 EASE OF USE: MULTIMODAL USER INTERFACE

7 EFFICIENCY

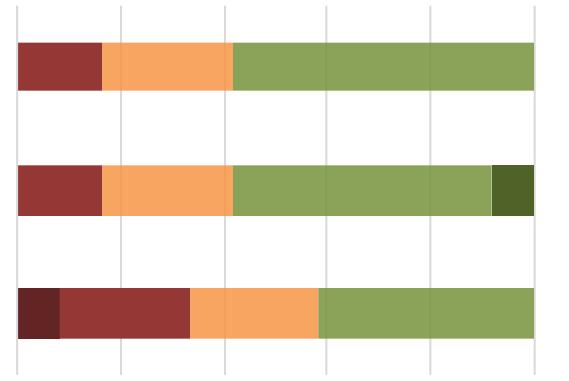
Case scenario: 11kW AC conductive charging

Current situation analysis

Observations & experiences

Lack of system documentation

Communication issues



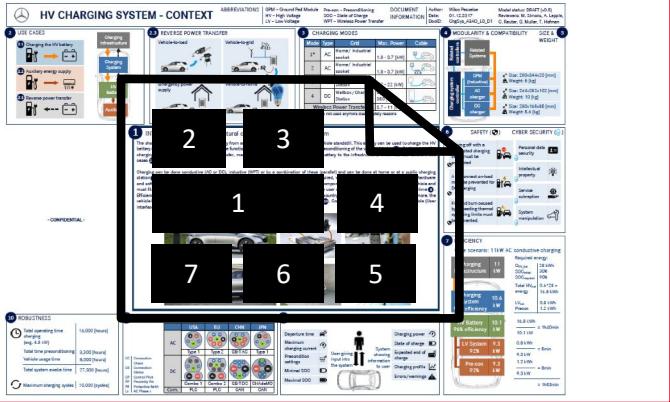
Lack of system knowledge/overview

Current challenges (N=12)

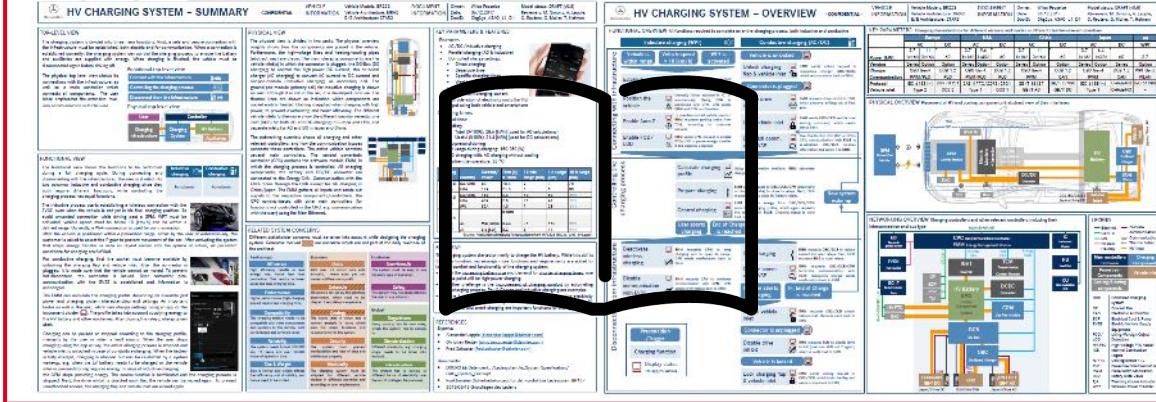
■ Strongly disagree ■ Disagree ■ Neutral ■ Agree ■ Strongly agree

1: I experience difficulties in finding system information I need for my work using current documentation/methods

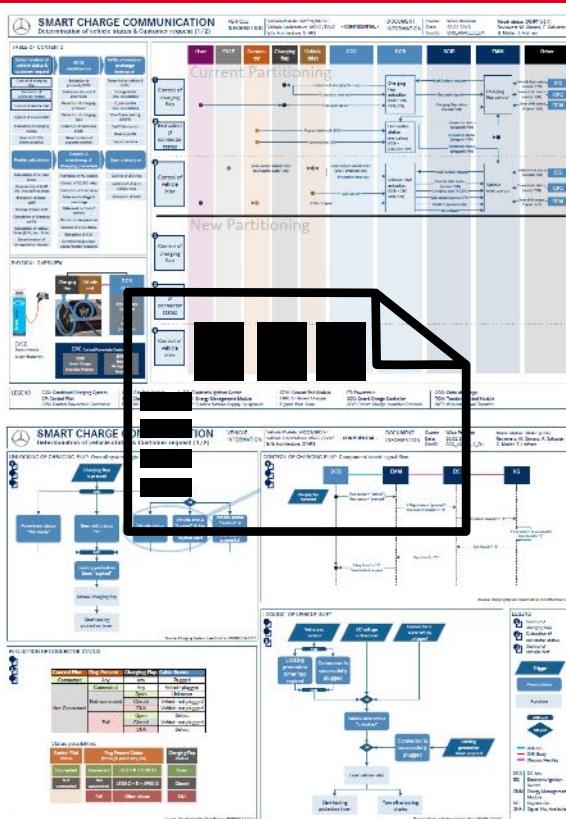
2: I experience difficulties in communication across disciplines


3: I experience lack of system knowledge in specific topics required to efficiently perform my work (e.g. to hold discussions)

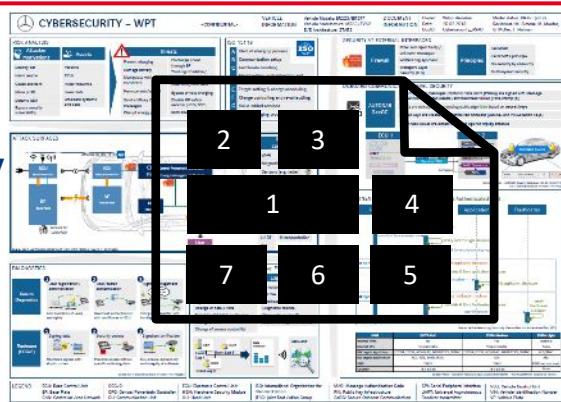
0% 20% 40% 60% 80% 100%


L0D1: Context

- Versions: 5 / Sessions: 7


L1D1: Technical overview

- Versions: 8 / Sessions: 12


L2D1: SCC (Smart Charge Communication)

- Versions: 4
- Sessions: 5

L2D2: Cybersecurity on inductive charging

- Versions: 3
- Sessions: 4

L2D3: User Interfaces (UI)

- Versions: 3
- Sessions: 3

Results – Specific A3AOs

Observations & experiences

Provides overview

Easy to use and understand

Navigational aids for self-study

Implementation time

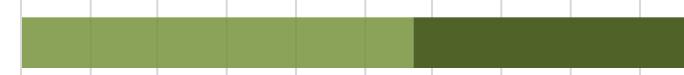
Creation of formats

Statement

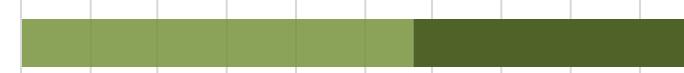
(# respondents to specific statement)

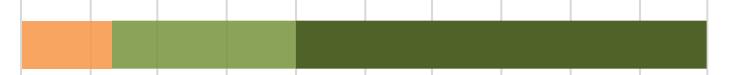
Statement	L0D1 (8)	L1D1 (8)	L2D1 (3)	L2D2 (3)	L2D3 (1)
1: The A3AO gives a good overview of the topic addressed	3	4	2	1	0
2: The A3AO gives a better system overview compared to current documents/methods	3	3	0	0	1
3: The A3AO is easy to understand	1	1	1	-1	0
4: The A3AO is easy to navigate	3	2	1	-1	1

Results – General A3AO method


General statements on A3AO method

■ Strongly disagree ■ Disagree ■ Neutral ■ Agree ■ Strongly agree


An A3AO is a good tool to understand system behavior (N = 15, NPS = 11)

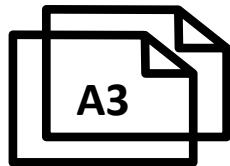

A3AOs gives a better system overview compared to current documents/methods (N = 14, NPS = 6)

A3AO is a good tool to share/communicate system knowledge across disciplines (N = 14, NPS = 6)

A3AO is a good tool to be used in discussions (N = 15, NPS = 7)

The added value of using A3AO is more than the effort/resources it took to construct it (N = 5, NPS = 2)

Effort to create


Effort to update

Consistency of data

Impact factors

■ Main impact factors

Structure

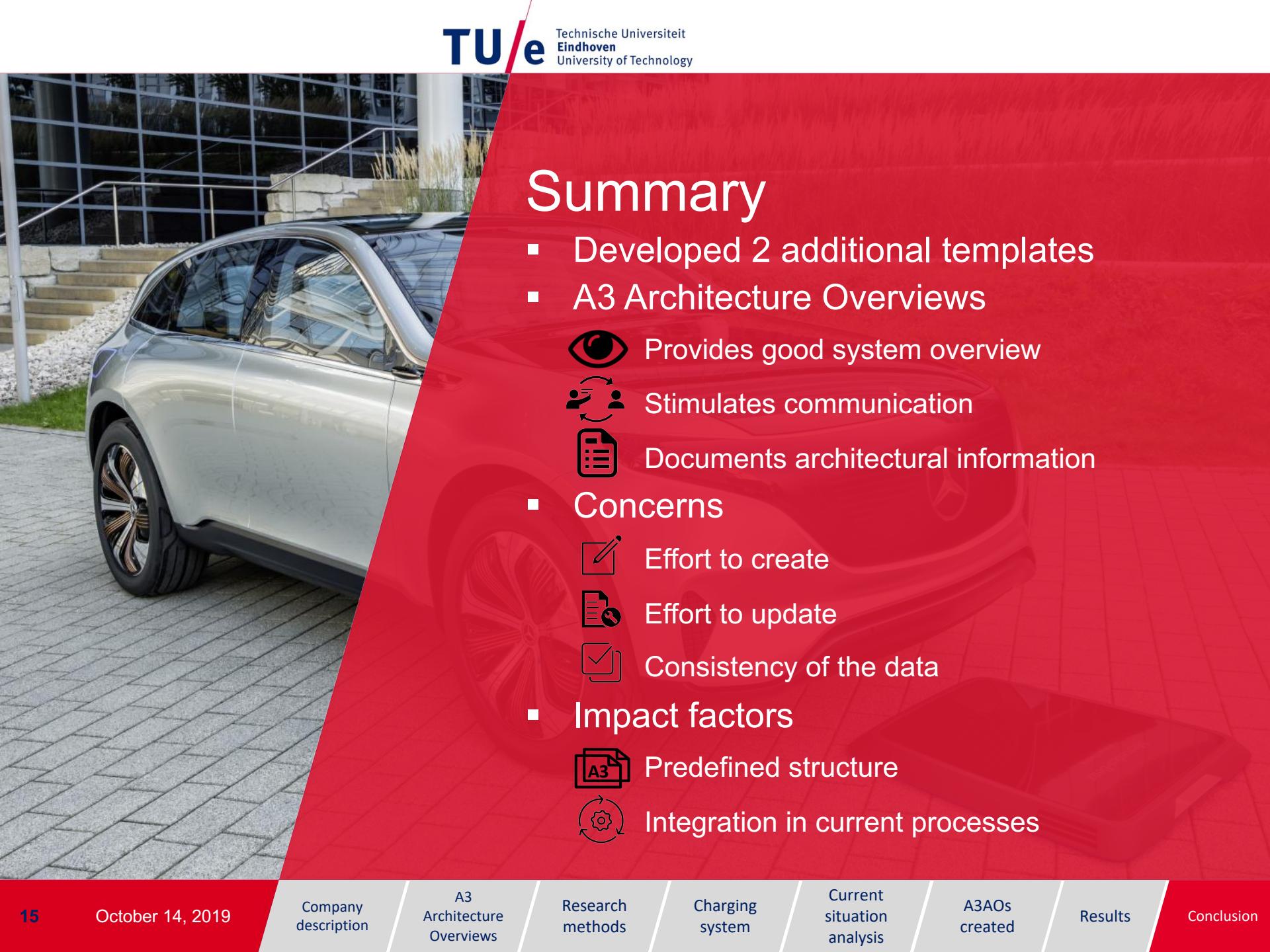
Integration in current
design processes

■ Other impact factors

Goal

Level of
detail

Navigational
aids


Consistency

Implementation
time

Finalizing
A3AO

Summary

- Developed 2 additional templates
- A3 Architecture Overviews
 - eye icon Provides good system overview
 - two people icon Stimulates communication
 - document icon Documents architectural information
- Concerns
 - pen icon Effort to create
 - document with magnifying glass icon Effort to update
 - checkmark icon Consistency of the data
- Impact factors
 - A3 icon Predefined structure
 - gear icon Integration in current processes

Discussion & Future Research

- Case study vs. General conclusions
- Number of survey respondents
- Feedback from more active usage
- Quantitative results

Thank you

- Graduation committee
- Colleagues at Daimler
- Family & Friends

Questions

