
Elevating the meaning of data
and operations within the
development lifecycle through
an interoperable toolchain

Jose María Alvarez, Roy Mendieta & Juan Llorens | Assoc. Prof. UC3M | josemaria.alvarez@uc3m.es

2INCOSE IS 2019

OSLC KM

Introduction

Characteristics?
Aspect Comment

Type of product Complex (very complex!)

Development
lifecycle

Multidisciplinary (software,
mechanics, electronics, etc.)

→ Time and costs

Functionality It is being increased over time

Lifetime Long (+30 years)

Regulation
(under)

High

Suppliers Thousands

Engineers Thousands

Customers Hundreds

Scope International

… …

3INCOSE IS 2019

Mats Berglund (Ericsson)
http://www.ices.kth.se/upload/events/13/84404189f85d41a6a7d1cafd0d
b4ee80.pdf

Engineering (and corporate)
environment

OSLC KM

Lifecycle processes

Introduction

Source: http://beyondplm.com/2014/07/22/plm-implementations-nuts-and-
bolts-of-data-silos/

http://www.ices.kth.se/upload/events/13/84404189f85d41a6a7d1cafd0db4ee80.pdf
http://beyondplm.com/2014/07/22/plm-implementations-nuts-and-bolts-of-data-silos/

4INCOSE IS 2019

OSLC KM

Some needs…

A knowledge model to drive the
development lifecycle.Knowledge

Naming

Ad-hoc
integration

Discovery

Collaborati
on

Vendor
Lock-in

A common vocabulary to
standardize the naming of any
system artefact.

Integration of different tools.

A method to automatically
discovery and manage traces.

An engineering environment to
ensure quality, save costs and
enable team collaboration.

A method to avoid the vendor
lock-in ensuring compatibility in
terms of models, formats,
access protocols, etc.

5INCOSE IS 2019

OSLC KM

Reuse principles

Abstraction

• Complexity management
• How and when “reuse” is possible

Selection

• Artefact discovery
• Representation, storage, classification
and comparison

Specialization

• How artefacts can be customized?

Integration

• To what extent the artefact can
be easily integrated in other
context.

6INCOSE IS 2019

OSLC KM

Main question

Is it possible to:

-improve the degree of reuse of any system
artefact and
-deliver added-value services

through a common representation and an
interoperable access model?

7INCOSE IS 2019

OSLC KM

Related work: common needs

• Common data model (vocabulary)

• Language

Data representation

• Check integrity

Data consistency & conformity

•Methods to ease reuse

As a service

• Standardized formats and access

protocols

Data exchange (and sharing)

• Semantics

Data interpretation

01

02

03

04

05

8INCOSE IS 2019

Data shapes within the SDLC

Formal ontology

“A formal ontology is specified by a
collection of names for concept
and relation types…”

Definition

[x] Data representation
[] Data exchange
[\] Data consistency
[x] Semantics

Evaluation

An ontology
defined under a
logic formalism.
E.g. DL, FoL, etc.

Concept

Prolog rules
OWL, SBVR, RIF, OMG
standards, etc.

Technology

9INCOSE IS 2019

Data shapes within the SDLC

Data Shape

“It is a kind of schema for data to
mainly exchange and check
integrity…”

Definition

[x] Data representation
[x] Data exchange
[x] Data consistency
[x] Semantics

Evaluation

Easily share data and
consistency
constraints.

Concept

XML Schema
W3C Data shapes
(SHACL, SHeX), OSLC
Shapes, STEP, etc.

Technology

10INCOSE IS 2019

OSLC KM

Summary: Formal ontology vs Data shape
Fo

rm
al

 o
n

to
lo

gi
es

Main use:

• To create a knowledge base of the system:
knowledge creation (collaborative)

• To perform reasoning processes for
knowledge inference

How to use:

• Local and/or distributed reasoning

• Not all ontologies are formal ontologies

Warning:

• Do NOT use ontologies to perform data
validation (consistency checking,
etc.)→time consuming process

• Make ontologies “runnable” not just a
document

• Avoid transformations from different
paradigms but boost cooperation
between paradigms

• e.g. SysMLTransformation or

cooperation?→OWL

D
at

a
Sh

ap
e

s

Main use:

• Data representation, exchange and
consistency.

• Lightweight semantics→”The Shape”

How to use:

• Data as a Service: create standard-based
APIs (technology is NOT relevant,
FOUNDATIONS ARE)

• OSLC

• Swagger (Open API Specification)

• REST architectural style (JSON format)

Warning:

• Define your URIs and methods properly

• Expose both: data and operations

• Document the use of the API

→Swagger a good example

11INCOSE IS 2019

Core
(Configuration
Management,

Reporting)

ALM-PLM

Architecture
Management

Asset
Management

Automation

Change
Management

Estimation &
Measurement

Performance
Monitoring

Quality
Management

Reconciliation

Requirements
Management

Others

• Mobile

OSLC KM

Related work: representation and data exchange

Open Services for Lifecycle Collaboration (OSLC)

REST services + Linked Data + Resource Shape

Model-based Systems Engineering (MBSE) → SysML

ISO STEP 10303
(STandard for the Exchange of Product model data)

W3C Recommendation SHACL and Shape Expressions

12INCOSE IS 2019

OSLC KM

Related work: system artefact reuse

Models & Quality

Libraries &
Components

Previous works

Ontologies

Product lines

Repositories

[2] [4]

[1]

[5]

[3]

[7] [8]

[6]

13INCOSE IS 2019

OSLC KM

Preliminary evaluation

• Some types of artefacts can not be represented (and lack of connectors for any X)

• Linked Data and RDF suits well mainly for data exchanging

• STEP is not service oriented→making integration more difficult

OSLC/
STEP

• Not everything is a model

• Not every model is a SysML model

• Different SysML interpretations

MBSE

• Approaches focused on software artefacts (components and product lines)

• Component models and web services (operations)

• Common data models (data)

Reuse

14INCOSE IS 2019

OSLC KM

Concept: a knowledge management strategy

15INCOSE IS 2019

OSLC KM

Concept: a winning strategy

Visualization
Integrated view of system

artefacts.

Human interface
Query artefacts using natural

language.

Automation of tasks
Support to tasks that require

a whole view of the system:

-Test case description

-Change impact analysis

-Populate models

-Documentation

…

Quality
Ensure the quality of any

system artefact

Language uniformity
Ensure consistency along the

development lifecycle.

Traceability
Discover and manage links.

16INCOSE IS 2019

OSLC KM

Concept: overview

Knowledge-Centric

Systems Engineering

17INCOSE IS 2019

OSLC KM

Concept: metadata, data and operations

Attributes

Data

Meta

Contents

Operations

3rd party
functiona-

lities

Quality,
traceability,

naming,
documenting,

etc.

18INCOSE IS 2019

OSLC KM

O
SL

C
 K

M
Resource Shape

System Representation
Language

System Knowledge Base Domain Ontology

System Assets Store Domain artifacts

Delegated Operations

Functionality

Interface

Concept: OSLC KM (Knowledge Management)

See specification: http://trc-research.github.io/spec/km/

http://trc-research.github.io/spec/km/

19INCOSE IS 2019

OSLC KM

OSLC KM: System Representation Language

20INCOSE IS 2019

OSLC KM

OSLC KM: Domain ontology

Taxonomy
Semantic relationships

Controlled vocabulary
Domain vocabulary

Patterns
Templates built on top of
the domain vocabulary
and semantic
relationships.
E.g. requirements,
design, etc.

Inference
Generation of new

knowledge
Consistency

…

21INCOSE IS 2019

OSLC KM

E.g. Support smart artefact authoring (requirements)

22INCOSE IS 2019

OSLC KM

OSLC KM: domain artefacts

Input artefact

Tool k

Transformation
rules

SKB

SRL
(industrial knowledge graph)

Linked Data

Text

SysML

Modelica

Simulink

…

23INCOSE IS 2019

• D6.3 Design of the AMASS tools and methods for
cross/intra-domain reuse (b)

• Mapping between WSDL and REST (and json-rpc)

OSLC KM

OSLC KM: delegated operation

24INCOSE IS 2019

OSLC KM

OSLC KM: functional architecture

Mapping Rules

RDF2DataS
hape

(Visitor
Patterrn)

Reasoning
process to

classify and
infer new

triples
(optional)

Validation
& Data
Shape

generation

OSLC KM specification

OSLC-KM processor

OSLC-
based

resources
and RDF

Semantic
Indexing
process

OSLC KM
based

resources
RDF vocabularies

Semantic
Search

Process &
Naming

SAR

Traceabi
lity

OSLC KM item2

OSLC KM item1

Quality
Checking

Quality rules

Visualiza
tion

General-purpose
view

Preferred view

System Artefact or
Natural language query

End-users and
tools

OSLC KM interface

OSLC KM items
(OSLC resources

&
skos:Concept)

OSLC KM items
(mappings)

OSLC KM items
(OSLC resources+
quality metrics)

System Artefact
Repository

25INCOSE IS 2019

OSLC KM

OSLC KM: technological environment

Tool k
Step 5

Common
Services

OSLC KM
Provider

(.Net, Java)

HTTP
&

RDF

OSLC KM
Client &
Provider

(.Net)

CAKE
(.Net)

KM
SAS & SKB

(.Net)

OSLC KM
adapter
(.Net, Java, XSLT)

See libraries: https://github.com/trc-research/oslc-km

https://github.com/trc-research/oslc-km

26INCOSE IS 2019

OSLC KM

OSLC KM: technological environment

Tool k
Step 5

Common
Services

OSLC KM
Provider

(.Net, Java)

HTTP
&

RDF

OSLC KM
Client &
Provider

(.Net)

CAKE
(.Net)

KM
SAS & SKB

(.Net)

OSLC KM
adapter
(.Net, Java, XSLT)

See libraries: https://github.com/trc-research/oslc-km

https://github.com/trc-research/oslc-km

27INCOSE IS 2019

OSLC KM

Implementation: A world of knowledge by The Reuse Company

SIM
System

Interoperability
Manager

OSLC - KM OSLC - KMOSLC - KM

KCSE

Quality

Traceability

Retrieval & ReuseInteroperability

Reasoning
Authoring

28INCOSE IS 2019

OSLC KM

Scientific experimentation [9]

Enabling system artefact exchange and selection through a Linked
Datalayer. Jose María Álvarez-Rodríguez; Mendieta, R.; de la Vara, J. L.;
Fraga, A.; and Llorens, J. UCS 24(11): 1536-1560 (2018)

03

02

01
• Logical SysML models and two tools:

Papyrus and IBM Rhapsody
• Physical models from Simulink

Selection of tools and types of artefacts

• 25 user-based quries for SyML models and
20 for Simulink models

• AMASS project

Design of queries

• Common information retrieval
performance metrics:

• Precision, recall y F1 measure [10].

Selection of performance metrics

06

05

04
Based on [11]:
1) Precision > 20% acceptable, >30% good & > 50%
Excellent
2) Recall: > 60% acceptable, > 70% good and > 80%
Excellent

Selection of acceptance ranges

• Perform queries on top of the selected
models to calculate the performance
metrics

Execution

• Analysis of results based on the acceptance
ranges.

Analisys of results and limitations

Data is available here: https://github.com/trc-research/oslc-km

https://github.com/trc-research/oslc-km

29INCOSE IS 2019

OSLC KM

Design of the experiment: user queries
Id Query

Q1 System availability

Q2 Maximum rate of failure

Q3 Manage Traffic flow

Q4 System for purify water

Q5 System using remote control component

Q6 System use cameras

Q7 System with an statistical data component

Q8 System Performance Requirements

Q9 Requirements of System Usability

Q10 System with Simulation Component

Q11 Group Creation

Q12 System Restrictions Requirements

Q13 System that use Sensors

Q14 Gather and Interpret Information Module

Q15 Adaptive Control

Q16 Consistency in transaction

Q17 Manual Control

Q18 intruders detection

Q19 Time Validation

Q20 computer response time

Q21 System validation cards

Q22 tasks and scenarios

Q23 traffic management based in the region

Q24 semaphores automatic operation

Q25 Control standard

Id Consulta
Q1 A flow between a constant , product, block sum and a outport block.

Q2 A flow between an inport, product, an a block sum.
Q3 A flow between an inport, block sum and integrator.
Q4 A flow between a subsystem and outport block.
Q5 A flow between a subsystem and to Workspace block.
Q6 A flow between a Transport Delay and Subsystem block.
Q7 A flow between a Integrator block, Transport Delay and Subsystem block.

Q8 A flow between a Inport and constant blocks with a product block.

Q9 A flow between a Inport and constant blocks with a product block and
the product block with outport block

Q10 A flow between a Integrator and Subsystem, Add block and subsystem
and Subsystema with Subsystem

Q11 A flow between a Integrator and Subsystem, Add block and subsystem
and Subsystema with Subsystem1 and subsystem2

Q12 A flow between a Integrator and Subsystem, Add block and subsystem
and Subsystema with Subsystem1 and subsystem2 with to Workspace
block

Q13 Model with no flows only inport block, outport block and product block

Q14 Two submodels of A flow between an inport, product, an a block sum and
outport.

Q15 Two submodels of A flow between an inport, product, an a block sum and
outport with two constants

Q16 A flow between inport and add block, and two inports nodes without
flow

Q17 A flow between add bloc and constant with divide block.
Q18 A flow between divide block tro integrator nodes and tree outports block

Q19 A flow between integrator block and aoutport block and two outports
block and one add block with no flows

Q20 A flow between 4 transfer delay with two subsystems.

Logical models Physical models

30INCOSE IS 2019

• Precision: fraction of relevant models among the retrieved models.
• Value [0-1]

(𝑃)𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
| 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑚𝑜𝑑𝑒𝑙𝑠 ∩ 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑚𝑜𝑑𝑒𝑙𝑠 |

| 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑚𝑜𝑑𝑒𝑙𝑠 |

• Recall: fraction of relevant models that have been retrieved over the
total amount of relevant models.
• Value [0-1]

(𝑅)𝑒𝑐𝑎𝑙𝑙 =
| 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑚𝑜𝑑𝑒𝑙𝑠 ∩ 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑚𝑜𝑑𝑒𝑙𝑠 |

| 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑚𝑜𝑑𝑒𝑙𝑠 |

• F1-measure: harmonic mean of precision and recall.
• Value [0-1]

𝐹1 = 2 ∗
𝑃 ∗ 𝑅

𝑃 + 𝑅

OSLC KM

Design of the experiment: performance metrics

31INCOSE IS 2019

Physical models-Simulink

Logical models-SysML

OSLC KM

Analysis: aggregated values

0.77

0.96

0.82

0.67

0.85

0.66
0.71

0.82

0.7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P R F1

OSLC KM Papyrus IBM Rhapsody

0.68

0.79

0.61

0.32 0.31

0.55

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P R F1

OSLC KM Simulink

32INCOSE IS 2019

OSLC KM

Analysis of results: OSLC KM

Logical models-SysML

32

32%
Rest68%

Excellent

Physical models-Simulink

12%
Rest88%

Excellent

60%
Rest

40%
Excellent

Precision

Recall

F1

40%
Rest60%

Excellent

60%
Excellent

40%
Rest

57%
Rest

43%
Excellent

33INCOSE IS 2019

OSLC KM

Scientific experimentation: limitations

• User queries are restricted to the AMASS use cases.

• Models are restricted to the AMASS use cases and those part of the common

libraries.

• Only two types of models are considered

Data

• Continuous calculation and improvement of the performance metrics, create a

kind of “benchmark”.

• Measure the impact of quality in the degree of reuse.
Process

• Robustness analysis to measure the impact of the different representations of

the same data.
Analysis

34INCOSE IS 2019

OSLC KM

User story *: Extract information from legacy documents

As

So that…

I want to…

Check quality, find
similar

requirements,
recovery traces, etc.

Requirements
Engineer

Import requirements

Already available in
Word/PDF documents

demo-videos/0-Unstructured/Unstructured.wmv

35INCOSE IS 2019

OSLC KM

User story I: Reuse (and find similar) logical & physical models

As

So that…

I want to…

Reuse of existing
system artefacts

-Recovery traces

Domain Engineer Access and search logical
and physical models

I am using different tools:
Modelica, Papyrus, IBM
Rhapsody and Magic
Draw

demo-videos/1.Retrieval/1-1-SysML Similar.wmv
demo-videos/1.Retrieval/1-REUSE-MODELICA.wmv

36INCOSE IS 2019

OSLC KM

User story II: Check quality of logical models

As

So that…

I want to…

Ensure that
everything is CCC

Quality/Domain
Engineer

Check the quality of my
models

I am using different tools:
Modelica, Papyrus, IBM
Rhapsody and Magic
Draw

demo-videos/2.Quality on Models/2-Quality-Checking.wmv

37INCOSE IS 2019

OSLC KM

User story III: Generate documentation

As

So that…

I want to…

Create consistent
and up-to-date
documentation

Automation

Domain Engineer Report documentation

Reuse of my system
artefacts

demo-videos/4.Documentation Generation/3-Document Generation.wmv

38INCOSE IS 2019

OSLC KM

User story IV: Populate models from Simulink (e.g. an ontology)

As

So that…

I want to…

Create my web
ontology based on

OWL

Domain Engineer Reuse my physical
models to populate an
ontology

demo-videos/5.Ontology Generation/From Simulink/5-Ontology Generation From Simulink.wmv

39INCOSE IS 2019

OSLC KM

User story V: Populate logical models from requirements

As

So that…

I want to…

Avoid to start from
scratch the logical

modelling

Systems Engineer Reuse my requirements
to populate an ontology

demo-videos/GeneratingModelInRhapsody (short).mp4

40INCOSE IS 2019

OSLC KM

User story VI: Consistency between descriptive and analytical models

As

So that…

I want to…

I do not need to re-
work between

models.

Systems Engineer Ensure consistency
between models

demo-videos/11-FMU_Rhapsody_run_requirement.mp4

41INCOSE IS 2019

OSLC KM

Conclusions and Future work

-OSLC and Linked Data suits well
for data exchange.
-Define methodology to reuse
vocabularies, etc.

Data
exchange

Represen-
tation

Reuse

Coverage

Experiment
& User
stories

OSLC KM

SRL is a language and a model
repository to ease the reuse of
existing data and operations.

Existing tools should improve its
support to interoperability
mechanisms in both : data and
operations.

-Increase the number of tools that
are supported.
-API-economy: OSLC & SWAGGER

-Extend the existing experiments
and user stories.
-Take advantage of the industrial
knowledge graph.

-Release new versions of the
source code.
-Reach a higher TRL (8-9)
-Promote the approach to OASIS
OSLC

42INCOSE IS 2019

OSLC KM

Acknowledgements

The research leading to these results has received funding from the AMASS project
(H2020-ECSEL grant agreement no 692474; Spain's MINECO ref. PCIN-2015-262) and
the CRYSTAL project (ARTEMIS FP7-CRitical sYSTem engineering AcceLeration project no
332830-CRYSTAL and the Spanish Ministry of Industry).

Learn more: https://www.amass-ecsel.eu/

https://www.amass-ecsel.eu/

43INCOSE IS 2019

1. W. Frakes and C. Terry, “Software reuse: metrics and models,” ACM Comput. Surv. CSUR, vol. 28, no. 2, pp.
415–435, 1996.

2. A. Mili, R. Mili, and R. T. Mittermeir, “A survey of software reuse libraries,” Ann. Softw. Eng., vol. 5, pp. 349–
414, 1998.

3. J. Guo and others, “A survey of software reuse repositories,” in Engineering of Computer-Based Systems,
IEEE International Conference on the, 2000, pp. 92–92.

4. R. Land, D. Sundmark, F. Lüders, I. Krasteva, and A. Causevic, “Reuse with software components-a survey of
industrial state of practice,” in Formal Foundations of Reuse and Domain Engineering, Springer, 2009, pp.
150–159.

5. T. Thüm, S. Apel, C. Kästner, I. Schaefer, and G. Saake, “A Classification and Survey of Analysis Strategies for
Software Product Lines,” ACM Comput. Surv., vol. 47, no. 1, pp. 1–45, Jun. 2014.

6. V. Castañeda, L. Ballejos, L. Caliusco, and R. Galli, “The Use of Ontologies in Requirements Engineering,”
GJRE, vol. 10, no. 6, 2010.

7. R. Mendieta, J. L. de la Vara, J. Llorens, and J. M. Alvarez-Rodríguez, “Towards Effective SysML Model Reuse,”
in Proceedings of the 5th International Conference on Model-Driven Engineering and Software
Development - Volume 1: MODELSWARD, 2017, pp. 536–541.

8. Elena Gallego, J. M. Alvarez-Rodríguez and J. Llorens, “Reuse of Physical System Models by means of
Semantic Knowledge Representation: A Case Study applied to Modelica,” in Proceedings of the 11th
International Modelica Conference 2015, 2015, vol. 1.

9. N. Juristo and A. M. Moreno, Basics of Software Engineering Experimentation, vol. 5/6. Springer Science &
Business Media, 2001.

10. W. B. Croft, D. Metzler, and T. Strohman, Search Engines: Information Retrieval in Practice. Pearson
Education, 2010.

11. J. H. Hayes, A. Dekhtyar, and S. K. Sundaram, “Improving after-the-fact tracing and mapping: Supporting
software quality predictions,” IEEE Softw., vol. 22, pp. 30–37, 2005.

OSLC KM

References

