
www.incose.org/symp2020

Do Product Lines Have Sweet Spots?

www.incose.org/symp2020

Keith Harper joined Rolls-Royce in 1985 and has

over 30 years experience in the development of

Control Systems and Software. He is the Controls

North America Chief Design Engineer with

accountability for technical review, Civil and Military

certification, Safety and Process Assurance. He is a

past member of the SAE E-36 Electronic Engine

Controls Committee

Andrew Pickard joined Rolls-Royce in 1977 after completing a Ph.D. at

Cambridge University in Fatigue and Fracture of Metals and Alloys. He is

a Rolls-Royce Associate Fellow in System Engineering, a Fellow of SAE

International, a Fellow of the Institute of Materials, Minerals and Mining, a

Chartered Engineer and a member of INCOSE. He is immediate past

Chair of the SAE Aerospace Council, represents Rolls-Royce on the

INCOSE Corporate Advisory Board and is Chief of Staff for INCOSE.

Contents

• What is a Product Line?

• Where is the sweet spot for Product Lines?

• Managing Variability

• Developing a Product Line

• Software Metrics

• Benefits

• Conclusions

www.incose.org/symp2020 3

What is a Product Line?

Definitions

Product Line: A collection of reusable System assets, with built-in variability
Instantiation: Tailoring the Product Line to create a valid, unique Application

Application: A verified product created from the Product Line

Objectives

• develop assets once, and then re-use across multiple Applications

• maximum Product Line reuse and minimum Application specific change.

Product Lines must by systematically architected and developed with
deliberate reuse in mind.

www.incose.org/symp2020 4

Where is the Sweet Spot for Product Lines?

Consider

• Scope of the product line?
– How similar are the Products (requirements, interfaces and use cases)?

• Candidate architecture?
– Based upon shared (same), similar (variable) and unique features (optional or alternate)

• Variability mechanisms?
– a single common part number, or a reconfigurable modular part

– a feature that is selectable (included or not included) or tailored (different parameters) or

substituted (pre-defined alternates).

– Can vary between systems, software and hardware

www.incose.org/symp2020 5

Managing Variability

www.incose.org/symp2020 6

Feature Model provides Product
Line tailoring “rules”

Instantiation process “how to” use
the Product Line and instantiate
an application

Assets include products and
lifecycle data supporting
maximum reuse

Our Example:

Existing helicopter engine

Multiple New applications

New Control System

Feature Model Instantiation Process

Example Assets

Modular features and requirements

Selection rules - mandated, with
allowable tailoring, optional (select 0
or more) or inclusive/exclusive
(AND, OR)

Allowable data ranges

PL & application team roles

How to use the feature model

How to validate/verify application

Configuration control of PL &
application

Reqts, design, code, test, safety etc

Correctness on Product Line

Completeness on Application

PL & application configured
separately

Single Hardware part number with
input/output superset

i/o reconfigurable in layered s/w

Product Line software with in-built
variability (logic and data)

Developing a Product Line – Asset Example
The goal is to develop once, and

then re-use multiple times

It’s important to manage the

lifecycle data as re-usable assets

to the maximum possible extent.

The Application must then

demonstrate the integration of

those assets and the completeness

of the Application itself.

Helo applications achieved >90%

requirements reuse from the

Product Line

www.incose.org/symp2020 7

Developing a Product Line - Genealogy

• In “clone and own”

– new Applications are separately

maintained copies, with ad-hoc re-use

sharing requirements, validation and

solutions where possible.

– each Application is built off its previous

version

• In contrast, Product Lines form the

development back bone,

– new applications (or new versions of

Applications) re-instantiated from the

Product Line.

• Delay creating multiple applications

until PL mature

www.incose.org/symp2020 8

Clone and Own Product Lines

Application 1
Version 1

Application 1
Version 2

Application 1
Version 3

Application 2
Version 1

Application 2
Version 2

Change

Reuse
Product Line

Version 1
Application 1

Version 1

Product Line
Version 2

Application 1
Version 2

Application 2
Version 1

Product Line

Version 3

Application 1
Version 3

Application 2
Version 2

m
a

tu
ri

n
g

Software Metrics - Cost

Cost per unit of scope, by build

• “Scope” for each Problem Report is the

number of software modules opened to

make the changes to address the

problem, and the scope for the build is

the sum of modules opened to address

the Problem Reports in the build

• Statistical hypothesis testing showed a

significantly lower mean cost per unit

of scope of the Product Line builds.

• Combined with the higher proportion of

functional problem reports in these

builds, this shows that Product Line

builds are a very cost-efficient

approach to adding functionality to

control system software.

www.incose.org/symp2020 9

0 5 10 15 20 25 30

H
o

u
rs

 p
e

r
U

n
it

 o
f

Sc
o

p
e

Build #

TurboFan

TurboProp

TurboShaft

Mean

-1 sigma

+ 1 sigma

Product Line

PL Mean

PL - 1 sigma

PL + 1 sigma

Application Builds

AB Mean

AB - 1 sigma

AB + 1 sigma

PL2PL1

PL3
0

Software Metrics - Cost

This figure compares the relative cost (hours) per

unit of scope for the builds with the relative scope of

the build (normalized to build PL2).

• There is much more scatter in cost per unit of

scope for smaller scope builds than for larger

builds; the power law fit is to the upper bound

of all of the builds.

• The Product Line builds are between two and

three times larger than the largest of the

Application and Non-Product Line builds –

another driver for the cost-efficiency of the

Product Line builds.

www.incose.org/symp2020 10

y = 1.2278x-0.627

0%

50%

100%

150%

200%

250%

300%

350%

400%

450%

0.0% 50.0% 100.0% 150.0% 200.0%

R
e

la
ti

ve
 H

o
u

rs
 p

e
r

U
n

it
 o

f
Sc

o
p

e

Relative Scope of Build

TurboFan

TurboProp

TurboShaft

Product Line Builds

Application Builds

Power (Bound)

PL2
PL1

PL3

Software Metrics - Schedule

The schedule for software builds is much more

strongly impacted by team size than the cost for the

build. An approach is required to normalize for team

size (Pickard and Nolan, 2012)

• Team size is measured as number of 8 hour

days per day deployed on the build

• Team size is normalized to 15 8-hour days per

day using the slope of the mean line through

the builds

• Build “X” employed a very large team relative

to the scope of the build as a means of

compressing the schedule of the build.

www.incose.org/symp2020 11

y = 0.2036x
R² = 0.3798

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10 12 14 16 18

H
o

u
rs

 p
e

r
D

ay

Eight Hour Days per Day (Measure of Team Size)

X

This is the mean Team
Size that should have
been deployed based
on the scope of the
build

Software Metrics - Schedule

There is a statistically significant difference in variance if point “X” is included in the schedule correlation. The results

show that deploying a large team on a build to address schedule compression has an adverse impact on the schedule

correlation, in that more people are needed in the team, given the scope of the build, to achieve the compressed

schedule than would be predicted by the schedule correlation.

www.incose.org/symp2020 12

0%

20%

40%

60%

80%

100%

120%

0 1000 2000 3000 4000 5000 6000 7000

N
o

rm
al

iz
ed

 D
u

ra
ti

o
n

 o
f

B
u

ild

Normalized Scope of Build

Product Line Builds

Application Builds

Non - PL Builds

Mean

Plus 1 Sigma

Minus 1 sigma

+ 1 sigma - 1 sigma

mean

X

0%

20%

40%

60%

80%

100%

120%

0 1000 2000 3000 4000 5000 6000 7000 8000

N
o

rm
al

iz
ed

 D
u

ra
ti

o
n

 o
f

B
u

ild

Normalized Scope of Build

Product Line Builds

Application Builds

Non - PL Builds

Mean

Plus 1 Sigma

Minus 1 sigma

Plus 3 Sigma

Minus 3 Sigma

+ 1 sigma

- 1 sigmamean

+ 3 sigma - 3 sigma

X

Software – Product Line Maturity

Builds A to D built off the immature Product Line.

Build E built off the mature Product Line

www.incose.org/symp2020 13

Metric Build
PL Issue Fixed in

Multiple Apps

PL Issue fixed

Concurrently in the PL

and App Builds

PL Issue Fixed in the App

and in the Next PL Build

Application -

Specific Issue

A 25% 0% 50% 25%

B 63% 0% 13% 25%

C 93% 0% 0% 7%

D 0% 81% 0% 19%

E 40% 0% 0% 60%

A 20% 0% 42% 38%

B 43% 0% 8% 49%

C 84% 0% 0% 16%

D 0% 87% 0% 13%

E 13% 0% 0% 87%

Application Builds - Parallel/Duplicate Activities

PRs

Modules

Opened

Benefits

• Tangible benefits (expected) included cost, schedule, quality, and maturity.
– Some of these could have been due to the improved system engineering focus on the Product

Line.

• Clear benefits when Instantiating an Application from a mature Product Line
– Reduced the effort involved, and enabled smaller, less experienced and more efficient teams to

produce the Application.

– Previous “clone and own” efforts had produced a new certified Application in 24 months. With
Product Lines this was reduced to 12.

• More intangible benefits emerged.

– Product Lines promote a standard house-style.

– Team flexibility improved as there was a larger pool of engineers familiar with the product,
process, tools and lifecycle data.

– Maturing features becomes easier as there were multiple use-cases contributing to the
robustness of a single Product Line solution.

www.incose.org/symp2020 14

Conclusions
• The Product Line goal is to develop once, and then re-use multiple times.

• In addition to exploiting the planned variability, it’s important to manage the lifecycle data as re-usable assets to the

maximum possible extent, minimizing both effort and technical risk

• Building Applications from an immature Product Line causes a loss in efficiency as a higher proportion of the changes

are deployed multiple times rather than once in a Product Line build.

• The Software Metrics analysis shows that

– Product Line Builds are a very efficient way of adding functionality to a control system; the builds concentrate

effort on software creation and verification, they are large scope builds with more of the build effort focused on

adding functionality, and they require significantly less cost (hours) per unit of scope to be deployed

– Like traditional development, deploying a large team to address schedule compression has an adverse impact, in

that more people are required to achieve the compressed schedule than would be predicted by the schedule

metrics and the scope of the build

• Building a Product Line should not be undertaken lightly. It is a big investment, but presents a huge benefit once the

Product Line is mature and Application builds can be created and certified as airworthy much faster and at lower cost

than had previously been the case with “clone and own” builds.

 www.incose.org/symp2020 15

www.incose.org/symp2020

