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Complex Systems

* Multiplex of relationships/ forces/ interactions
between subsystems & constituent systems

* Difficulties in establishing cause-and-effect

chain

 Very difficult to anticipate the behavior from
the knowledge of the constituents

 Characteristics: Emergence, hierarchical
organization, numerosity....

» The perspective of complexity used in this paper is with respect to the degree of difficulty
in accurately predicting the future behavior

» This complexity is determined by the system being observed, the capabilities of the
observer, and the behavior that the observer is attempting to predict

www.incose.org/symp2019



MOEs: Measures of Effectiveness

MOEs: Operational measures of success that
are closely related to the achievement of the n  SYs-X-MOEs .

objective of the system of interest [INcOSE Systems )
Engineering Handbook v4]

MOEs represent the overall operational success

criteria, and they manifest at the boundary of Examples of MOEs:
th t = Response time to a user action
c SyS €m = Time to Alert
I : = Availability of the syst
MOEs are independent of the particular LTI L

solution
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MOPs: Measures of Performance

e MOPs: measures that characterize physical
or functional attributes relating to the -
system operation, measured or estimated Complex

under specified test and/or operational N System m
environmental conditions [INCOSE Systems & S

: : ystem B
Engineering Handbook v4]

e MOPs define the key performance o o
characteristics the system should have when
fielded and operated in its intended
operating environment, to achieve the
desired MOEs of the system

* MOPs are dependent of the particular
solution

A
MOEs: 1, 2, ..m
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Emergent Behavior

Emergence refers to the ability of a system to produce a
highly-structured collective behavior over time, from the

interaction of individual subsystems

— Examples: flock of birds flying in a V-formation, and ants forming societies of \\f
different classes of individual ants

For a system, emergent behavior refers to all that arises
from the set of interactions among its subsystems and
components.

Complex systems are expressed by the emergence of global
properties

— ltis difficult, if not impossible, to anticipate emergence just from a
complete knowledge of component or subsystem behaviors
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Machine Learning

Machine learning can be broadly defined
as computational methods using

experience to improve performance or to
make accurate predictions

Machine Learning represents the field of
study that allows computer programs to
learn without being explicitly
programmed
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Neural Networks

e Artificial Neural Networks (NN), comprise a
collection (organized in layers) of interconnected
units (nodes), with each node having the capability
to receive a signal, process the signal, and transmit
the processed signal to other units linked to it

* Recently, there is an explosion in the adoption of
neural network based machine learning techniques
and models in various systems, and are increasingly
being used to control many physical systems, such
as cars and drones.
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Formal Methods: Model Checking sy

 Mathematics based techniques for the specification,

development, and verification of digital systems 3 M&%Mﬁjﬂgﬁ =

Z (N;U) v = M"hm nl BT

— Formal methods can be used to model complex systems as 3. . ;
Sp= ’EM““ Ry Neml(4 70 )“+[/|

mathematical entities rx(f\ =05 [1.(cos - % s

=

o _ T
— The complex system behavior is broken down into smaller Vf{ i Q—O \"%\P@ “j’ﬁ

. . . . < ( L ) ()@J -“\/(X> dx Aﬁ\’( dx

units and each one of these is defined as mathematical o 1+K+7’f+ﬁ i *(WJ
equations DAZsAhsie A K ;

 Model Checking: A model of the system and a way to ?
define the property of the system ? 0 ?
— The model checking tool then explores the possible states the e L

model can be in, and checks for violations of the property
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Proposed Approach Overview

Observe MOEs/ MOPs, learn ~ ~~ <
positive & negative emergent
behavior and predict

L’ AN System
// SUb
-2/ -

Formal Verification

ﬁ Engine ﬁ

Complex !

MOPs MOPs

MOEs: 1, 2, ..m

Assert
negative
emergent
behavior
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The system comprises one or more
subsystems, and corresponding
performance characteristics
manifesting as MOPs

The proposed approach involves
building a Machine Learning (ML)
Classifier that observes the various
MOPs and MQOEs, and learns the
emergent behavior.

The classifier is then used by the
Formal Verification Engine to
assert the occurrence of negative
emergent behavior.
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Overview of Proposed Approach

- e e e e e e e e ===

~

-

e e e e e ==

Establish Formal
Verification Engine

v

Define property of not
having —ve behavior in
Kspecific time zone duration

Execute Formal Verification

engine

A 4

-

i Establish Behavior Model

' (— Complex System— ) \ /
| o I |
' | Analyze Known/ Exhibited | !
TN Behaviors J o :
: Classify Behaviors as : i
i Positive / Negative i :
“. i L Emerigence ) i i
i Train/ Re-train ML ! !
L Classifier : :

([ Check formal assertions of

_______________________
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Experience of New 1
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Aircraft Pitch Control System Case Study

e  Complex System: Aircraft pitch controller

e  MOEs for this system pertain to the comfort level
of the flight

— Comfortable pitch

— Marginal Discomfort: marginal issues, the flight will be felt
like a roller coaster with lower amplitude, finally settling
down to a stable flight path

— Significant Discomfort: will feel like a roller coaster ride,
not divergent but an oscillatory unsettled behavior

a= 1Qc |—-(C,+Cpha+ q—(Cpsmy)+C,
(1u—=Cyp)
O Command
q= ;. [lCM —(C,+Cp) Ja+ [ Gy +0C, (1= uCy) Ja + (nCyy sin }’)5] Desired Controller
? Output [PID]
6= Qq
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Behavior Analysis Experiments “
Exp | Speed | Mass | Density
El 0.8 1.2 1.2
Ci‘i e
om0 E2 0.8 1.0 1.0
(=] 9%
E3 0.8 0.8 0.8
P—e J
o> { “ -, 1 =) E4 1.0 1.2 1.0
L= oo E6 1.0 0.8 1.2
@ E7 1.2 1.2 0.8
Model of the Control System £3 12 1.0 1.2
E9 1.2 0.8 1.0

Orthogonal Array of Experiments
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System Behavior

Theta (deqg)

Control System Behaviour - PID
| I
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70

80

Figure depicts stable
behavior for
variation in the
response to a
doublet set point of
5 degrees.

This stable behavior
is classified as a
positive emergent
behavior
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Controller [Machine Learning]

= The training data set for the ML

Setpoint —=»
model to learn the controller is built P ‘ ;
from simulation runs of the PID Angle of attack o == .4‘,
controller X
i WAX
= The data set (of about 3.7 million Pitch rate g — ’ K

records) is split with 75% of samples
used as training set, and 15% each for

validation and test sets Error = ‘\

Desired Controller
Output [ML]

Input Layer
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Hidden Layer

Activation function f

vi= ) f (i)
J

Output Layer
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Mean Squared Error (mse)

Instances

10

ML Controller — Training

2 Best Validation Performance is 0.98111 at epoch 1000

Validation: R=0.99137

— T

—alidation

— T

B - -0

-0

Qutput ~= 0.98 Target + -0.0049

Output ~= 0,98 Target + -).0062
=

-0 o 20
Targaet Target

Test: R=0.00120 All: R=0.99133 -

= 2 a0
< I - 5
5 5 i
= =
0 100 200 300 400 500 500 T 200 a00 1000 ? - %-10
1000 Epochs o 3
1B Error Histogram with 20 Bins g : é er =0 ° 20
Target Target
Results
& Samples =] MSE £ r
1 W Training: 2695269 9.8108%-1 9.91325¢-1
G Validation: 577558 9.81105e-1 0.91372e-1
naSngzE gt T w Testing: 577558 9.,87390e-1 9.91285e-1

Errors = Targets - Outputs
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ML model training
=  Mean Square Error (MSE):
average squared difference
between the outputs and
targets (i.e. lower values of
MSE are better)
= Rvalues: measures the
correlation between outputs
and targets (i.e. R value closer
to 1 is better)
Learning is stopped at epoch 1000,
to serve the purpose of dealing with
a system that can exhibit negative
emergent behavior at times.
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System Behavior [ML Controller]

Control System Behaviour - NN

—=-=8ET
—_—E |
— ]
E3
_E4 |
— N . .
-~ E6 = Behavior is not as stable
—E7 oy
_ —e8 [ as traditional PID
Y ~—E9 . .
3 controller [intentional]
3 - : = Response time and
=
| offset to target
4.0 5& 6‘0 ?:0 3“0

Time (sec)
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Behavior Characterization L7

* Behavior of the system: Based on the states and the error between the
set point and the achieved

* States are plotted to come up with a zone of behavior that signifies a
normal stable behavior of the system (~1000 random test cases)

 The closed system is made unstable by changing the factors on speed,
density and mass beyond the 20% percent bound

— This is expected as the design is done for a linear zone and in flight controls a lookup
table is used to provide gains as a factor of speed and altitude to ensure a stable

performance across the flight envelope

www.incose.org/symp2019 18



Behavior Characterization: +ve Emergence“+#

40

nr
i}
10
&
¢
= ‘1n
r_
20
-3
b -
-sn | | 1 I -H | 1 1 | | - B J
4.8 4B .4 4.1 9 02 0.4 0.6 L 0 4l Eri b FL| 4 &0

Q (deg's| Error (deg)

Each color indicates a different test case. The angle theta and pitch rate g plots shows the spiraling movement as the
system settles down to the desired setpoint. The theta and error shows a well correlated behavior as the initial theta
for a setpoint of O is the initial error. As theta reduces, the error also reduces

www.incose.org/symp2019 19



Behavior Characterization: —ve Emergence ™

Theta vs Emar
T

Theta (deg)

l l 1 1
e 4 =20 L] 20 40 L-11]
Error (deg)

Each color indicates a different test case. The angle theta and pitch rate g plots is distinctly different from the earlier
case of positive emergence
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Behavior Stability Classifier

ZONE BASED CLASSIFIER ML BASED CLASSIFIER

Coordinates
Error Top 14.4051 | 26.8815 |-13.3832
Theta Top -26.7362 | -16.0381 | 24.5468

Error Bottom 14,4051 | -30.2830 | -13.3832

Theta Bottom | -26.7362 | 18.7733 | 24.5468

Coordinates
Theta Top 0755 | 6.347 |13.170 |16.566 |23.019 | 22679 |17.585 |10.453 | 6.887 |3.490 [ 3.321
q Top -0.668 | -0.573 | -0.287 |-0.159 |-0.065 |0.064 |0.147 |0430 |0516 |0.665 |0.678

Theta Bottom | -0.755 | -3.472 | -12.812 | -18.076 | -22.830 | -27.755 | -24.189 |-9.076 | -5.000 | 3.490 | 3.321

q Bottom -0.668 | -0.637 |-0.484 |-0.346 |-0.189 | 0.045 0.189 0404 |0.537 |0.676 | 0.678
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Zone Based Classifier — PID Controller

Stable simulation run - PID Stable simulation run - PID
T T

|

10F

Error (deg)
=

L
=1
]

20

A0 ' : : L 0 '
A8 0.8 .4 42 ] 02 04 05 08 40 0 20 10 ] 1w 2 10

q(deg/sec) Theta (deg)

= The PID control is simulated with an initial value of state selected from the stable zone. A 20 second
simulation is done for each test case.
= The test cases are defined using an orthogonal array. The behavior exhibited is well within the stable zone
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Zone Based Classifier — ML Controller

Stable simulation run - NN

i Stable simulation run - NN

30
3D -
20 F
E.D -
10 F -
-~ GIF g
o
g g
 of g Dt -
5 =
10}
-0}
20}
20t .
_3D 5
-4D i 1 1 i i i -SG i i 1 ] i i i
-40 -30 -20 -10 0 10 20 30 0.8 -0.6 -0.4 0.2 0 0.2 0.4 06 08
Theta (deq) q (deg/sec)

As expected, the system based on ML Controller has some scenarios of exhibiting negative behaviors. This is
seen by the excursions outside the bounds.

The behavior is not unstable and divergent but perhaps more oscillatory. The behavior gets near the zone of
negative emergence, with potential to impact MOEs if it prolongs the trend.
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ML Classifier

& Samples CE %E
: ' Training: 3507351 6.00732e-1 1.21208e-0
Setpaint e ( - 0 Validation: 751575 1.61671e-0 1.24245e-0
' Testing: 751575 1.61881e-0 1.21571e-0

& Angle of attack @ =

4 rPitchrateq .

Command

. ¢ /

The ML Classifier is built
by tapping in the same
inputs used for the ML
" 1 posive tmergence - CONTroller, and feeding a
o NegativeEmergence gt of six values,
corresponding to current
= time t, and previous five
S >, instance (data set ~5
million records)

4@ pitch Angle 8 —

& Errore —

e[t], e[t-1], .. e[t-5]

B[t], B[t-1], .. B[t-5]

g

q[t]i fﬂt‘ll; E= Q[t'E]

E
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ML Classifier - Performance

OUTPUT CLASS

571514 12439 97.9%
11.4% 0.2% 2.1%
48548 4378000 98.9%
1.0% 87.4% 1.1%

92.2% 99.7% 98.8%
{.8% 0.3% 1.2%
0 1
TARGET CLASS

 The column on the far right of the plot shows the
percentages of all the examples predicted to belong to
each class that are correctly and incorrectly classified.

* These metrics are the precision (or positive
predictive value) and false discovery rate,
respectively.

 The row at the bottom of the plot shows the
percentages of all the examples belonging to each class
that are correctly and incorrectly classified.

 These metrics are often called the recall (or true
positive rate) and false negative rate, respectively.

* The cell in the bottom right of the plot shows the overall
accuracy
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ML Classifier Plug-in to Controller

— -‘. vl o
fcn . o .
el ) " LR STABILITY_NN [ 5°0P¢f e The ML Classifier is
2lays b

ot e I srn plugged on to the

. 5 To Workspaces Contr0| mOdel

—.‘iDHl;.i',"S. > —p  CLASS . . .
TS et _ - * Monitoring is through

— —— s I scope monitor

| '. % MM —

[ To Constant | R e Valuescloserto1

Tapped Delay3 . . .
— indicates positive
| Datlays .
| 1{!‘ m i emergent behavior
Tapped Delayd

* Values closer to O
indicates negative
From4 appe lav: .
e emergent behavior

| &
* Delays
|

]

[u]
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Reflecting ....
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Observe MOEs/ MOPs, learn

positive & negative emergent .' Complex System — W Establish Formal .

behavior and predict i \Analyze g:ﬁ:\’/?érixmb'ted) E i Verificatii)n Engine J !

. i ! i Define property of not :

e We now have a ML Classifier that learns ! Classify Behaviors as o having —ve behavior in :

. oy . . 1 11 i 1 1 .pe . . |

on potential positive and negative = Positive / Negative i| | 1 (specifictime zone duration )

[ f | L L Emergence ) » -

emergence behavior of a complex system | T "1 & ! (‘Execute Formal Verification | |

e - ' Train/ Re-train ML . ; |

e The ML Classifier uses the same inputs as : Classifier —[H N englme )

: - / T |

the complex system ML Controller uses i I T e |

\ [ Establish Behavior Model . !

N ) 'L —ve behaviors ),

Now, can we leverage the classifier in a formal | |  ~777TTTTTTTTTTTIOOT ” S SR .

verification model checking environment to Experience of New |, ( Plug-in ML Classifier
Emergent Behaviors I Lonto Complex System

assert negative emergent behavior...?
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Applying Formal Methods

* Initial states sy is in a region R, of positive emergent behavior.
* Process C(t, S) acts on the states s, and transforms it as a

function of time.
* Bounded disturbance to the system p,, at a time t,such that
the system states are perturbed

* This could be a step change to the theta demand or set point or a
disturbance as a wind gust to the aircraft.

 Thereis atimeT, called the response time of the system in Formal Verification
which the system or process C should get back to equilibrium Ly e Ly

or a region of positive emergent behavior.
* T, could be the measure “time to double” for the system. If this
does not happen, it would imply a negative emergent behavior.
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Formal Verification Engine

MathWorks Simulink Design Verifier is used to assert that in a 2 second (T, =200 frames)
simulation, the system will be stable or not

ZONE BASED CLASSIFIER ML BASED CLASSIFIER

» If for a given value of q the theta is greater than the
upper limits (as defined by the zone) or if theta is less
than the lower limit (as defined by the zone) then the
system is unstable.

» The system should be indicated unstable for a
persistent time of 5 frames to avoid spurious toggle.

» When the input demand (set
point) transitions from O to 5 start
a timer.

» |If timer > 200 the classifier output
is greater than 0.3.
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ML Classifier Performance
Formal Method Case with Violation

S The ML Classifier identifies earlier (at — Set
a . . ——Out
= about 50 frames, with value nearing " y Class NN
v zero, indicating negative emergence), T Ckes
8 as compared to Zone Based Classifier ‘5
- that indicates a negative emergent '
= property at around 160 frames 5

w =10+ -

2
h O
09 "E—ds - -
tl: £
oy =
(7))
i) 20 |
O
v
c 25 =
o
N

'30 | | | |
0 50 100 150 200 250
Frames
PID Controller ML Controller
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negative

emergent
: behavior
B ML Formal Verification
Classifier | ﬁ Engine ﬁ
©/ Observe MOEs/ MOPs, learn ,eTTTTTTTTT T .~
positive & negative emergent * (— Complex System—__ ) °
behavior and predict Analyze Known/ Exhibited
\ Behaviors y

v We have explored an arbitrary stable state as an input criteria and
carried out the formal analysis.

Classify Behaviors as

v The states are selected from the stable zone. Based on the initial Positive / Negative

—— - ———

error the set point is computed and used as constant throughout. £ Emerfence J
v We define that there shall not be any divergence (negative i Train/Re-trainML | [/
emergent property) in a fixed duration of 200 samples. N Classifier ) E
: l .

v We deliberately make the system unstable and the formal engine
is able to provide a violation. .

N o e e o o

v’ The converse, that the system is stable takes significant computing

Establish Formal

Verification Engine
v

Define property of not
having —ve behavior in
\specific time zone duration

L J/

J

~
Execute Formal Verification

engine
\_ g J

[

!

I

}

|

}

1

}

1

1

}

1

}

1

}

|

|

}

|

I

I - ~

I Check formal assertions of

\

\
\

resources and time, and hence we propose future directions to

L —ve behaviors )

_____________________

Experience of New 1
Emergent Behaviors f

exhaustively explore these scenarios

www.incose.org/symp2019

( Plug-in ML Classifier
L onto Complex System
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Conclusions AT

Presented a novel approach for applying formal methods towards
identification and assertion of positive and negative emergence
behavior

The ML Classifier and the Zone Based Classifier can predict the
negative emergent behavior of the system.

— The ML Classifier is specifically applicable for machine learning based complex
systems, since it can be based on tapping the same inputs as that used for the
machine learning subsystem that implements the functionality

— The functioning of the classifier is independent of the control algorithm or the
process.
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Future Work "

Counter Example provided by Formal Verification Engine -
identify the root cause of this behavior and correct the system
for counter acting this behavior

Asserting system does not violate all applicable properties —
requires significant computational resources

Enhance the proposed approach for complex system-of-
systems that have mix of machine learning based systems and
traditional / manual system
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