3oth Annual INCOSE

international symposium

Virtual Event
July 20 - 22, 2020

Do Product Lines Have Sweet Spots?

www.incose.org/symp2020

30th Annual INCOSE

international symposium

Virtual Event
July 20 - 22, 2020

Keith Harper joined Rolls-Royce in 1985 and has
over 30 years experience in the development of
Control Systems and Software. He is the Controls
North America Chief Design Engineer with
accountability for technical review, Civil and Military
certification, Safety and Process Assurance. He is a
past member of the SAE E-36 Electronic Engine
Controls Committee

Andrew Pickard joined Rolls-Royce in 1977 after completing a Ph.D. at
Cambridge University in Fatigue and Fracture of Metals and Alloys. He is
a Rolls-Royce Associate Fellow in System Engineering, a Fellow of SAE
International, a Fellow of the Institute of Materials, Minerals and Mining, a
Chartered Engineer and a member of INCOSE. He is immediate past
Chair of the SAE Aerospace Council, represents Rolls-Royce on the
INCOSE Corporate Advisory Board and is Chief of Staff for INCOSE.

www.incose.org/symp2020

Contents @

 What s a Product Line?

 Where is the sweet spot for Product Lines?
« Managing Variability

« Developing a Product Line

« Software Metrics

« Benefits

e Conclusions

www.incose.org/symp2020 3

What is a Product Line? s

Definitions

Product Line: A collection of reusable System assets, with built-in variability
Instantiation: Tailoring the Product Line to create a valid, unique Application

Application: A verified product created from the Product Line

Objectives
« develop assets once, and then re-use across multiple Applications
« maximum Product Line reuse and minimum Application specific change.

Product Lines must by systematically architected and developed with
deliberate reuse in mind.

www.incose.org/symp2020 4

Where Is the Sweet Spot for Product Lines? %

Consider

« Scope of the product line?
— How similar are the Products (requirements, interfaces and use cases)?

« Candidate architecture?
— Based upon shared (same), similar (variable) and unique features (optional or alternate)

« Variability mechanisms?

— asingle common part number, or a reconfigurable modular part

— afeature that is selectable (included or not included) or tailored (different parameters) or
substituted (pre-defined alternates).

— Can vary between systems, software and hardware

www.incose.org/symp2020 5

Managing Variability

Feature Model provides Product
Line tailoring “rules”

Instantiation process “how to” use
the Product Line and instantiate
an application

Assets include products and
lifecycle data supporting
maximum reuse

Example

Single Hardware part number with
input/output superset

Our Example:

Existing helicopter engine
Multiple New applications
New Control System

i/o reconfigurable in layered s/w

Product Line software with in-built
variability (logic and data)

www.incose.org/symp2020 6

Developing a Product Line — Asset Example

The goal is to develop once, and
then re-use multiple times

It's Iimportant to manage the
lifecycle data as re-usable assets
to the maximum possible extent.

The Application must then
demonstrate the integration of
those assets and thefcompleteness
of the Application itself.

Helo applications achieved >90%
requirements reuse from the
Product Line

System Development System Vernfication
Product Line Application Product Line Application
Eequirements Instantiated Requirements Beview evidence (comrectness) Eeview evidence (completeness)
Feature Model Selected Features Traceability/Validation data Validation Matnx

Safety Case Instantiated Systeam Safety Analysis

Interface Control Document

Venfication Cases & Procedures *

Instantiated Venfication Cases &
Procedures

Verfication results

Venfication Coverage Analysis

Software Development

Software Venfication

Product Line Application Product Line Application
Eequirements Instantiated Fequirements Beview evidence {comectness) Eeview evidence {completeness)
Design Instantiated Design Traceability/Validation data Walidation MMatrix

Source Code Instantiated Source Code

Venfication Cases & Procedures *

Instantiated Venfication Cases &
Procedures

Executable

Component test results *

Software/Software Integration results

Hardware/Software Integration results

Venfication Coverage Analysis

[*across allowable PL range]

Bun-time and memory analysis

www.incose.org/symp2020

Developing a Product Line - Genealogy s

4

In “clone and own”

— new Applications are separately :
maintained copies, with ad-hoc re-use Clem e OrT : Change

sharing requirements, validation and =

Reuse
solutions where possible. emont 2 S

— each Application is built off its previous 1
verson ‘
Version 2
RS =
’ Application 2
Version1

In contrast, Product Lines form the 3
development back bone,
— new applications (or new versions of l 1 l
‘
Appl'cationl ApplicationZ Product Line -
Version 3 Version 2 ersion
Version 2

maturing

Applications) re-instantiated from the
Product Line.

Delay creating multiple applications
until PL mature

www.incose.org/symp2020 8

Hours per Unit of Scope

Software Metrics - Cost

& TurboFan

B TurboProp
A TurboShaft

— \ean
— --1sigma

= = +1sigma

® Product Line
——PL Mean

— -PL-1sigma
= = PL+1sigma

® Application Builds

——AB Mean
— +AB - 1sigma

— = AB + 1 sigma

15
Build #

30

s

W

Cost per unit of scope, by build

www.incose.org/symp2020

“Scope” for each Problem Report is the
number of software modules opened to
make the changes to address the
problem, and the scope for the build is
the sum of modules opened to address
the Problem Reports in the build

Statistical hypothesis testing showed a
significantly lower mean cost per unit
of scope of the Product Line builds.

Combined with the higher proportion of
functional problem reports in these
builds, this shows that Product Line
builds are a very cost-efficient
approach to adding functionality to
control system software.

Relative Hours per Unit of Scope

Software Metrics - Cost

450%

400%

350%

300%

250%

200%

150%

100%

50%

0%

0.0%

PL3

Relative Scope of Build

®e & > H o

TurboFan
TurboProp
TurboShaft
Product Line Builds
Application Builds

-Power (Bound)

ey

W

This figure compares the relative cost (hours) per
unit of scope for the builds with the relative scope of
the build (normalized to build PL2).

www.incose.org/symp2020

There is much more scatter in cost per unit of
scope for smaller scope builds than for larger
builds; the power law fit is to the upper bound
of all of the builds.

The Product Line builds are between two and
three times larger than the largest of the
Application and Non-Product Line builds —
another driver for the cost-efficiency of the
Product Line builds.

10

Hours per Day

Software Metrics - Schedule @

10

The schedule for software builds is much more
strongly impacted by team size than the cost for the
build. An approach is required to normalize for team
size (Pickard and Nolan, 2012)

. Team size is measured as number of 8 hour
days per day deployed on the build

6
. Team size is normalized to 15 8-hour days per
> day using the slope of the mean line through
4 the builds
y = 0.2036x e)
3 || misisthe mean ream RE=0.3798 1 . Build “X” employed a very large team relative
] Size that should have —=-", .
been deployed based e to the scope of the build as a means of
on the scope of the * CEAghl PR Lo - : :
2 A buid . | compressing the schedule of the build.
— |
1 * r +
. * * X !
0 A’A&f’ L. Dad P li * 2 |
0 2 4 6 8 10 12 14 16 18

Eight Hour Days per Day (Measure of Team Size)

www.incose.org/symp2020 11

Software Metrics - Schedule @

Normalized Duration of Build

120% 120%
mean mean . 1sigma
100% 100% 4 ,
- 1sigma +3 sigma +1sigma . , -3sigma
: ! !y 7 .
//
T -
80% 5 80% 7/
[+4]
L
g B Product Line Builds
B Product Line Builds g A Application Builds
60% A Application Builds g 60% ® Non - PLBuilds
® Non - PLBuilds g e Vl€AN
e M QN g = = Plus 1 Sigma
== == Plus1Sigma '_é’ ===+ Minus 1 sigma
40% - —— - Minus 1 sigma S 40% -+ === Plus 3 Sigma
z =« Minus 3 Sigma
20% - 20%
0% 0%
0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000 8000
Normalized Scope of Build Normalized Scope of Build

There is a statistically significant difference in variance if point “X” is included in the schedule correlation. The results
show that deploying a large team on a build to address schedule compression has an adverse impact on the schedule

correlation, in that more people are needed in the team, given the scope of the build, to achieve the compressed
schedule than would be predicted by the schedule correlation.

www.incose.org/symp2020 12

Software — Product Line Maturity

Application Builds - Parallel/Duplicate Activities

Metric

Build

PL Issue Fixed in

PL Issue fixed
Concurrently in the PL

PL Issue Fixed in the App

Application -

Multiple Apps and App Builds and in the Next PL Build Specific Issue

A 25% 0% 50% 25%

B 63% 0% 13% 25%

PRs C 93% 0% 0% 7%
D 0% 81% 0% 19%

E 40% 0% 0% 60%

A 20% 0% 42% 38%

Modules B 43% 0% 8% 49%
Opened C 84% 0% 0% 16%
D 0% 87% 0% 13%

E 13% 0% 0% 87%

Builds A to D built off the immature Product Line.
Build E built off the mature Product Line

Benefits 8T

« Tangible benefits (expected) included cost, schedule, quality, and maturity.

— Some of these could have been due to the improved system engineering focus on the Product
Line.

* Clear benefits when Instantiating an Application from a mature Product Line

— Reduced the effort involved, and enabled smaller, less experienced and more efficient teams to
produce the Application.

— Previous “clone and own” efforts had produced a new certified Application in 24 months. With
Product Lines this was reduced to 12.

* More intangible benefits emerged.

— Product Lines promote a standard house-style.

— Team flexibility improved as there was a larger pool of engineers familiar with the product,
process, tools and lifecycle data.

— Maturing features becomes easier as there were multiple use-cases contributing to the
robustness of a single Product Line solution.

www.incose.org/symp2020 14

Conclusions Py

vy
The Product Line goal is to develop once, and then re-use multiple times.

In addition to exploiting the planned variability, it's important to manage the lifecycle data as re-usable assets to the
maximum possible extent, minimizing both effort and technical risk

Building Applications from an immature Product Line causes a loss in efficiency as a higher proportion of the changes
are deployed multiple times rather than once in a Product Line build.

The Software Metrics analysis shows that

— Product Line Builds are a very efficient way of adding functionality to a control system; the builds concentrate
effort on software creation and verification, they are large scope builds with more of the build effort focused on
adding functionality, and they require significantly less cost (hours) per unit of scope to be deployed

— Like traditional development, deploying a large team to address schedule compression has an adverse impact, in
that more people are required to achieve the compressed schedule than would be predicted by the schedule
metrics and the scope of the build

Building a Product Line should not be undertaken lightly. It is a big investment, but presents a huge benefit once the
Product Line is mature and Application builds can be created and certified as airworthy much faster and at lower cost
than had previously been the case with “clone and own” builds.

www.incose.org/symp2020 15

& 30th Annual INCOSE
international symposium
!ld.. 8, Virtual Event
/ i
\ 'b/,'l/’ July 20 - 22, 2020

www.incose.org/symp2020

