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Global Hawk UAV e e
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to the case study.
2. Seven design decisions were propagated through
models to performance measures, value, and cost.
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Cilli, Matthew. "Decision Framework Approach Using the Integrated Systems Engineering Decision Management 5

(ISEDM) Process." Model Center Engineering Workshop, Systems Engineering Research Center (SERC). 31 July 2017.
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1. The first step is to develop a
value curve for each
performance measure that
scales from a required v(x) = Z wv.(X;)
performance level to an ideal
performance level.

where
2. Any alternative that does not v(x) is the alternative’s value,
meet a requirement for any 1 =1 to n 1s the number of the measure,

performance measure is

i ) . Xi is the alternative’s score on the i measure,
considered infeasible.

vi(xi) = 1s the single dimensional value of a score of xi,
3. For all feasible alternatives, wi is the weight of the i"measure,

the additive value model
calculates each alternative’s

n
value. Z”’i =1
i=1

Note: There exist several utility and (all weights sum to one).
and value models in addition to
additive value model shown in this
example.

The additive model assumes preferential independence. See Keeney & Raiffa, 1976, and Kirkwood, 1997 for additional models.
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Hardware Cost
Air Vehicle Recurring Unit Cost ($K 2013) = FlyWeight * 1.002
Air Frame Unit Recurring Cost ($K 2013) = PayloadWeight * 5.607
Propulstion Unit Recurring Cost ($K 2013) = (FlyWeight — PayloadWeight) * 1.808
Payload Average Unit Cost ($K 2013) = 0.5 * AirFrameUnitCost
Total Hardware Cost($K 2013) = TotalGroundStation + AirVehicleUnitCost +
PayloadAverageCost + PropulsionUnitCost + AirFrameUnitCost

Support Costs
Unit Level Manpower Cost ($K 2013) = 250 * 0.5 * NumberOfSystems
Unit Operations Cost ($K 2013) = (24676 + 0.8286 * 1156 * TotalAirCraftinventory) = 1/10
) 41223 + 0.1261 * AirElementsWeight * 1
Maintenance Cost ($K 2013) = (AgeOfAircraft * TotalAircraftInventory) * 10
Sustaining Support Cost ($K 2013) = TotalHours”"0.7303 * NumberOfSystems
Indirect Support Cost ($K 2013) = 2777 * ¢(0-01824=Number0fSystems)

Life Cycle Cost
Life Cycle Cost ( $K 2013)
= TotalHardwareCost x NumberOfSystems
+ (Unit Level Manpower Costs + Unit Operations Costs + Maintenance Cost + Sustaining Support Cost + Indirect Support Cost)
* Service Life

We use a lifecycle cost model to estimate cost throughout the UAV’s lifecycle.

Richards, J. (2018, March 15). UAV Demonstration Cost Model Meeting. (C. Small, Interviewer)
Small, C., Demonstrating Set-Based Design Techniques: A UAV Case study, Master’s Thesis, Industrial Engineering, University of Arkansas, 2018
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e

Describe integrated framework
with analytics terms

Retain the sound mathematical
foundation

a. Multiple Objective Decision Analysis
for value

b. Life Cycle Cost
c. Value and Cost Risk

Retain SIPmath for MC simulation

Identify sets to explore the
tradespace

Developed Integrated

Trade-Off Analytics Framework

Descriptive Analytics

System Functions

Predictive Analytics

Performance Measures

\ 4

f|ms,D,R,t

Assessment s|nT
T

Threat \

Design
=P Decisions
D|rT

Requirements
r

plDlRIflm/S/t’ i/M

Modelling &
Simulation
M|D,R,s, m, t,i

Response Decisions

llities
i|D,R f,M

Life Cycle Cost
C|D,R,M, i, L

R|D,m,s,t

Prescriptive Analytics

Value
VID,R,m, sp,i,L

Service life
L|D,R

Affordability
A

Model-Based Engineering

The integrated model uses MBE to simultaneously assess the value,
cost, and risk of the tradespace to identify affordable, efficient

decisions.

Modified from MacCalman, Alexander D., Gregory S. Parnell and Sam Savage. "An Integrated Model for Trade-off Analysis." Parnell, Gregory S. Trade-off Analytics: Creating and Exploring the System
Tradespace. Wiley, 2016

Small, C., Parnell, G., Pohl, E., Goerger, S., Cottam, C., Specking, E., Wade, Z., (2018) Engineering Resilience for Complex Systems. In: Madni A., Boehm B., Ghanem R., Erwin D., Wheaton M. (eds) Disciplinary
Convergence in Systems Engineering Research. Springer, Cham, pp. 3-15
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1. Using random numbers
generated by SIPmath, the

tradespace tool uniformly
explores the design space
(Monte Carlo simulation).

2. Using discrete and
continuous design
decisions, we simulated
100,000 designs in near-
real time.

3. User selects the level of
uncertainty on
performance, cost, and
preferences and the tool
summarizes the cost vs.
value.

4. This presentation uses the
deterministic UAV model.

Small, C., Demonstrating Set-Based Design Techniques: A UAV Case study, Master’s Thesis, Industrial Engineering, University of Arkansas, 2018
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Develop integrated models to explore the
tradespace

Use optimization to identify Pareto frontier in
cost vs. value space, e.g.,

a.

Whole System Trades Analysis Tool (WSTAT)
i.  Sandia National Laboratory
ii. Genetic Algorithm

Advanced Collaborative Systems
Optimization Modeler (ACSOM)

i.  Wayne State

ii. 1P with heuristic

Help identify promising point designs for next
development phase

Point-Based Design Best Practices

All points were

“optimal” for a
L specific run.
\
\ [
\/ hﬂf‘?fp >
= o s i
A A
L5

Multi-Dimensional Pareto Solution Set

https://www.sandia.gov/CSR/_assets/documents/WSTAT.pdf

Heuristic optimization techniques are used to find Pareto solutions, but
optimality is not guaranteed due to significant non-linearity in the tradespace.

11
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UAV Feasible Tradespace

65
60
55

50

o
40 o

System Performance

30
$139,000 $140,000 $141,000 $142,000 $143,000 $144,000 $145,000 $146,000

Cost (Sk)

1. Monte-Carlo representation of the feasible tradespace helps to identify a
Pareto Frontier.

2. Does not provide insights into how to assess design decisions or
requirements.

12

Specking, E., Shallcross, N., Parnell, G., Pohl, E., Goerger, S., Informing Early System Requirements and Design Decisions using Set-Based Design. Systems Engineering. (In progress 2019)



UNIVERSITY OF

NSAS

COLLEGE OF ENGINEERING

1. “Considers large number of designs”

2. “Allow specialist to consider a design
from their own perspective and use
the intersection between individual
sets to optimize a design”

3. “Establish feasibility before
commitment”

4. Set-Based Design is a concurrent
engineering alternative that provides
improved stakeholder value throug
extensive uncertainty resolution an
improved alternative designs

Set-Based Design Distinctions

The Second Toyota Paradox: How
Delaying Decisions Can Make

Allen Ward * Jeffrey K. Liker * John J. Cristiano * Durward K. Sobek 11
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D. J. Singer, N. Doerry, and M. E. Buckley, “What Is Set-Based Design?,” Naval Engineers Journal, vol. 121,

no. 4, pp. 31-43, 2009.

David J. Singer, PhD., Captain Norbert Doerry, PhD.. and Michael E. Buckley

What is Set-Based Design?

ABSTRACT

On February 4, 2008 Admiral Paul Sullivan
Commander of the Naval y

Command, sent out a letter entitled: Ship Design
and Analysis Tool Goals. The purpose of the
widely distributed memorandum was to state the
requirements and high-level capability goals for
NAVSEA design synthesis and analysis tools
In this memo, Admiral Sullivan expressed the
need for evolving models and analysis tools to
be compatible with, among other things, Set-
Based Design (SBD).  Admiral Sullivan’s
memo was a major step towards improving ship
design programs with new, more powerful
analytical support tools but many have asked.
What is Set-Based Design and how does it
relate to Naval Ship Desi

SED i 3 complesdesign method that recuies 3
shift in how one

design discovery; it allows more of the design

effort to proceed concumently and defers

detailed specifications until tradeoffs are more

fully understood.  This paper describes the
SBI

INTRODUCTION

Tradifional design process or methods have
often failed due to the inherent complexity of
large-scale product design. The push o exclude
£n through automation has left
optimization codes. expert
systems, and synthesis loops cannot capture the
depth o intent of 2 human designer. Designing
large complex systems, such as naval vessels
requires human involvement but the increased
complexity of these vessels also requires a new
approach to design.

Advanced design in the United States has begun

team-based concurrent engineering approach.
with notable successes in the automotive
(Chrysler Viper, Ford Mustang) and aircraft
industries (Boeing 777). Integrated Product
Teams (IPT's) have also been advocated for
future naval ship design (Keane and Tibbitts
1996, Bennett and Lamb 1996, Fireman et al
1998). During the LPD17 design core cross-
functional design teams were co-located or
linked in a virtual environment to perform the
overall design task. The designer members of a
functional team are able to comprehend
process, and negotiate the complex range of
issues and constraints relevant to a particular
design.

Keane et al (2006) discuss the critical need for a
collaborative product development eavironment
to provide a solution to some of the

critical cost and future design issu
Global _Shipbuilding _ Industrial
Benchmarking  Study  (May 2005

vessels cost competitive are in the areas of
design, engineering. and production engineering
Current analysis of the country’s ability to

has also shown that there is a serious shortage of
engineers and a loss of critical skills due to

design _communication,  megotiation. _and

This
opportusity to change the way in which the

Commercial and government organizations have used Set-Based Design.

Literature lacks insights on how to implement SBD in a team-based environment.
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1. Singer et al. do not provide how to perform SBD. This figure provides a visual
representation that encompasses Singer et al."s SBD characteristics.

2. SBD requires design and analysis techniques to perform uncertainty resolution and
assess design feasibility on the large number of alternatives.

Specking, E.,

Shallcross, N., Parnell, G., Pohl, E., Goerger, S., Informing Early System Requirements and Design Decisions using Set-Based Design. Systems Engineering. (In progress 2019)

14
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Value

v

Cost (S)

Point in Set

Point-Based
Design Point

1. Design points can be grouped in sets.

2. SBD seeks to identify the most promising sets.

Wade, Z., Parnell, G., Goerger, S., Pohl, E., Specking, E. “Designing Engineered Resilient Systems Using Set-Based Design” 16th Annual Conference on Systems Engineering Research, Charlottesville, Virginia, May 8-9, 2018
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Cost vs Value

100 @ Point Solutions
90 @ Efficient Points
® Engine E Wingspan 2-3.7
80
70 ® Engine E Wingspan 3.7-5.4
60 ® Engine E Wingspan 5.4-7.1
)
Tju 50 Engine E Wingspan 7.1-8.8
>
40 @ Engine E Wingspan 8.8-10.5
30 ® Engine P Wingspan 2-3.7
20 ® Engine P Wingspan 3.7-5.4
10
® Engine P Wingspan 5.4-7.1
0
® Engine P: Wingspan 7.1-8.8
9 10 11 12 13 14

® Engine P Wingspan 8.8-10.5

Cost

1. Sets are determined by engine type and wingspan. Deterministic analysis
shows the value vs cost for the 10 sets.

2. Initeration 2 of the notional case study, SBD identified improved
solutions compared to the original 32 point solutions.

Small, C., Buchanan, R., Cilli, M., Parnell, G., Pohl, E., Wade, Z., “A UAV Case Study with Set-based Design,” 28t Annual INCOSE International Symposium, 7-12 July 2018, Washington, DC.
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Cost vs Value Engine and Wingspan | ... c p wingspan 10-12
100 Engine P: Wingspan 8-10
90 * Engine P Wingspan 6-8
80 . ,
Engine P Wingspan 4-6
70
* Engine P Wingspan 2-4
O 60
= 50 e Engine E Wingspan 10-12
T
= 40 » Engine E Wingspan 8-10
30 Engine E Wingspan 6-8
20 Engine E Wingspan 4-6
10
e Engine E Wingspan 2-4
0
139000 140000 141000 142000 143000 144000 145000 146000
Cost in SK

1. Initial Goal: Use optimization to validate SBD.

Heuristic algorithms are commonly used to find efficient design points.

3. Validation process using Excel’s genetic algorithm in Solver (evolutionary) coded into a custom macro
to vary cost and find maximum value.

et

TSE with SBD found 189 design points that dominated the genetic algorithm points!

Specking, E., Parnell, G., Pohl, E., Buchanan, R., “Evaluating a Set-Based Design Tradespace Exploration Process,” 17th Annual Conference on Systems Engineering Research, April 3-4, 2019

17
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1. Design decisions can be discrete or continuous
2. Performance calculated based on design decisions and scenarios
3. Types (mutually exclusive and collectively exhaustive)

a. Design set drivers: fundamental design decisions that define
platform characteristics for future missions

b. Design set modifiers: design decisions that are “added on” to
the platform and can be modified to adapt to new missions

and/or scenarios

SBD requires a methodology to identify the set drivers.

Specking, E., Whitcomb, C., Parnell, G., Goerger, S., Pohl, E., Kundeti, N., “Literature Review: Exploring the Role of Set-Based Design in Trade-off Analytics,” Naval Engineers Journal, American
Society of Naval Engineers, Volume 130, Number 2, 1 June 2018, pp. 51-62.
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COLLEGE OF ENGINEERING Analyze Business/Mission @
Needs and System 'E <
Requirements
Develop
Integrated
Model
. Uniformly
1. 7 step process to use SBD with the Develop
Integrated Trade-off Analysis Alternatives
Framework in early system design. No
Evaluate E # of Feasible
2. Informs requirements and Tradespace ! —> Designs
converges to a set of sets to carry to L] Acceptable?
next design phase. | Yes |

Identify Sets

l
é Evaluate Sets m L_
}

Feasible Designs

Select Set(s)

Specking, E., Parnell, G., Pohl, E., and Buchanan, R., “Early Design Space Exploration with Model-
Based System Engineering and Set-Based Design,” Systems, vol. 6, no.4, p. 45, Dec. 2018.
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UAV Feasible Space with Engine Type as Set Driver

65
60
55
50
o
=2
2 @ Engine Type: 0(11)
45
® Engine Type: 1 (2,515)
40
35
30
139000 140000 141000 142000 143000 144000 145000 146000
Cost $K
UAV Feasible Space with Wingspan as Set Driver
65
60
w @ Wingspan: 11 (457)
@ Wingspan: 10 (491)
@ Wingspan: 9 (413)
50 ® Wingspan: 8 (323)
&
2 @ Wingspan: 12 (255)
>
& ® Wingspan: 7 (172)
@ Wingspan: 6 (158)
Wingspan: 5 (157)
40
® Wingspan: 4 (47)
® Wingspan: 3 (42)
35 ® Wingspan: 2 (11)

30

139000 142000 143000 146000

Cost $K

144000 145000

140000

141000

Value

Value

Assess Design Decisions with Sets

UAV Feasible Space with IR Sensor Field of View as Set Driver

® IR FOV: 45 (616)
50
® IR FOV:30(637)

IR FOV: 60 (521)
45
® IRFOV: 74 (371)
® IR FOV:90(297)
10 © RFOV: 15 (84)
35 ®
30
139000 140000 141000 142000 143000 144000 145000 146000
Cost SK
Costvs Value Engine and Wingspan | ¢ uinep wingspan 1012
100 Engine P: Wingspan 8-10
90 * Engine P Wingspan 6-8
80 . X
Engine P Wingspan 4-6
70
* Engine P Wingspan 2-4
60 P e & 3
50 ‘h“ ZM';:V ‘ * Engine E Wingspan 10-12
40 o !‘ L FTo® o ‘?m@‘x S « Engine E Wingspan 8-10
30 Engine E Wingspan 6-8
20 . .
* Engine E Wingspan 4-6
10
* Engine E Wingspan 2-4
0
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Costin SK

1.
2.
3.
4.

Sets provide insights about design decisions not obvious using points alone.
Less than 1% of blue engines are feasible (11 out of 500,000)

IR Sensor Field of View not a useful set driver (requires more analysis)
Wingspan may be a useful set driver

Combination of engine and wingspan provides additional information

Parnell, G.S., Specking, E., Cilli, M., Goerger, S., & Pohl, E., “Using Set-Based Design to Inform System Requirements and Evaluate Design Decisions, INCOSE International Symposium, Orlando, FL, July 20-25, 2019

A
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70

65 |

60 | e All Explored Designs

(100,000)

55 |

50 |
3 e All Measures Relaxed
” 45 | (27,750)

40 |

» UAV Model Results
= |l (2,526)
30 |
o S
[
25 L
136000 138000 140000 142000 144000 146000 148000 150000 152000 154000 156000 158000

Cost SK

Physics-based parametric models removed 72% of the tradespace
(orange to blue). The remaining 28% is determined by requirements.

24

Parnell, G.S., Specking, E., Cilli, M., Goerger, S., & Pohl, E., “Using Set-Based Design to Inform System Requirements and Evaluate Design Decisions, INCOSE International Symposium, Orlando, FL, July 20-25, 2019
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0
» All Explored Designs
(100000)

e All Requirments Extremely
Relaxed (27750)

o All Measures Relaxed {4365“

65

60

55

50

UAV Model Results (2526)

Value

40

e All Measures Constrained
(924)

30

152000 154000 156000 158000

150000

25
136000 138000 140000 142000 144000 146000 148000
Cost 5K

Varying all requirements dramatically changes the number of feasible
designs (79% change — 924 to 4366).

1. Relaxation: 4,366 feasible designs
2. Constrained: 924 feasible designs

25

Parnell, G.S., Specking, E., Cilli, M., Goerger, S., & Pohl, E., “Using Set-Based Design to Inform System Requirements and Evaluate Design Decisions, INCOSE International Symposium, Orlando, FL, July 20-25, 2019
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Effects of individual

requirement changes

UAV Case

I Detect Human Activity at Night |

Detect Human Activity in Daylight

Difference between operating altitude and attack helicopter operating altitude of 1000m

Time required to scan a Skm X 5km box during the night

Perceived Area of SUAV at Operating Altitude (ftA2)

Dwell Time (Minutes)

Time required to scan a 5Skm X S5km box during the day

Time required to fly 10km (Mins)

IDete(t Vehicular Activity at Night |

Detect Vehicular Activity in Daylight

UAS weight (Ibs)

1526 1726 1926 2126 2326 2526 2726 2926 3126

Number of Feasible Design Alternatives

Performance Measure |Relaxed Constrained
Study
UAS weight (lbs) 60 50 40
Time requn.'ed to fly 10km 20 15 10
(minutes)
Time required to scan a
5km X 5km box during the| 220 200 180
day (minutes)
Time required to scan a
5km X 5km box during the| 220 200 180
night (minutes)
Dwell Time (minutes) 30 60 a0
Perceived Area of SUAV at
Operating Altitude (ftA2) 18 16 14
Difference between
operating altitude and
attack helicopter operating 0 0 250
altitude of 1000 m
Detect Huma'n Activity in 0.5 0.6 0.7
Daylight
Detect Vehlcu!a:‘fActlwty in 0.5 0.6 0.7
Detect Hum.an Activity at 0.5 0.6 0.7
Night
Detect Vehlc.ular Activity at 0.5 0.6 0.7
Night

Not all requirements have a significant impact on the
feasible tradespace.

Detect Human Activity at Night: Impacts the number of
feasible designs

Detect Vehicular Activity at Night: No impact on the
number of feasible designs

26

Parnell, G.S., Specking, E., Cilli, M., Goerger, S., & Pohl, E., “Using Set-Based Design to Inform System Requirements and Evaluate Design Decisions, INCOSE International Symposium, Orlando, FL, July 20-25, 2019
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Detect Human Activity at Night

65

60

e All Explored Designs
(100000)

55

® Detect Human Night
Measure Relaxed (3046)

50

45

Value

UAV Model Results (2526)

40

e Detect Human Night
Measure Constrained
(1952)

35

30

25
137000 138000 139000 140000 141000 142000 143000 144000 145000 146000

Cost SK

Changing the tradespace has the potential to generate
Pareto solutions not found in the original analysis.
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Early

Designh SBD Process

System Engineering View (Socio-technical)

[ NN R AR N NN S R R S N NN W S SR SR N WS S S S S WS N S TR N S R N o

System Analysis o™, §1|[ il e i o
Decision E f_: Strategy 1 z e
View — Lo/ ot o [ty :
(Technical) [ sroua | 8| _[—’ e : |
Aralyae Busess/Mission i— Ilu'l § Mpurinl;s:d |—|_ Refine and Update Requirements |-.l : :
U [ —— | =
— System Design : I ARLALEsARALAsLLARALERRRRLY ' |
o . e o o [ o :
A\temahies Z conf:ellﬂ & T :....-.--1 snssssnanuny Evaluate & i
No = Definition Evaluate Reduce Sets
Evaluat 3 # of Feasible ‘ _Eﬁ:f :;:. l-- Tradespace & =
Tradesp: ! 1. De;"ga"':l ., Mndel?utpuls i
T T Prouides L | ]
2 f Identify Sets : - - mmﬂﬂ“& mﬁ:::ﬂn:'k‘ J }"'lh “::ﬂ' ﬂdlﬁl‘{
%" ) II'|(|'||h1 i g' Concept Architects ‘ : =
Ty S
g B B ) o
E' " -\I:Il-:-lll::I':I
SBD requires greater analytical effort than traditional PBD methods. The added cost is justified by the
potential for increased program resilience under uncertainty and greater potential to develop better
system designs.
This process captures the right information from the right people at the right time and executes the
analytics in near real-time.
Specking, E., Parnell, G., Pohl, E., and Buchanan, R., “Early Design Space Exploration with Model-Based System Engineering and Set-Based Design,” Systems, vol. 6, no.4, p. 45, Dec. 2018. 29
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) ARKANSAS =X@meiec 8 com sh gees
courcrorenaineinng . options with EO sensor design teams interaction.

EO Width 1 (536
points) & 5 (778
points)

EO Width 6 (13 points),
7, 8, and 9 (0 points)

A. Original 1. SBD iterations

helps remove B. 15t Revised
sets and
enables
conversations
among design i
teams about | P e
requirements e
and design V B
C. 24 Revised options.

Original Tradespace

1st Revised

D. 31 Revised

2nd Revised
3rd Revised

2. Thisis the
major part of
SBD missing in
the literature.

System Perf
“he
A

System Performance

= Keep remaining EO Width Sets (2, 3, & 4).
Remove EO/IR FOV sets based upon
separate analysis.

Nothing removed
Final Tradespace

30
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Summary of Tradespace Refinement

Results for All Design Teams

Decision Options Removed

Final Tradespace

Tradespace
1st 2nd Design Decision Final Decision Options
Design Decision Initial ) .
Revised Revised
Wingspan Wingspan 2-12
Engine Type E Engine Type P
Operating 600 — . .
Operating Altitude 300 -599
Altitude 1000 perating At
EO Sensor EO Sensor
EO Sensor EO Sensor
4 7
Field of View 15 30 Field of View >, 60, 75,30
IR Sensor IR Sensor
- 1

IR Sensor IR Sensor

: ) 15 30
Field of View Field of View 45: 60; 75; 90

1. Conversations with design teams about requirements and design options should be held with
each team of subject matter experts.

2. SBD Iteration is repeated until a final tradespace selected dependent upon the project schedule.

Specking, E., Shallcross, N., Parnell, G., Pohl, E., Goerger, S., Informing Early System Requirements and Design Decisions using Set-Based Design. Systems Engineering. (In progress 2019)
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Counts Percentages
Tradespace Feasible Pareto Points
I Feasibl P Poi
Sampled | Feasible areto Points (of Sampled) (of feasible)
Initial 100000 1165 12 1.2% 1.03%
1st Revised 100000 10442 19 10.4% 0.18%
2nd Revised | 100000 32799 19 33% 0.06%
3rd Revised | 100000 43414 18 43% 0.04%
Tradespace Evaluation Comparison Tradespace Pareto Point Comparison

60

55

® 3rd Revised (43,414) 3rd Revised

50

System Performance

2nd Revised (32,799) 2nd Revised
1st Revised (10,442) 1st Revised
2239,000 $140,000 $141,000 $142,000 $143,000 $144,000 $145,000 $146,000 iBSDOD $140,000 $141,000 $142,000 $143,000 $144,000 $145,000
Cost ($K) Cost ($K)
Pareto frontier is not dramatically effected by tradespace refinement process. This
demonstrates that SBD finds good design alternatives no matter the feasible space.
32
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1. PBD to SBD culture change

2. Rapid assessment of complex design solutions for
viability

3. Miission effects generation and assessment on
larger sets of alternatives using M&S

4. Storage, sustainment, and access to large data
sets (e.g., tera, peta, exa, etc.) for extended
periods of time (decades)

5. Data set linkage across domains and specialties

6. Mathematically sound and repeatable processes
for down selecting and grouping viable systems
into representative bins for presentation to
decision makers

» ARKANSAS Challenges using SBD

RAPID PROTOTYPING & RESPONSE

Virtual Warfighting, Reduce
Prototyping Time & Cosis

Revised from Specking, E., Whitcomb, C., Parnell, G., Goerger, S., Pohl, E., Kundeti, N., “Literature Review: Exploring the Role of Set-Based Design in Trade-off Analytics,” Naval Engineers

Journal, American Society of Naval Engineers, Volume 130, Number 2, 1 June 2018, pp. 51-62.
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Development of a Model-Based
System Engineering Framework
suitable for SBD that includes:

1. Integrated modeling of
value, cost, and risk

2. Multi-resolution M&S

3. Uncertainty resolution

4. High fidelity supportability
models

5. High fidelity cost models

Look for strategic partners to help integrate SBD
into your system engineering processes.

For example, SBIR research.

RKANSAS Future Research

INTEGRATING SET-BASED DESIGN INTO THE DEPARTMENT OF
DEFENSE ACQUISITIONS SYSTEM TO INFORM PROGRAMMATIC
DECISIONS

olas J. Shalleross

rsity of Arkansas
njshalle@uark.edu

Gregory S. Parnell, PD.
Universify of Arkansas
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Edward A. Pohl, Ph.D.
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Abstract

Over the years, the Department of Defemse (DoD) has i several ts i

process with the goal of producing timely and cost-effective systems. These changes, however, have done il 10

curb major desin problems, delays and cost overruns to programs. Many DoD acquisition programs use Point Based

Design (PBD) approaches in system development, frequently resulting in premature design decisions resulting in
del: and. Delays and ed costs it of the &

undertaken to fix the selected PBD solution prior to the resolution of key technology and budget uncertainties. Set-

Based Design (SBD) i 3 concurent syten design and alysisaleuaive o D, which systematically resolves

program uncertainties early in the design phase, potentially reducing the need for costly and inefficient redesign

aivibe. In applluhm EED el miled dmn 2 conceps for 2 longer period of time into the design process,

resolving Commercial and defense

o saccssstally employed 3 product decelopment (PD). This saceass suggests izt DaD

Seasibility and integration assessment of an SBD process for PD of a large-scale DoD acquisition programs is required.

This research reviews curent DoD acquisition proceses, provides 3 srategi amework for SED inegration ito

d identifi llenges for This paper concludes that integration

of SBD into major DaD =-qumm processes is both feasible and economical, s well as 2 credible and defensible
‘methodology for making complex: design decisions under uncertainty.

Keywords
SetBased Design, Defense Acquisition, Decision Analysis, Model-Based Systems Engineering, Uncertainty
Resolution, Tradespace Exploration

Introduction
The United States Department of Defense (DoD) currently invests trillions of dollars mto weapon system research,
development, and acquisition (United States Office, 2017). for this

significant investment lies with an equally large and complex defense acquisition system; 3 system that has
periodically implemented significant changes to address the oot causes of costly systemic problems and risks. Since
the 1990s, the Govemment Accountability Office (GAO) has identified DoD weapon system acquisitions 25 2 high-
risk area. The reason for this perpetual designation lies within 2 history of significant and nanticipated cost and
schedule growth, resulting in mumerous Nunn-McCurdy cost breaches (United States Government Accountability
Offies 2013). To adiess these coniming eses, the DD bihed Depmtest of Defense stuction (DaD)
5000.02 for the Operation of the Defense Acquisition System. This document significantly increased emphasis on

% UNIVER s[\l]TSYAOSF (neAsSIFED nans

LOLLEQE OF ENGINEERING Miltary Operations Research Society

' 87th SYMPOSIUM

Demonstrating Set-Based Design Concepts
in Support of U.S. Army Acquisition

1720 June 2019

Decisions
'MAJ Nicholas J. Shallcross, MS. Gregory S. Parnell, Ph. D. Edward A. Pohl, Ph.D.
Industrial Engineering Dept Director, M.S. in Engineering 21# Century Professor of Industrial
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SBD UAV Demonstration Model

SBD Helps Assess Design Decisions

Summary

SBD vs. PBD
ntief
Paretoiro ® Pontinset
A +. Point-Based
] set2 Design Point
P ® + Set3 ¢
o
Co el @ )
Cost ($)

Eric Specking
especki@uark.edu

479-575-7032

SBD Implementation

SBD Helps Assess the Impact of

Requirements on the Feasible Tradepsace

N

* All Explored Designs
(100000)

« All Requirments Extremely
Relaxed (27750)

o All Measures Relaxed (4366)

UAV Model Results (2526)

o All Measures Constrained
(924)

SBD Helps to Inform System
Engineers and Stakeholders

1. SBD iterations
helps remaove
sets and
enables
conversations
amang design
teams about

and design

€. 270 Rewised options.

2. This is the
major part of
SBD missing in
the literature.

36


mailto:especki@uark.edu

UNIVERSITY OF EricSpecking

B ARKANSAS SBD Process for Early Design .. ..iouark.edu

COLLEGE OF ENGINEERING 479-575-7032

P R ... T ...

¥

Validate Need &
Approve Initial
Requiremants | -
Davelop Acquisition .
Strategy

Decision Authority
{ Project Manager

Identify
Appropriate Use
Case / Scenario

g I
= identify 1
E Business & = Refine and Update Requirements ad
z Mission Needs 1 =
s?sumn!slgn “ _I I *-ll‘.‘-ll“.ll-llllll--l‘.
ﬁﬂﬂ'ﬂ'lw = i.l.llll.lll..l.l.‘lll‘.llllll%..E
.
i Uniformiy :
) L]
58D Related % '---4 Iﬂlﬂlhﬂfllhﬁ'll'l Develop E Identify Sets
.E l E."-.l‘.1--!‘-.ﬂl.!!-| mi
:""_,__‘ i Evaluate ._ Sets
- E":‘ = == Tradespace & i
ptodel Dutputs
Progides & ' .
Develop Concepts & || Update Models & ,_ Develop Prototypes
. Models Options = & Higher “:""I'
Uncertalnty i| | Concept Architects I |
N ¥ i
=
= L Develop Sub-system | | Update Modals & I i Tﬂ‘"’ml ”““““h““
Input Dutput Models Options Models
—mfl Subsyst ners
_E: Initeate System Development Tradespace Sat Selection
E“ I A af Feasible Desigas I l

Accepiable?

Specking, E., Shallcross, N., Parnell, G., Pohl, E., Goerger, S., Informing Early System Requirements and Design Decisions using Set-Based Design. Systems Engineering. (In progress 2019)


mailto:especki@uark.edu

UNIVERSITY OF

 ARKANSAS  Requirement Change Overview

COLLEGE OF ENGINEERING

Scenario Feasible Designs

All Explored Designs 100000

All Requirements Extremely Relaxed 27750

All Measures Relaxed 4366

UAV Model Results 2526

All Measures Constrained 924

Measure Relaxed Constrained Difference

UAS weight (Ibs) 2526 2526 0
Time required to fly 10km (Mins) 2526 2515 11
Time required to scan a 5km X 5km box during the day 2526 2515 11
Time required to scan a 5km X 5km box during the night 2709 2241 468
Dwell Time (Minutes) 2574 2515 59
Perceived Area of SUAV at Operating Altitude (ft"2) 2585 2405 180

Difference between operating altitude and attack

helicopter operating altitude of 1000m 2526 1983 >43
Detect Human Activity in Daylight 2983 1962 1021
Detect Vehicular Activity in Daylight 2526 2526 0
Detect Human Activity at Night 3046 1952 1094
Detect Vehicular Activity at Night 2526 2526 0

Parnell, G.S., Specking, E., Cilli, M., Goerger, S., & Pohl, E., “Using Set-Based Design to Inform System Requirements and Evaluate Design Decisions, INCOSE International Symposium,
Orlando, FL, July 20-25, 2019
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. Physics

Appropriate payload (Max
payload > total payload
weight)

. Requirements (minimum
acceptable)

UAV Weight (total payload
weight)

Probability of detecting
human day

Probability of detecting
human night

Time required to scan box
during day

Time required to scan box
during night

. All others produce all feasible
solutions no matter decision
variables combination

Specking, E., Shallcross, N., Parnell, G., Pohl, E., Goerger, S., Informing Early System Requirements and Design Decisions using Set-Based Design. Systems Engineering. (In progress 2019)

Infeasibility

Detect Human Activity at Night

Detect Human Activity in Daylight

Difference between operating altitude and attack helicopter operating altitude of 1000m
Time required to scan a 5km X 5km box during the night

Perceived Area of SUAV at Operating Altitude (ftA2)

Dwell Time (Minutes)

Time required to scan a 5km X 5km box during the day

Time required to fly 10km (Mins)

Detect Vehicular Activity at Night

Detect Vehicular Activity in Daylight

UAS weight (lbs)

1526 1726 1926 2126 2326 2526
Number of Feasible Design Alternatives

2726

1. Both analyses are consistent.

2. The payload weight effects requirements, but the total UAV
weight does not effect feasibility

2926

3126

39
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Wingspan (ft.) vs. Weight (lbs.) Fly Weight

45.0 If Electric Engine: Fly Weight (lbs.) = Wingspan = 1.3 4+ 0.91
40,0 e if Piston Engine: Fly Weight (lbs.) = Wingspan * 2.68 + 4.92
ne y-268x149195 . o Max Payload

2_
30.0 R%-0.739 g If Electric Engine: Max Payload (lbs.) = FlyWeight = 0.18

. 9 . ! 9
ot - ®  Electric Motor . ) )
25.0 - . . If Piston Engine: Max Payload (lbs.) = FlyWeight  0.31
- ®  Piston Engine g .
20.0 . L e e P TPPPPPPR Linear (Electric Motor)
e P O i i g . . L .
15.0 o e o O near(Pston tngine) Total Payload Weight = Sensor Weight + Communications Weight
L ] gort”

et =1.3036x + 0.9124 . . . .

100 o0 . ! o 0x4'393 Communications Weight = notionally assumed 0.5 lbs.
RS o
5.0 . ) ° ® °
0.0 .
0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00

Small, C., Demonstrating Set-Based Design Techniques: A UAV Case study, Master’s Thesis, Industrial Engineering, University of Arkansas, 2018

1. EO Sensor selection effects the UAV payload weight.
2. Appropriate Payload = total payload weight < Max payload

Engine Type P; Wingspan 12 Appropriate Payload (part of value cal)
IRWidth EOWidth
FALSE

FALSE
FALSE
FALSE
FALSE 40
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Fly Weight Key
If El -ic Engine: Fly Weight (lbs.) = Wi *1.34+ 091 . .
f Electric Engine: Fly Weight (Ibs.) = Wingspan = 13 + Top 50 percentile of value function [13:348514

if Piston Engine: Fly Weight (lbs.) = Wingspan + 2.68 + 4.92

Max Payload L .
Minimum requirement < 50th

If Electric Engine: Max Payload (lbs.) = FlyWeight = 0.18 49.17342
If Piston Engine: Max Payload (lbs.) = FlyWeight » 0.31 Pe rce ntlle Of va I ue fu nction
Total Payload Weight = Sensor Weight + Communications Weight < Minimum req uirement -
Communications Weight = notionally assumed 0.5 lbs.
1. If an UAV is feasible :
Total payload weight
based upon IRWidth EOWidth
physics, minimum 1 2 3 4 5 6 7 8 9
requirements can
still make a physics
based feasibility,
infeasible.

2. EO Sensor selection
effects models
provided by sensor
design team.

© 0 N O U1 & WN R R
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