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Bottom Line Up Front

2

SBD Helps Assess the Impact of 
Requirements on the Feasible TradepsaceSBD Helps Assess Design Decisions SBD Helps to Inform System 

Engineers and Stakeholders

Wingspan 9 Engine Type P \ 565 2,674                     Feasible Cost vs Value points

97,326                   Total infeasible designs

Legend -                        Infeasible designs with stocastic parameters
Data 97,325                   Infeasible designs with deterministic parameters

EO Sensor 
Pixel Width 

Choice:

Horizonal 
Pixels

Vertical 
Pixels

EO Sensor 
Pixel FOV 
Choice:

Field of View
Calculation

1 200 200 1 15 Notional Data Predicted design performace and costs

2 400 400 2 30 22,200,000 Physics model calculations
3 600 600 3 45 -                        Designs with stochastic parameters
4 800 800 4 60 100,000                 Designs with deterministic parameters
5 1000 1000 5 75 1,100,000              Value measure estimates
6 1200 1200 6 90 100,000                 Cost estimates
7 1400 1400
8 1600 1600
9 1800 1800 Design definition and uncertainty specification
4 800 800 6 90 7                           Design Parameters

145,800                 Combinations of design parameters using bins
IR Sensor 

Pixels 
Choice:

Horizonal 
Pixels

Vertical 
Pixels

IR Sensor 
FOV Choice: Field of View

100,000                 Designs generated by SIPmath
1 200 200 1 15 47                         Physics models and formulas
2 400 400 2 30 19                         Physics models with uncertainty
3 600 600 3 45 4                           Illities

Sensor Choice
4 800 800 4 60 2                           Illities with Uncertainty
5 1000 1000 5 75 11                         Value Measures
6 1200 1200 6 90  8                           Value measures with uncertainty
7 1400 1400

8 1600 1600
Swing Weight Matrix Swing Weight Uncertainty

9 1800 1800 Percentage Minus Plus Plus and Minus

3 600 600 6 90
Assessed 

fi used fi wi Assessed 
fi used fi wi Assessed fi Assessed 

fi used fi wi 20% FALSE FALSE FALSE

5 years Probability of detecting a 
vehicle night 100 100.00 0.14 Probability of detecting a 

human day 75 75.00 0.11 Time Required to scan 
night 60 60.00 0.09 20% FALSE FALSE FALSE

Probability of detecting a 
vehicle day 99 99.00 0.14

Time Required to scan 
day 50 50.00 0.07 20% FALSE FALSE FALSE

Probability of detecting a 
human night 98 98.00 0.14

Difference from attack 
helicopter altitude 50 50.00 0.07 20% FALSE FALSE FALSE

 Weighted 
Value Score 20% FALSE FALSE FALSE

2
Time required to fly 10km 

(Mins) 60 60.00 0.09 UAS Weight 30 30.00 0.04 20% FALSE FALSE FALSE

8 Dwell Time (Mins) 60 60.00 0.09 20% FALSE FALSE FALSE

7 20% FALSE FALSE FALSE

8
Percieved Area of 
SUAV at Altitude 20 20.00 0.03 20% FALSE FALSE FALSE

9 20% FALSE FALSE FALSE
2 20% FALSE FALSE FALSE
2
3
7 sum of fi 702.00
0
7

54

$9,260

$6,250 Percent 
Varied

$7,257 Ility Minimum Most 
Likely Best Number in use 0.00

$4,176 Availabiltity 0.9 0.95 0.97 95% 0.00
$2,396 Reliability 0.92 0.95 0.97 95% 0.00
$6,913 0.00

############ 0.00
0.00

79
FALSE

Allowed? Used?
TRUE  FALSE 
TRUE  FALSE 
TRUE  FALSE 
TRUE  FALSE 
TRUE  FALSE 

 FALSE 
 FALSE  All Perfect Options? 

 Any Perfect Options 

Performance Uncertainty

FALSE

TRUE

Endurance
Cruising Velocity

                                3.00 
                                3.00 

Perfect Options

 Perfectly Available Sensors 
 Perfectly Reiliable Sensors 

 Perfect Option 

 Perfectly Survivable Sensors 
 Perfectly Restorable Sensors 
 Perfectly Detecting Sensors 

Difference from attack helicopter altitude
Percieved Area of SUAV at Altitude

 Initial Cost of UAVs 

 Total Cost in millions 

 Labor Hours 

Probability of detecting a human day

Total Value

Probability of detecting a vehicle day
Probability of detecting a human night
Probability of detecting a vehicle night

 Unit Manpower Cost 

 Unit Operations Cost 

 Maintenance Cost 
 Sustaining Support Cost 

 Indirect Support Cost 

Some impact of 
site variation

Minor impact 
of site variation

Significant 
impact of 

performance 
variation

Value Calculations

Value Measure

UAS Weight

Time required to fly 10km (Mins)

Time Required to scan day

Time Required to scan night

Dwell Time (Mins)

Service Life

Critical to mission Important to mission

UAV Integrated Set-Based Design Tradespace Tool 
Research sponsored by ERDC ERS program and data provided by ARDEC (Dr. Matthew Cilli and his UAV team)
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Overview
q UAV Case Study
q Point-Based vs. Set-Based Design
q SBD Implementation
q Design Decision Evaluation
q Requirements Analyses
q System Engineers/Stakeholders  

Interactions
q SBD Challenges
q Future Research & Summary
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UAV Demonstration Data

Cilli, Matthew. "Decision Framework Approach Using the Integrated Systems Engineering Decision Management 
(ISEDM) Process." Model Center Engineering Workshop, Systems Engineering Research Center (SERC). 31 July 2017.
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1. Using a notional UAV Case Study, this research 
applies the Trade-off Analytics Framework and SBD 
to the case study.

2. Seven design decisions were propagated through 
models to performance measures, value, and cost.
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Synthesizing Results –
Additive Value Model

The additive model assumes preferential independence.  See Keeney & Raiffa, 1976, and Kirkwood, 1997 for additional models. 

1. The first step is to develop a 
value curve for each 
performance measure that 
scales from a required 
performance level to an ideal 
performance level. 

2. Any alternative that does not 
meet a requirement for any 
performance measure is 
considered infeasible.

3. For all feasible alternatives, 
the additive value model 
calculates each alternative’s 
value.

Note: There exist several utility 
and value models in addition to 
additive value model shown in this 
example.
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Life Cycle Cost Model

Hardware Cost
𝐴𝑖𝑟 𝑉𝑒ℎ𝑖𝑐𝑙𝑒 𝑅𝑒𝑐𝑢𝑟𝑟𝑖𝑛𝑔 𝑈𝑛𝑖𝑡 𝐶𝑜𝑠𝑡 ($𝐾 2013) = 𝐹𝑙𝑦𝑊𝑒𝑖𝑔ℎ𝑡 ∗ 1.002

𝐴𝑖𝑟 𝐹𝑟𝑎𝑚𝑒 𝑈𝑛𝑖𝑡 𝑅𝑒𝑐𝑢𝑟𝑟𝑖𝑛𝑔 𝐶𝑜𝑠𝑡 ($𝐾 2013) = 𝑃𝑎𝑦𝑙𝑜𝑎𝑑𝑊𝑒𝑖𝑔ℎ𝑡 ∗ 5.607
𝑃𝑟𝑜𝑝𝑢𝑙𝑠𝑡𝑖𝑜𝑛 𝑈𝑛𝑖𝑡 𝑅𝑒𝑐𝑢𝑟𝑟𝑖𝑛𝑔 𝐶𝑜𝑠𝑡 ($𝐾 2013) = 𝐹𝑙𝑦𝑊𝑒𝑖𝑔ℎ𝑡 − 𝑃𝑎𝑦𝑙𝑜𝑎𝑑𝑊𝑒𝑖𝑔ℎ𝑡 ∗ 1.808

𝑃𝑎𝑦𝑙𝑜𝑎𝑑 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑈𝑛𝑖𝑡 𝐶𝑜𝑠𝑡 ($𝐾 2013) = 0.5 ∗ 𝐴𝑖𝑟𝐹𝑟𝑎𝑚𝑒𝑈𝑛𝑖𝑡𝐶𝑜𝑠𝑡
𝑇𝑜𝑡𝑎𝑙 𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒 𝐶𝑜𝑠𝑡 $𝐾 2013 = 𝑇𝑜𝑡𝑎𝑙𝐺𝑟𝑜𝑢𝑛𝑑𝑆𝑡𝑎𝑡𝑖𝑜𝑛 + 𝐴𝑖𝑟𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑈𝑛𝑖𝑡𝐶𝑜𝑠𝑡 +

𝑃𝑎𝑦𝑙𝑜𝑎𝑑𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐶𝑜𝑠𝑡 + 𝑃𝑟𝑜𝑝𝑢𝑙𝑠𝑖𝑜𝑛𝑈𝑛𝑖𝑡𝐶𝑜𝑠𝑡 + 𝐴𝑖𝑟𝐹𝑟𝑎𝑚𝑒𝑈𝑛𝑖𝑡𝐶𝑜𝑠𝑡

Support Costs
𝑈𝑛𝑖𝑡 𝐿𝑒𝑣𝑒𝑙 𝑀𝑎𝑛𝑝𝑜𝑤𝑒𝑟 𝐶𝑜𝑠𝑡 ($𝐾 2013) = 250 ∗ 0.5 ∗ 𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑆𝑦𝑠𝑡𝑒𝑚𝑠

𝑈𝑛𝑖𝑡 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝐶𝑜𝑠𝑡 ($𝐾 2013) = (24676 + 0.8286 ∗ 1156 ∗ 𝑇𝑜𝑡𝑎𝑙𝐴𝑖𝑟𝐶𝑟𝑎𝑓𝑡𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦) ∗ 1/10

𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝐶𝑜𝑠𝑡 $𝐾 2013 = 41223 + 0.1261 ∗ 𝐴𝑖𝑟𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠𝑊𝑒𝑖𝑔ℎ𝑡 ∗
𝐴𝑔𝑒𝑂𝑓𝐴𝑖𝑟𝑐𝑟𝑎𝑓𝑡 ∗ 𝑇𝑜𝑡𝑎𝑙𝐴𝑖𝑟𝑐𝑟𝑎𝑓𝑡𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 ∗

1
10

𝑆𝑢𝑠𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑆𝑢𝑝𝑝𝑜𝑟𝑡 𝐶𝑜𝑠𝑡 ($𝐾 2013) = 𝑇𝑜𝑡𝑎𝑙𝐻𝑜𝑢𝑟𝑠^0.7303 ∗ 𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑆𝑦𝑠𝑡𝑒𝑚𝑠
𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡 𝑆𝑢𝑝𝑝𝑜𝑟𝑡 𝐶𝑜𝑠𝑡 ($𝐾 2013) = 2777 ∗ 𝑒(\.\]^_`∗abcdefghijkleck)

Life Cycle Cost
𝐿𝑖𝑓𝑒 𝐶𝑦𝑐𝑙𝑒 𝐶𝑜𝑠𝑡 $𝐾 2013
= 𝑇𝑜𝑡𝑎𝑙𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒𝐶𝑜𝑠𝑡 ∗ 𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑆𝑦𝑠𝑡𝑒𝑚𝑠
+ 𝑈𝑛𝑖𝑡 𝐿𝑒𝑣𝑒𝑙 𝑀𝑎𝑛𝑝𝑜𝑤𝑒𝑟 𝐶𝑜𝑠𝑡𝑠 + 𝑈𝑛𝑖𝑡 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝐶𝑜𝑠𝑡𝑠 + 𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝐶𝑜𝑠𝑡 + 𝑆𝑢𝑠𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑆𝑢𝑝𝑝𝑜𝑟𝑡 𝐶𝑜𝑠𝑡 + 𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡 𝑆𝑢𝑝𝑝𝑜𝑟𝑡 𝐶𝑜𝑠𝑡
∗ 𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝐿𝑖𝑓𝑒

Richards, J. (2018, March 15). UAV Demonstration Cost Model Meeting. (C. Small, Interviewer)
Small, C., Demonstrating Set-Based Design Techniques: A UAV Case study, Master’s Thesis, Industrial Engineering, University of Arkansas, 2018

We use a lifecycle cost model to estimate cost throughout the UAV’s lifecycle.
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Developed Integrated 
Trade-Off Analytics Framework

1. Describe integrated framework 
with analytics terms

2. Retain the sound mathematical 
foundation
a. Multiple Objective Decision Analysis 

for value
b. Life Cycle Cost 
c. Value and Cost Risk

3. Retain SIPmath for MC simulation
4. Identify sets to explore the 

tradespace

Modified from MacCalman, Alexander D., Gregory S. Parnell and Sam Savage. "An Integrated Model for Trade-off Analysis." Parnell, Gregory S. Trade-off Analytics: Creating and Exploring the System 
Tradespace. Wiley, 2016

Small, C., Parnell, G., Pohl, E., Goerger, S., Cottam, C., Specking, E., Wade, Z., (2018) Engineering Resilience for Complex Systems. In: Madni A., Boehm B., Ghanem R., Erwin D., Wheaton M. (eds) Disciplinary 
Convergence in Systems Engineering Research. Springer, Cham, pp. 3-15

Design 
Decisions

D| r, T

Threat
t | m, s, T

Threat 
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Missions
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Performance Measures
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Value
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A

Life Cycle Cost 
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System Functions
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r

Modelling & 
Simulation
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Prescriptive AnalyticsPredictive AnalyticsDescriptive  Analytics

Model-Based Engineering 

The integrated model uses MBE to simultaneously assess the value, 
cost, and risk of the tradespace to identify affordable, efficient 
decisions.
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UAV Case Study Control Panel
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Small, C., Demonstrating Set-Based Design Techniques: A UAV Case study, Master’s Thesis, Industrial Engineering, University of Arkansas, 2018

1. Using random numbers 
generated by SIPmath, the 
tradespace tool uniformly 
explores the design space 
(Monte Carlo simulation).

2. Using discrete and 
continuous design 
decisions, we simulated 
100,000 designs in near-
real time.

3. User selects the level of 
uncertainty on 
performance, cost, and 
preferences and the tool 
summarizes the cost vs. 
value.

4. This presentation uses the 
deterministic UAV model.

9
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Point-Based Design Best Practices

1. Develop integrated models to explore the 
tradespace

2. Use optimization to identify Pareto frontier in 
cost vs. value space, e.g.,

a. Whole System Trades Analysis Tool (WSTAT)

i. Sandia National Laboratory

ii. Genetic Algorithm

b. Advanced Collaborative Systems 
Optimization Modeler (ACSOM)

i. Wayne State

ii. IP with heuristic

3. Help identify promising point designs for next 
development phase

11

https://www.sandia.gov/CSR/_assets/documents/WSTAT.pdf

Heuristic optimization techniques are used to find Pareto solutions, but 
optimality is not guaranteed due to significant non-linearity in the tradespace.

All points were 
“optimal” for a 

specific run.



Tradespace Representation

12

1. Monte-Carlo representation of the feasible tradespace helps to identify a 
Pareto Frontier. 

2. Does not provide insights into how to assess design decisions or 
requirements.

Specking, E., Shallcross, N., Parnell, G., Pohl, E., Goerger, S., Informing Early System Requirements and Design Decisions using Set-Based Design. Systems Engineering. (In progress 2019)



Set-Based Design Distinctions
1. “Considers large number of designs”

2. “Allow specialist to consider a design 
from their own perspective and use 
the intersection between individual 
sets to optimize a design”

3. “Establish feasibility before 
commitment”

4. Set-Based Design is a concurrent 
engineering alternative that provides 
improved stakeholder value through 
extensive uncertainty resolution and 
improved alternative designs

D. J. Singer, N. Doerry, and M. E. Buckley, “What Is Set-Based Design?,” Naval Engineers Journal, vol. 121, 
no. 4, pp. 31–43, 2009.

13

Commercial and government organizations have used Set-Based Design.

Literature lacks insights on how to implement SBD in a team-based environment.



SBD Visualization

1. Singer et al. do not provide how to perform SBD. This figure provides a visual 
representation that encompasses Singer et al.’s SBD characteristics. 

2. SBD requires design and analysis techniques to perform uncertainty resolution and 
assess design feasibility on the large number of alternatives.

14
Specking, E., Shallcross, N., Parnell, G., Pohl, E., Goerger, S., Informing Early System Requirements and Design Decisions using Set-Based Design. Systems Engineering. (In progress 2019)



Trade-off Analytics with
Point-Based vs. Set-Based Design

Cost ($)

Va
lu

e

Set 1

Set 2
Set 3

Set 4

Set 5
Point in Set

Point-Based 
Design Point

Wade, Z., Parnell, G., Goerger, S., Pohl, E., Specking, E. “Designing Engineered Resilient Systems Using Set-Based Design” 16th Annual Conference on Systems Engineering Research, Charlottesville, Virginia, May 8-9, 2018 

1. Design points can be grouped in sets.

2. SBD seeks to identify the most promising sets. 

15



PBD vs. SBD In Practice

Small, C., Buchanan, R., Cilli, M., Parnell, G., Pohl, E., Wade, Z., “A UAV Case Study with Set-based Design,” 28th Annual INCOSE International Symposium, 7-12 July 2018, Washington, DC.

1. Sets are determined by engine type and wingspan. Deterministic analysis 
shows the value vs cost for the 10 sets.

2. In iteration 2 of the notional case study, SBD identified improved 
solutions compared to the original 32 point solutions.

16



SBD TSE Validation Process
100,000 SBD Points with Genetic Algorithm Points

1. Initial Goal:  Use optimization to validate SBD.
2. Heuristic algorithms are commonly used to find efficient design points.
3. Validation process using Excel’s genetic algorithm in Solver (evolutionary) coded into a custom macro 

to vary cost and find maximum value.

TSE with SBD found 189 design points that dominated the genetic algorithm points!

Specking, E., Parnell, G., Pohl, E., Buchanan, R., “Evaluating a Set-Based Design  Tradespace Exploration Process,” 17th Annual Conference on Systems Engineering Research, April 3-4, 2019 
17
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Design Sets

1. Design decisions can be discrete or continuous

2. Performance calculated based on design decisions and scenarios

3. Types (mutually exclusive and collectively exhaustive)

a. Design set drivers:  fundamental design decisions that define 
platform characteristics for future missions

b. Design set modifiers:  design decisions that are “added on” to 
the platform and can be modified to adapt to new missions 
and/or scenarios

Specking, E., Whitcomb, C., Parnell, G., Goerger, S., Pohl, E., Kundeti, N., “Literature Review: Exploring the Role of Set-Based Design in Trade-off Analytics,” Naval Engineers Journal, American 
Society of Naval Engineers, Volume 130, Number 2, 1 June 2018, pp. 51-62. 

19

SBD requires a methodology to identify the set drivers.



1. 7 step process to use SBD with the 
Integrated Trade-off Analysis 
Framework in early system design.

2. Informs requirements and 
converges to a set of sets to carry to 
next design phase.

Early Design SBD Process

Specking, E., Parnell, G., Pohl, E., and Buchanan, R., “Early Design Space Exploration with Model-
Based System Engineering and Set-Based Design,” Systems, vol. 6, no.4, p. 45, Dec. 2018.
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Assess Design Decisions with Sets

Sets provide insights about design decisions not obvious using points alone.
1. Less than 1% of blue engines are feasible (11 out of 500,000)
2. IR Sensor Field of View not a useful set driver (requires more analysis)
3. Wingspan may be a useful set driver
4. Combination of engine and wingspan provides additional information 

Parnell, G.S., Specking, E., Cilli, M., Goerger, S., & Pohl, E., “Using Set-Based Design to Inform System Requirements and Evaluate Design Decisions, INCOSE International Symposium, Orlando, FL, July 20-25, 2019
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Requirements Analysis with SBD

Physics-based parametric models removed 72% of the tradespace 
(orange to blue). The remaining 28% is determined by requirements.

Parnell, G.S., Specking, E., Cilli, M., Goerger, S., & Pohl, E., “Using Set-Based Design to Inform System Requirements and Evaluate Design Decisions, INCOSE International Symposium, Orlando, FL, July 20-25, 2019

24



Effects of Changes in All 
Requirements

Varying all requirements dramatically changes the number of feasible 
designs (79% change – 924 to 4366).

1. Relaxation:  4,366 feasible designs
2. Constrained:  924 feasible designs

25
Parnell, G.S., Specking, E., Cilli, M., Goerger, S., & Pohl, E., “Using Set-Based Design to Inform System Requirements and Evaluate Design Decisions, INCOSE International Symposium, Orlando, FL, July 20-25, 2019



Effects of individual 
requirement changes

Not all requirements have a significant impact on the 
feasible tradespace.

1. Detect Human Activity at Night: Impacts the number of 
feasible designs

2. Detect Vehicular Activity at Night: No impact on the 
number of feasible designs

26
Parnell, G.S., Specking, E., Cilli, M., Goerger, S., & Pohl, E., “Using Set-Based Design to Inform System Requirements and Evaluate Design Decisions, INCOSE International Symposium, Orlando, FL, July 20-25, 2019



Evaluating the Design Space

Changing the tradespace has the potential to generate 
Pareto solutions not found in the original analysis.

27
Parnell, G.S., Specking, E., Cilli, M., Goerger, S., & Pohl, E., “Using Set-Based Design to Inform System Requirements and Evaluate Design Decisions, INCOSE International Symposium, Orlando, FL, July 20-25, 2019

Detect Human Activity at Night
Pareto Points not 
found in original 

UAV model results

Pareto Points not 
found in original 

UAV model results
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Early Design SBD Process

Specking, E., Parnell, G., Pohl, E., and Buchanan, R., “Early Design Space Exploration with Model-Based System Engineering and Set-Based Design,” Systems, vol. 6, no.4, p. 45, Dec. 2018.

SBD requires greater analytical effort than traditional PBD methods.  The added cost is justified by the 
potential for increased program resilience under uncertainty and greater potential to develop better 
system designs.

This process captures the right information from the right people at the right time and executes the 
analytics in near real-time.

29

System Analysis 
View

(Technical)

System Engineering View (Socio-technical)

Specking, E., Shallcross, N., Parnell, G., Pohl, E., Goerger, S., Informing Early System Requirements and Design Decisions using Set-Based Design. Systems Engineering. (In progress 2019)



Example of removing dominated design decision 
options with EO sensor design teams interaction.

A. Original

c

EO Width 6 (13 points), 
7, 8, and 9 (0 points)

1. SBD iterations 
helps remove 
sets and 
enables 
conversations 
among design 
teams about 
requirements 
and design 
options.

2. This is the 
major part of 
SBD missing in 
the literature.

30

B. 1st Revised

EO Width 1 (536 
points) & 5 (778 

points)

C. 2nd Revised

Keep remaining EO Width Sets (2, 3, & 4).
Remove EO/IR FOV sets based upon 

separate analysis.

D. 3rd Revised

Nothing removed
Final Tradespace

Specking, E., Shallcross, N., Parnell, G., Pohl, E., Goerger, S., Informing Early System Requirements and Design Decisions using Set-Based Design. Systems Engineering. (In progress 2019)



Summary of Tradespace Refinement 
Results for All Design Teams

Tradespace

Design Decision Initial 1st

Revised
2nd

Revised
Wingspan
Engine Type E

Operating 
Altitude

600 –
1000

EO Sensor
Width 6 – 9 1, 5

EO Sensor
Field of View 15 30

IR Sensor
Width 6 – 9 1, 5

IR Sensor
Field of View 15 30

Design Decision Final Decision Options

Wingspan 2 – 12

Engine Type P

Operating Altitude 300 – 599

EO Sensor
Width 2, 3, 4

EO Sensor
Field of View 45, 60, 75, 90

IR Sensor
Width 2, 3, 4

IR Sensor
Field of View 45, 60, 75, 90

Decision Options Removed Final Tradespace

31

1. Conversations with design teams about requirements and design options should be held with 
each team of subject matter experts.

2. SBD Iteration is repeated until a final tradespace selected dependent upon the project schedule. 

Specking, E., Shallcross, N., Parnell, G., Pohl, E., Goerger, S., Informing Early System Requirements and Design Decisions using Set-Based Design. Systems Engineering. (In progress 2019)



Impact of Tradespace Refinement

Tradespace
Counts Percentages

Sampled Feasible Pareto Points Feasible
(of Sampled)

Pareto Points
(of feasible)

Initial 100000 1165 12 1.2% 1.03%
1st Revised 100000 10442 19 10.4% 0.18%
2nd Revised 100000 32799 19 33% 0.06%
3rd Revised 100000 43414 18 43% 0.04%

Pareto frontier is not dramatically effected by tradespace refinement process. This 
demonstrates that SBD finds good design alternatives no matter the feasible space. 

32
Specking, E., Shallcross, N., Parnell, G., Pohl, E., Goerger, S., Informing Early System Requirements and Design Decisions using Set-Based Design. Systems Engineering. (In progress 2019)
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Challenges using SBD

1. PBD to SBD culture change
2. Rapid assessment of complex design solutions for 

viability
3. Mission effects generation and assessment on 

larger sets of alternatives using M&S
4. Storage, sustainment, and access to large data 

sets (e.g., tera, peta, exa, etc.) for extended 
periods of time (decades)

5. Data set linkage across domains and specialties
6. Mathematically sound and repeatable processes 

for down selecting and grouping viable systems 
into representative bins for presentation to 
decision makers

34Revised from Specking, E., Whitcomb, C., Parnell, G., Goerger, S., Pohl, E., Kundeti, N., “Literature Review: Exploring the Role of Set-Based Design in Trade-off Analytics,” Naval Engineers 
Journal, American Society of Naval Engineers, Volume 130, Number 2, 1 June 2018, pp. 51-62. 



Future Research

Development of a Model-Based 
System Engineering Framework 
suitable for SBD that includes:

1. Integrated modeling of 
value, cost, and risk

2. Multi-resolution M&S
3. Uncertainty resolution
4. High fidelity supportability 

models
5. High fidelity cost models
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Look for strategic partners to help integrate SBD 
into your system engineering processes.

For example, SBIR research.



Summary
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SBD Helps Assess the Impact of 
Requirements on the Feasible TradepsaceSBD Helps Assess Design Decisions SBD Helps to Inform System 

Engineers and Stakeholders

Eric Specking
especki@uark.edu
479-575-7032
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Requirement Change Overview

Measure Relaxed Constrained Difference
UAS weight (lbs) 2526 2526 0
Time required to fly 10km (Mins) 2526 2515 11
Time required to scan a 5km X 5km box during the day 2526 2515 11
Time required to scan a 5km X 5km box during the night 2709 2241 468
Dwell Time (Minutes) 2574 2515 59
Perceived Area of SUAV at Operating Altitude (ft^2) 2585 2405 180
Difference between operating altitude and attack 
helicopter operating altitude of 1000m 2526 1983 543

Detect Human Activity in Daylight 2983 1962 1021
Detect Vehicular Activity in Daylight 2526 2526 0
Detect Human Activity at Night 3046 1952 1094
Detect Vehicular Activity at Night 2526 2526 0

Scenario Feasible Designs
All Explored Designs 100000
All Requirements Extremely Relaxed 27750
All Measures Relaxed 4366
UAV Model Results 2526
All Measures Constrained 924

Parnell, G.S., Specking, E., Cilli, M., Goerger, S., & Pohl, E., “Using Set-Based Design to Inform System Requirements and Evaluate Design Decisions, INCOSE International Symposium, 
Orlando, FL, July 20-25, 2019
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Infeasibility
• Physics

– Appropriate payload (Max 
payload > total payload 
weight)

• Requirements (minimum 
acceptable)
– UAV Weight (total payload 

weight)
– Probability of detecting 

human day
– Probability of detecting 

human night
– Time required to scan box 

during day
– Time required to scan box 

during night

• All others produce all feasible 
solutions no matter decision 
variables combination

1. Both analyses are consistent. 

2. The payload weight effects requirements, but the total UAV 
weight does not effect feasibility

39
Specking, E., Shallcross, N., Parnell, G., Pohl, E., Goerger, S., Informing Early System Requirements and Design Decisions using Set-Based Design. Systems Engineering. (In progress 2019)



Infeasibility Based upon Physics

1. EO Sensor selection effects the UAV payload weight.
2. Appropriate Payload = total payload weight < Max payload

Small, C., Demonstrating Set-Based Design Techniques: A UAV Case study, Master’s Thesis, Industrial Engineering, University of Arkansas, 2018

Engine Type P; Wingspan 12
IRWidth

FALSE 1 2 3 4 5 6 7 8 9
1 TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE
2 TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE
3 TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE
4 TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
5 TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
6 TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
7 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
8 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
9 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

EOWidth
Appropriate Payload (part of value cal)

40
Specking, E., Shallcross, N., Parnell, G., Pohl, E., Goerger, S., Informing Early System Requirements and Design Decisions using Set-Based Design. Systems Engineering. (In progress 2019)



Infeasibility Based upon Requirements

1. If an UAV is feasible 
based upon 
physics, minimum 
requirements can 
still make a physics 
based feasibility, 
infeasible.

2. EO Sensor selection 
effects models 
provided by sensor 
design team.

129.0705

49.17342

3.348514

< Minimum requirement

Minimum requirement < 50th

Percentile of value function

Top 50 percentile of value function

Key

IRWidth
1 1 2 3 4 5 6 7 8 9
1 1 1 2 3 5 8 12 17 23
2 1 2 3 5 8 12 17 23 30
3 2 3 5 8 12 17 23 30 39
4 3 5 8 12 17 23 30 39 49
5 5 8 12 17 23 30 39 49 61
6 8 12 17 23 30 39 49 61 75
7 12 17 23 30 39 49 61 75 91
8 17 23 30 39 49 61 75 91 109
9 23 30 39 49 61 75 91 109 129

Total payload weight
EOWidth

41
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