
www.incose.org/symp2019

Systems–Software Engineering
Role Interface

Sarah Sheard, Mike Pafford, Mike Phillips

www.incose.org/symp2019 2

Copyright 2019 Carnegie Mellon University and Mike Pafford. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-
D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded
research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as
an official Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT
NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT
MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form
without requesting formal permission. Permission is required for any other use. Requests for permission should be
directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM19-0630

Agenda
• How are CPS different?
• SysE and SWE roles and activities

– Including agile roles and processes
• Questions to ask
• Vision

www.incose.org/symp2019 3

“Systems Engineering-Software Engineering Interface
for Cyber-Physical Systems”
S. Sheard, M. Pafford, M. Phillips

INCOSE’s “Systems and Software Interface Working Group” (SaSIWG)

*Paper gives more history and recounts failures of several safety-critical systems involving software, and more on SoS roles

Software in Satellites

www.incose.org/symp2019 4

1970s 1980s 1990s

2000s 2010s 2020s?

NW2

NW4

NW1

NW3

Red = SW Brown = System

Reference: Sheard, 2014. “The changing relationship of systems and software in satellites,”
July, SEI Blog: https://insights.sei.cmu.edu/sei_blog/2014/07/the-changing-relationship-of-systems-and-software-
in-satellites-a-case-study.html

New Kinds of Systems

• “Systems of systems”
• “Complex systems” (“Emergent systems”)
• “Cyber-physical

systems”

www.incose.org/symp2019 5

SysE and SWE Responsibilities

www.incose.org/symp2019 6

Both: Perform coordinated roles (next 3 slides)
SWE: Architect, design, and implement SW in a system context

SysE: Adapt SysE practices to include SWE as important participants

Reference: Sheard, 2014. “Needed: Improved Collaboration Between Software and Systems Engineering,” May, SEI Blog:
https://insights.sei.cmu.edu/sei_blog/2014/05/needed-improved-collaboration-between-software-and-systems-engineering.html

Tasks, Roles, and Activities1
Tasks Systems Engineering Software Engineering
1. Implement (none) Programmer, Coder, Tester of code,

Agile team roles (coding), Debugging
and documentation, Maintain skills

2. Architect/
Design: ID
components
& interfaces,
alloc. rqts

SD System Designer, System
Architect, RO Requirements Owner,
G Glue among subsystems
Stay faithful to, or deliberately modify,
design during maintenance

Design software architecture
Architect software, including detailed
design. Agile team roles (refactoring).
Keep design/architecture in mind during
maintenance

4. Analyze
System and
own external
interfaces

Analyze budgets, margins, timing,
failure modes
Characterize external systems &
interfaces; SA System Analyst;
CI Customer Interface

Analyze budgets, margins, timing, failure
modes
Characterize external systems &
interfaces; architecture analysis
Maintenance analyses

www.incose.org/symp2019 7

1- and 2-letter roles: from (Sheard, 1996) “Twelve Systems Engineering Roles”

Tasks, Roles, and Activities2
Tasks Systems Engineering Software Engineering
3. Lead &
Coordinate
(technical)

Liaison to other disciplines incl. SWE
and component builders
Risk identification and balancing
CO Coordinator

Software risk identification and
escalation to system risk as approp.
Liaison with other SWEs and with SysE
Agile team roles (leading, coordinating)

5. V&V Plan and monitor system test
processes and results
Validate requirements through system
operation
VV V&V Engr.; LO Logistics/Ops Engr

Architecture evaluation
Plan and execute SW V&V throughout
build
Agile team roles (adequacy, need vs
backlog)
Maintenance V&V

6. Manage
people

Manage systems engineers, ensure
they can learn broadly
TM Technical Manager
PE Process engineer

Manage software engineers, ensure they
can keep current

www.incose.org/symp2019 8

Tasks, Roles, and Activities3
Tasks Systems Engineering Software Engineering
7.Coordinate
(project,
mgmt.)

Interact with system-level customers;
maintain agreements and resources;
CO Coordinator

Interact with users and software-
proficient customers
Obtain agreements and resources

8. Plan and
monitor

Technical management
TM Technical manager, PE Process
Engineer

SW Task or sprint management
Agile sponsor roles

9. Manage
risk

Balance application of resources to
reduce and mitigate system-level
risks

Apply resources for software risk
mitigation; escalate SW-related risks to
system level as needed

10. Manage
configurations,
data, and
quality

IM Do CM, QA, and data manage-
ment for system as a whole; maybe
for non-software-related pieces
Identify system quality measures and
measure & improve system quality

Perform these tasks for software, data,
and maybe for computer hardware
Measure and predict defects; make
changes to improve quality

www.incose.org/symp2019 9

SWEs Should Architect, Design, and Implement
SW in a Systems Context
• Security vulnerabilities, countermeasures, patterns, code

review, static testing…
• Understand SysE practices and coordinate
• Design for modifiability
• Adapt existing software
• Maintain
• Make defensible decisions (via trade studies or other)
• Ask the right questions

www.incose.org/symp2019 10

SysEs Should Adapt Systems Engineering
Practices to Include Software Engineers
• Identify SW architect roles in early system design and

ensure they are done by right people
• Include SW options in trade studies

– Utility functions of SW contributions to options

• Identify, analyze, manage, and mitigate system-level
risks

• Ask the right questions

www.incose.org/symp2019 11

Ask Questions
SysEs:
• What are inputs and outputs of

SW process?
• What major architectural decisions

are needed, when? Options?
• How reduce risk of cyberattack?
• What SW risks could escalate?
• What does SW need from me?
• Will this change be easy or hard to

implement?
• What decisions should be made

first?

www.incose.org/symp2019 12

SWEs:
• How much do project leaders,

managers know about Sys&SW?
• What does SysE need to know

from SWE?
• To what level of detail will SysE

models be decomposed?
• What groups are you assuming

SWEs will interface with?
• What are all the specs SW might

need to follow?
• How final are the requirements:

when might they change?

Vision: high-performance Sys-SW Interface for CPS
• SysEs and SWEs, working

closely together, ensure that the
best CPS is designed, built, and
maintained.

• A chief SWA and chief SysE(or
equivalent titles) coordinate,
jointly plan what information they
need and can provide.

• Timely trade studies, performed
jointly, ensure affordability.

• SW architectural concerns are
satisfied during system
architecture development.

• SWEs/SWAs remain up to speed with
a rapidly evolving knowledge base
SysEs stay knowledgeable about
broad domain and customer

• Jointly identify and escalate risks
• Develop system designs in modeling

tools that interface seamlessly with
SWEs’ modeling tools.

• SysEs maintain responsibility for the
non-deterministic and emergent needs
of the system
SWEs help ensure their deterministic
and evolving SW meets those needs

www.incose.org/symp2019 13

www.incose.org/symp2019

Backup

SysE and SWE -1

www.incose.org/symp2019 15

Engineering

• Definition
• IEEE Code of Ethics: we agree:

1. to hold paramount the safety, health, and welfare of the
public, to strive to comply with ethical design and sustainable
development practices, and to disclose promptly factors that
might endanger the public or the environment;

2. to avoid real or perceived conflicts of interest whenever
possible, and to disclose them to affected parties when they
do exist; (and 8 more)

www.incose.org/symp2019 16

Systems Engineering

• Post WWII
• Deal with complexity
• Provide top-level view,

integration, and balance

• INCOSE Code of Ethics

RO Requirements owner
SD System designer
SA System analyst
VV V&V engineer
LO Logistics & ops engineer
G Glue among subsystems
CI Customer Interface
TM Technical manager
IM Information manager
PE Process Engineer
CO Coordinator

www.incose.org/symp2019 17

12 SysE Roles (Sheard 1996)

Software Engineering

• Term was aspirational, 1968
• Software was:

– Small programs on
specific computers

• Software is now:
– tiny through huge

programs,
– running in “the cloud,”
– basis of nearly all new

functionality in systems

• Where is discipline,
professsionalism, code of
ethics?

• How engineer safety, security,
maintainability, quality?

• Discontinued professional
exam* for SWEs as of 2019

www.incose.org/symp2019 18

*National Council of Examiners
for Engineering and Surveying

Major Problem: Toyota Throttle Software

www.incose.org/symp2019 19

Toyota Unintended Acceleration and the Big
Bowl of “Spaghetti” Code
Posted on Thursday, Nov 7th, 2013 Safety Research & Strategies, Inc.*

Last month, Toyota hastily settled an Unintended Acceleration lawsuit – hours after an
Oklahoma jury determined that the automaker acted with “reckless disregard,” and delivered a
$3 million verdict to the plaintiffs – but before the jury could determine punitive damages.

What did the jury hear that constituted such a gross neglect of Toyota’s due care obligations?
The testimony of two plaintiff’s experts in software design and the design process gives some
eye-popping clues. After reviewing Toyota’s software engineering process and the source code
for the 2005 Toyota Camry, both concluded that the system was defective and dangerous, riddled
with bugs and gaps in its failsafes that led to the root cause of the crash….

* http://www.safetyresearch.net/blog/articles/toyota-unintended-acceleration-and-big-bowl-
%E2%80%9Cspaghetti%E2%80%9D-code

Major Problem: Toyota Throttle Software

www.incose.org/symp2019 20

Toyota Unintended Acceleration and the Big
Bowl of “Spaghetti” Code
Posted on Thursday, Nov 7th, 2013 Safety Research & Strategies, Inc.*

Last month, Toyota hastily settled an Unintended Acceleration lawsuit – hours after an
Oklahoma jury determined that the automaker acted with “reckless disregard,” and delivered a
$3 million verdict to the plaintiffs – but before the jury could determine punitive damages.

What did the jury hear that constituted such a gross neglect of Toyota’s due care obligations?
The testimony of two plaintiff’s experts in software design and the design process gives some
eye-popping clues. After reviewing Toyota’s software engineering process and the source code
for the 2005 Toyota Camry, both concluded that the system was defective and dangerous, riddled
with bugs and gaps in its failsafes that led to the root cause of the crash….

* http://www.safetyresearch.net/blog/articles/toyota-unintended-acceleration-and-big-bowl-
%E2%80%9Cspaghetti%E2%80%9D-code

…

The accepted, albeit voluntary, industry coding standards were first set by Motor Industry

Software Reliability Association (MISRA) in 1995. Accompanying these rules is an industry

metric, which equates broken rules with the introduction of a number of software bugs: For every

30 rule violations, you can expect on average three minor bugs and one major bug. Toyota made

a critical mistake in declining to follow those standards, he said.

When NASA software engineers evaluated parts of Toyota’s source code during their NHTSA

contracted review in 2010, they checked 35 of the MISRA-C rules against the parts of the Toyota

source to which they had access and found 7,134 violations. Barr checked the source code

against MISRA’s 2004 edition and found 81,514 violations….

www.incose.org/symp2019

