

31st Annual **INCOSE**
international symposium
virtual event

July 17 - 22, 2021

Return on Investment for Systems Engineering Tools

Paper #: 123

Return on Investment for Systems Engineering Tools

Authors

Robert Combs	Jim Duffy
Jingyao Feng	James Richardson

A Masters Degree Research Project
George Mason University
Fairfax, Virginia USA

Agenda

Purpose

- Purpose
- Objectives

Scope

- Scope
- User Inputs

Methods

- Background
- Approach

Calculations

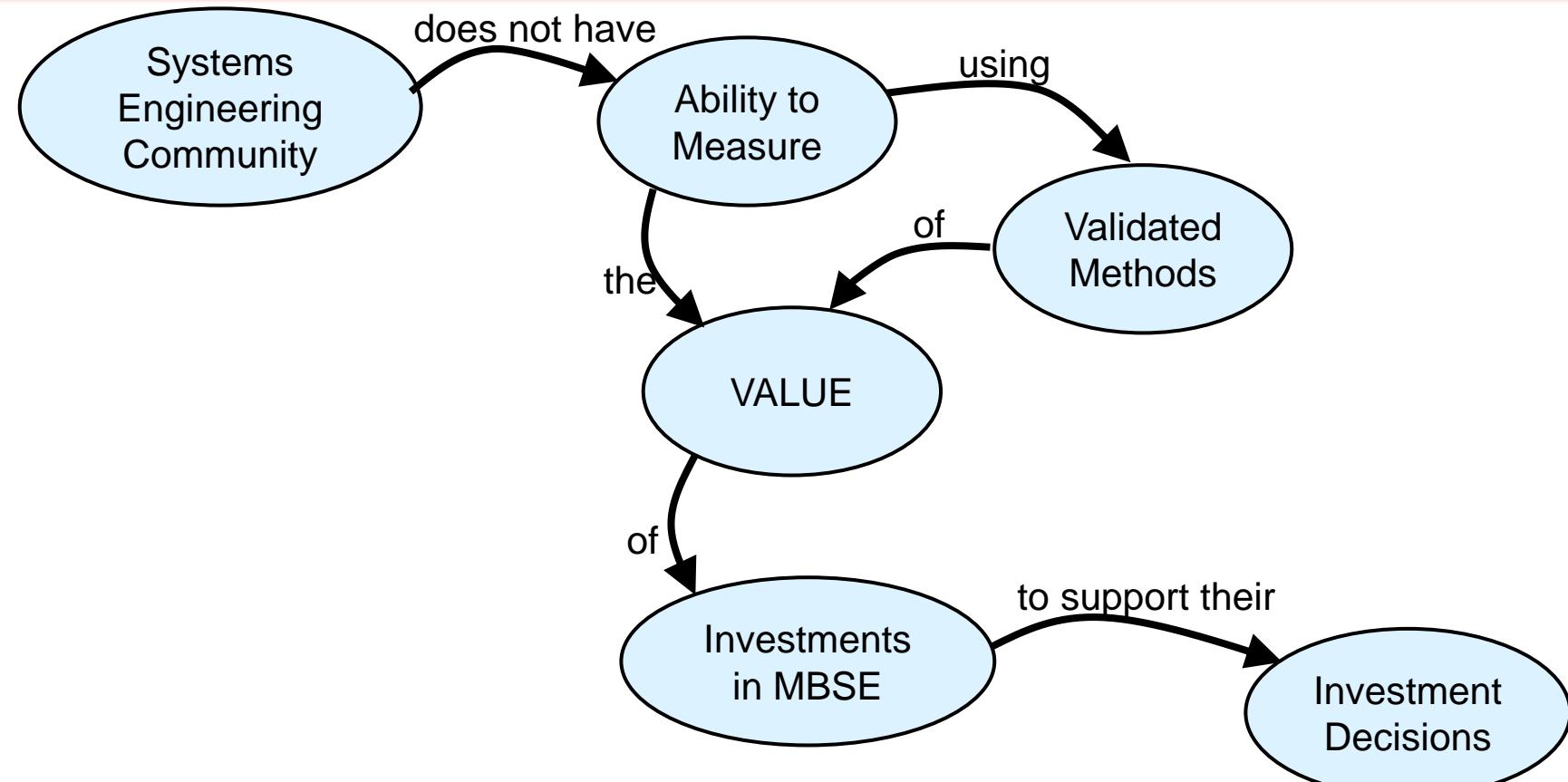
- Data
- Calculations

Results

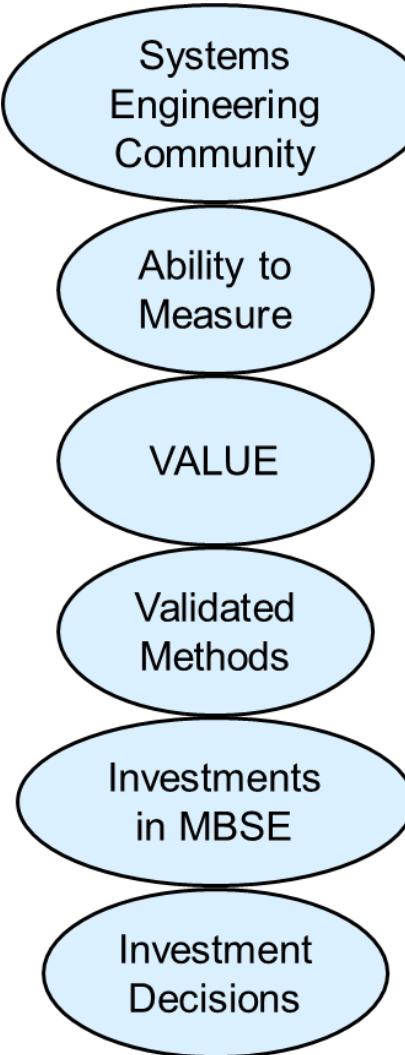
- Financial
- Value

Findings

- Findings
- Conclusions


INCOSE Value Proposition Initiative

- VPI seeks to create value propositions based on characteristics that are important to customers, providers, and decision makers
- This research attempts to provide numerical data for measuring the value proposition of system engineering software tools

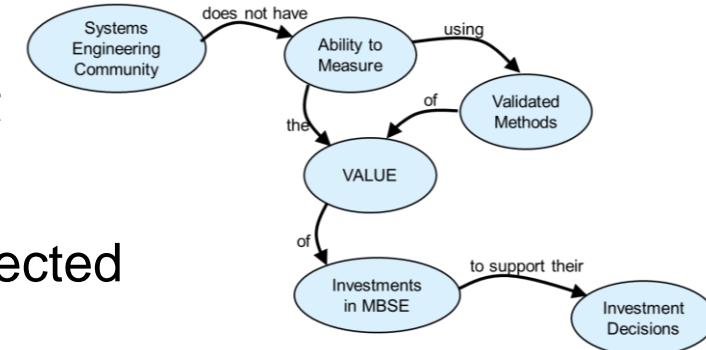

SE Tools ROI - Problem Statement

Systems Engineering community does not have the ability to measure, using validated methods, the value of investments in model-based systems engineering to support their investment decisions.

SE Tools ROI - Research Objectives

Commercial or non-commercial organizations of different sizes, varying objectives, varying amounts of SE tasks

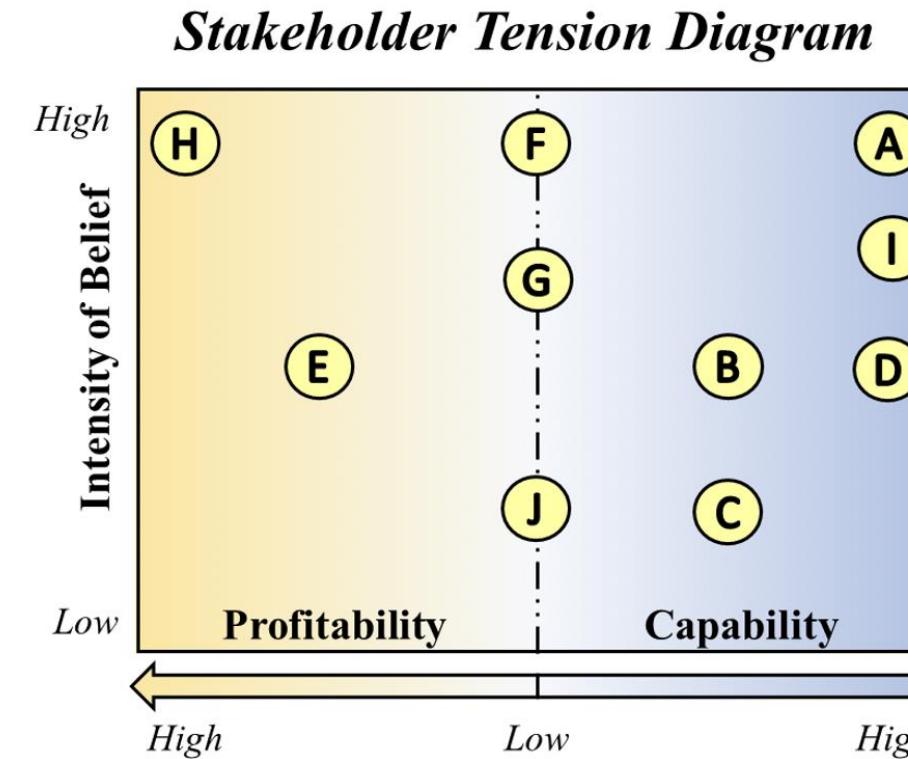
Estimated ROI and ROA (\$\$) for investment (\$\$) in a selected SE tool (individual or category)


Value to the organization as determined by Profitability, Productivity, Capability, and Project Performance (weighted)

Method to determine Value from organization and SE tool attributes

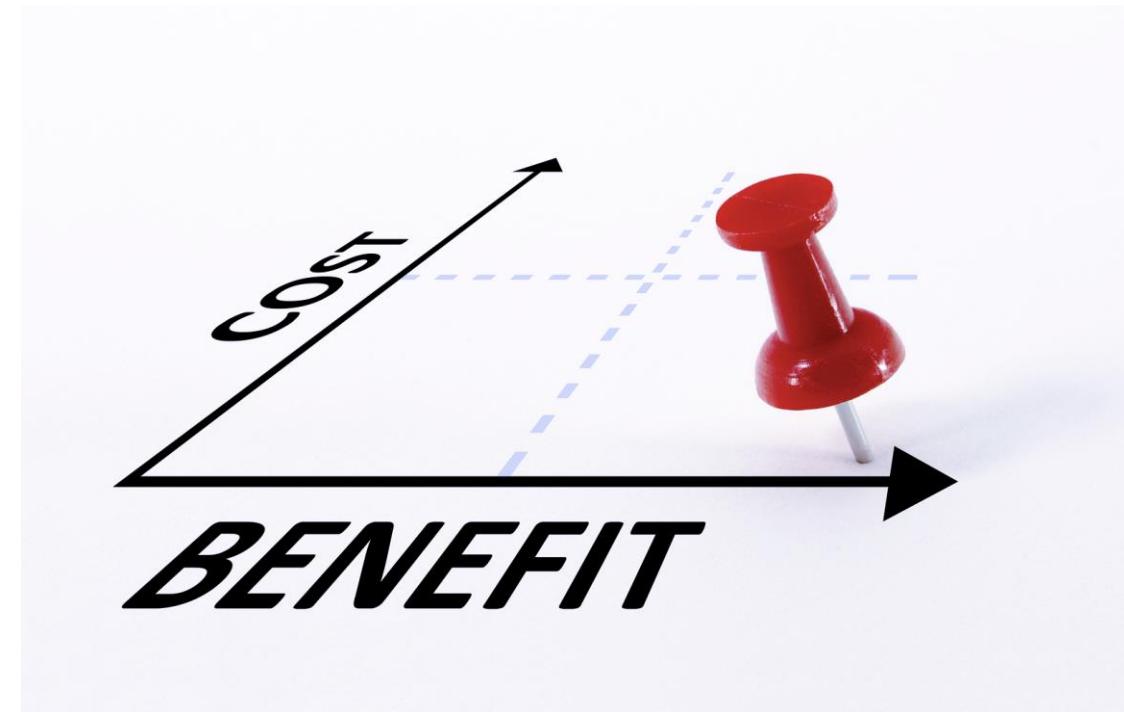
- SE Tool Productivity, Ease of Use, Proficiency levels
- Organization Productivity

Amount (\$\$) of financial investments in SE tool acquisition and training


Determination of value over a several year period for alternative SE tools (individual or category)

Organization Stakeholders – Varying Priorities

- Different stakeholders have different priorities
- We need a method that informs the DM based upon *their* priorities


Research Goal for the ROI Tool

To provide information to inform a decision maker regarding the value of changes to their current level of systems engineering capability

Metrics Provided for a Decision

- Profitability
- Productivity
- Capability
- Project Success

Bhanot, Pradeep. "Cost/Benefit." *Actian*. 4 June 2019, <https://www.actian.com/company/blog/a-cost-benefit-guide-to-the-data-warehouse/>.

Agenda

Purpose

- Purpose
- Objectives

Scope

- Scope
- User Inputs

Methods

- Background
- Approach

Calculations

- Data
- Calculations

Results

- Financial
- Value

Findings

- Findings
- Conclusions

SE ROI Tool – User Considerations

Method

- Information only as needed to make an investment decision
 - *not for predicting the future*
- Range of organization types (Commercial and Government)
- Range of organization sizes (S, M, L, XL, User Specified)
 - SE labor: ranges from 1 to 100 man-years of effort (\$100K to \$10M)
- Account for organization priorities and desired SE capability
- Consider current and future SE workloads plus degree of difficulty for the SE work (challenge)

Organization Characteristics

- Type, Size, Priorities, Objective

Organization Capabilities

- Current Systems Engineering capabilities
- Desired Systems Engineering capabilities

Organization Workload

- Current workload, Future workload, SE Challenge Level

Agenda

Purpose

- Purpose
- Objectives

Scope

- Scope
- User Inputs

Methods

- Background
- Approach

Calculations

- Data
- Calculations

Results

- Financial
- Value

Findings

- Findings
- Conclusions

Systems Engineering Effectiveness Survey (2012)

Conducted by Software Engineering Institute (Joseph Elm)

- Finding: Investments in SE improves project performance
 - If <10% of project budget spent on SE, expect \approx 100% budget overrun
- Project challenge is a key factor in SE benefit determination
 - High challenge projects require SE investment to succeed
 - Low challenge projects: success is feasible without SE investment
- Showed relationship of 11 SE categories (capabilities) to the overall benefit of SE to project success

The Business Case for Systems
Engineering Study: Results of the Systems
Engineering Effectiveness Survey

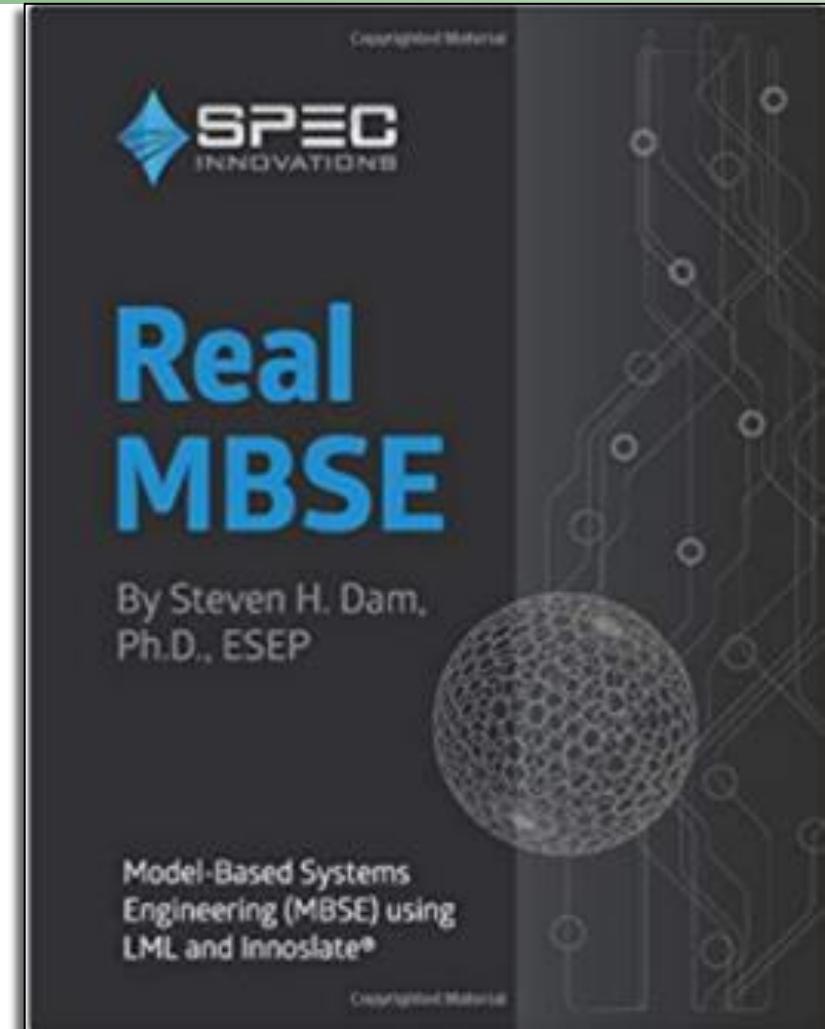
Joseph P. Elm
Dennis R. Goldenson

November 2012

SPECIAL REPORT
CMU/SEI-2012-SR-009

CERT Program

<http://www.sei.cmu.edu>


Carnegie Mellon

Recent SE Tools ROI Assessment

Performed by SPEC Innovations (Steve Dam)

- Built upon the SEI survey to estimate an ROI for MBSE
 - 10% of project budget in SE functions produces an ROI of 1,000%
 - . . . but only if you are performing all of the SE functions (capabilities)
- Examined three types of SE tools (ad hoc, SysML, LML)
 - Ease of Use
 - Productivity (time to perform SE tasks)
 - Cost (acquisition and training)
- MBSE tools produce a very high ROI
 - As much as 100% ROI for LML* tools (via 2X productivity increase)

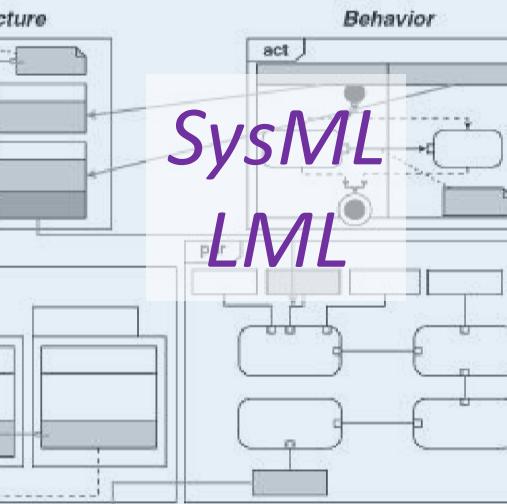
* LML = Lifecycle Modeling Language

System Engineering Tool Categories

Benchmark Tools

(Base)

External Requirements

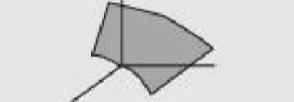

MS Office

System Documentation and Specifications

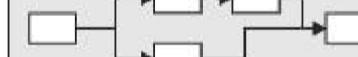
traceability rationale

viewpoint

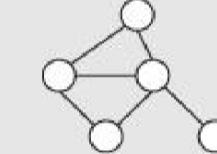
Integrated Tools



SysML
LML


Stand Alone Tools

analysis needs


performance estimates

closed form

discrete event

network

Analysis Models

Mechanical Design Models

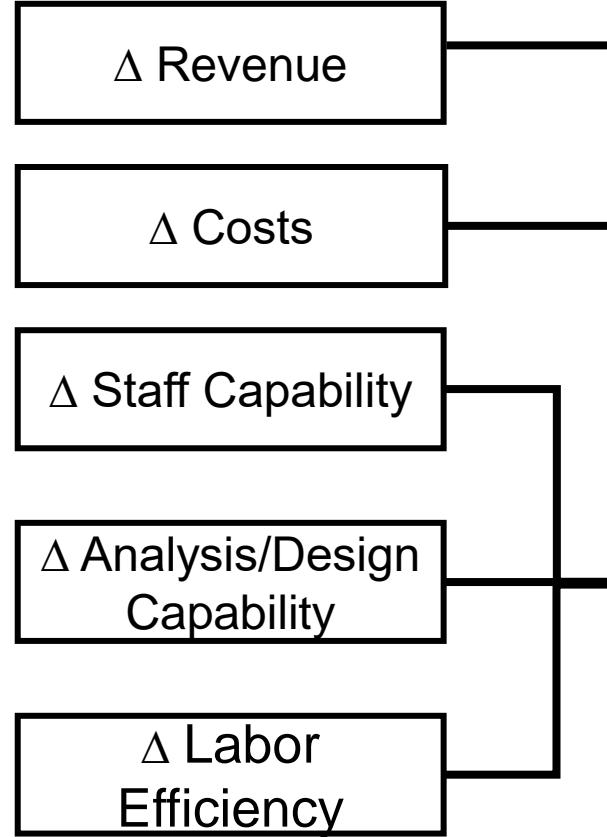
Electrical Design Models

Software Design Models

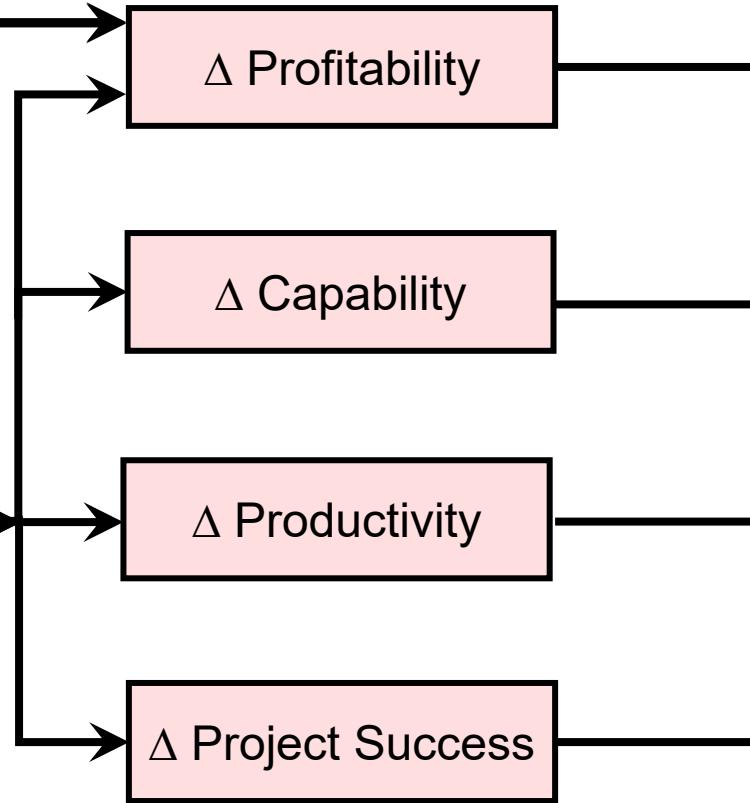
Testing Methods and Models

system framework for design

SE Tools Evaluated


SE Tools For Evaluation

- **Benchmark (Base):** MS Office Pro (Word/PowerPoint), Access, Excel (Analytic Solver), Publisher, Project Pro
- **Stand Alone:** StarUML, Analytica, Vensim, Logical Decisions, Matlab/Simulink, Deltek (Compass),
- **Integrated:** Innoslate, MagicDraw, Enterprise Architecture, Cradle, Core


Calculation of ROI - Schematic of Approach

Means Objectives

Strategic Objectives

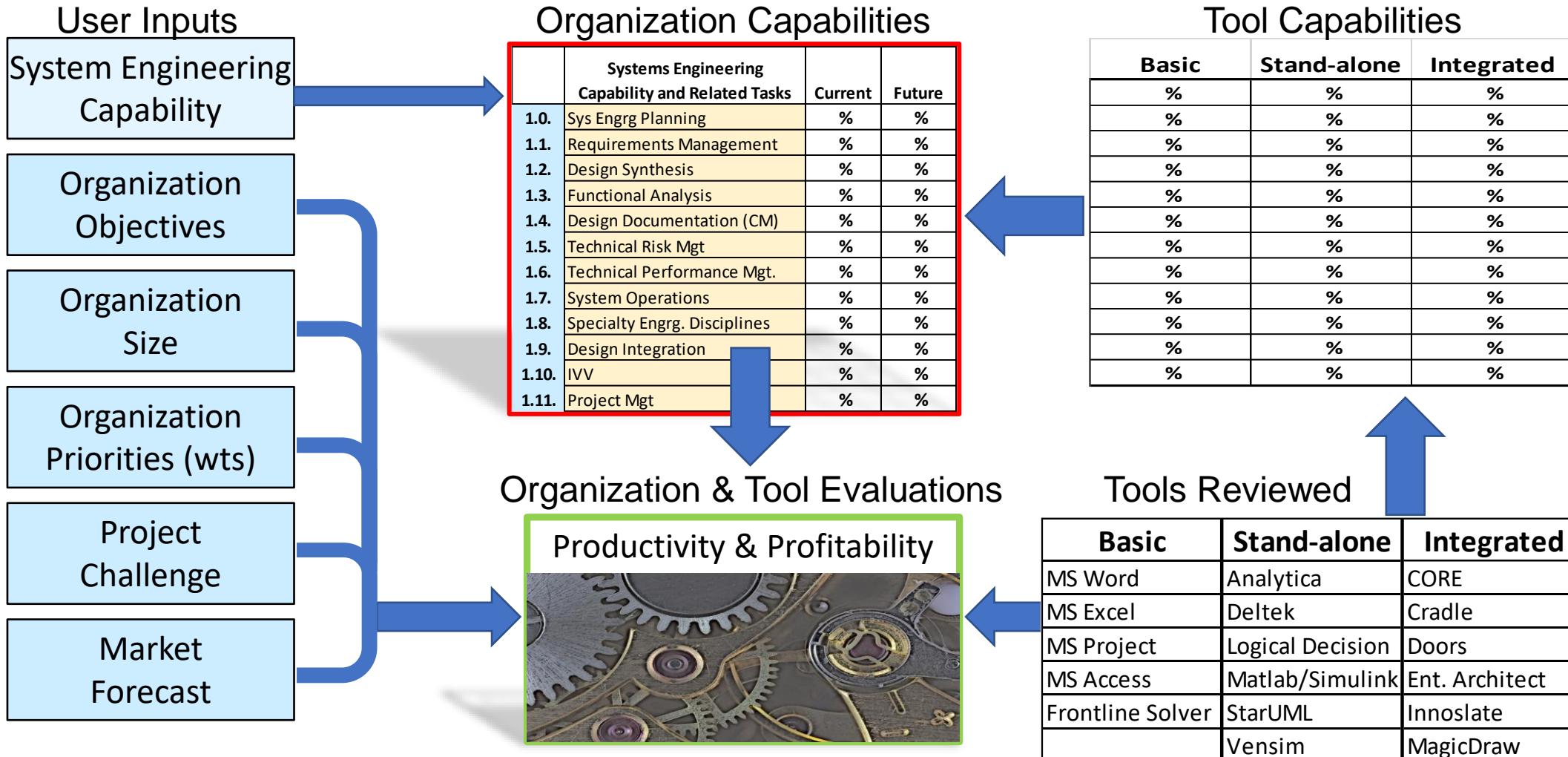
Goal

**MBSE
Investment
decision**

- **ROI**
- **ROA**

User Inputs Allow Tailored Results

% now, % need


Growth
Competition

S, M, L, XL

Profitability
Productivity
Capability
Proj. Perform.

now, future

now, future

SE ROI Tool Data – Capability Matrix

Systems Engineering Capability	Systems Engineering Capability and Related Tasks	Concordance Factor (power)	Integrated MBSE Tools					SE Standalone tools					Benchmark/Base Tools						
			Imnoslate	MagicDraw w/ SysML Plugin	Enterprise Architecture	Cradle	Core	Deltek (Compass)	StarUML	Analytica	Vensim	Logical Decisions	Matlab/Simulink	MS Office	Word/Powerpoint	Access	Excel	Analytic Solver Comprehensive	Project Professional
1.0.	Sys Engrg Planning	1.000	100%	0%	0%	40%	0%	40%	0%	0%	40%	0%	100%	100%	0%	40%	0%	40%	
	SEMP		X											X	X				
	WBS Preparation		X			X		X			X			X	X		X	X	
	WBS Maintenance		X			X		X			X			X	X		X	X	
	RAM		X											X	X				
	Maintain/Evolve SE Mgt Plan		X											X	X				
1.1.	Requirements Management	1	100%	100%	17%	100%	100%	0%	0%	0%	0%	0%	100%	100%	33%	50%	0%	0%	
	Import Requirements Documents		X	X		X	X							X	X				
	Analyze Requirements		X	X		X	X							X	X		X		
	Manage Requirements		X	X	X	X	X							X	X	X	X		
	Trace Requirements		X	X		X	X							X	X	X	X		
	Allocate Requirements		X	X		X	X							X	X				
	Import & Allocate Standards		X	X		X	X							X	X				
1.2.	Design Synthesis	1	100%	100%	83%	67%	67%	0%	83%	0%	0%	0%	17%	50%	33%	0%	17%	0%	0%

- Data gathered from research, team members' tool experience, and SME input
- Includes 11 core Systems Engineering + 1 Project Management tasks + subtasks
- Indicates each tool's capability to support specific SE process tasks & subtasks

Agenda

Purpose

- Purpose
- Objectives

Scope

- Scope
- User Inputs

Methods

- Background
- Approach

Calculations

- Data
- Calculations

Results

- Financial
- Value

Findings

- Findings
- Conclusions

SE ROI Tool Data – Software Cost

- Data gathered from research and vendor interaction
- Includes acquisition, training (cost and labor), + annual maintenance cost for each tool

Average Acquis Cost	TOOLS	Acquisition Cost for ROI tool	Training Time (Hrs)	Training Cost	Renewal Cost (Yearly \$)	Average Maint Cost
\$ 3,588	Integrated Tools	Acquire	Time	Course Fee	Maintain	\$ 1,840
minimum	Innoslate	\$ 2,000.00	74	\$ 567.00	\$ 2,000.00	minimum
\$ 639	MagicDraw	\$ 1,299.00	40	\$ 1,600.00	\$ 200.00	\$ 200
	Enterprise Architecture	\$ 2,000.00	28	\$ 1,600.00	\$ 2,000.00	
maximum	Cradle	\$ 639.00	56	\$ 1,890.00	\$ 2,500.00	maximum
\$ 12,000	Core	\$ 12,000.00	56	\$ 1,890.00	\$ 2,500.00	\$ 2,500
\$ 1,913	Stand-alone Tools	Acquire	Time	Course Fee	Maintain	\$ 143
minimum	Deltek (Compass)	\$ 2,350.00	24	\$ 1,950.00	\$ 500.00	minimum
\$ 99	StarUML	\$ 129.00	12	\$ 100.00	\$ -	\$ -
maximum	Analytica	\$ 2,495.00	32	\$ 1,500.00	\$ 500	maximum
\$ 3,895	Vensim DSS	\$ 1,195.00	64	\$ 500.00	\$ -	\$ 860
	Logical Decisions	\$ 3,895.00	6	\$ 750.00	\$ -	
	Matlab/Simulink	\$ 2,150.00	24	\$ 2,000	\$ 860	
\$ 820	Base Tools	Acquire	Time	Course Fee	Maintain	\$ 263
minimum	MS Office Professional	\$ 144.00	0	\$ -	\$ 144.00	minimum
\$ 144	Excel	\$ 144.00	8	\$ 15.00	\$ 144.00	\$ -
	Word/Powerpoint	\$ 144.00	0	\$ -	\$ 144.00	
maximum	Access	\$ 144.00	4	\$ 20.00	\$ 144.00	maximum
\$ 1,030	Excel + Anal.Solver	\$ 2,139.00	56	\$ 510.00	\$ 644.00	\$ 144
	FL Analytic Solver	\$ 1,995.00	48	\$ 495.00	\$ 500.00	
	Project Professional	\$ 1,030.00	8	\$ 95.00	\$ 120.00	

SE ROI Tool Data – SE Capability

Tool Effectiveness scores

Score	0	2	4	6	8	10
Meaning	You cannot get the outcomes (0%) you want with this tool	You can get the few outcomes (50%) you want with this tool	You can get the most outcomes (80%) you want with this tool	You can get all outcomes (100%), but in multiple steps	You can get all outcomes (100%), but in few steps	You can get all outcomes (100%) directly with this tool

Time to Become Proficient scores

Score	0	2	4	6	8	10
Meaning	> 40 hours	30-40 hours	20-30 hours	12-20 hours	8-12 hours	< 8 hours

- Data gathered through survey
- Outlines the user's ability to achieve their desired outcomes (graphs, data, documents, requirements) while using each tool

SE ROI Tool Data – Labor Efficiency

Tool Proficiency scores

Score	0	2	4	6	8	10
Meaning	<u>Beginner</u> Applied 10% of the features	<u>Novice</u> Applied 11- 20% of the features	<u>Competent</u> Applied 21- 30% of the features	<u>Experienced</u> Applied 31- 40% of the features	<u>Advanced</u> Applied 41- 50% of the features	<u>Proficient</u> <u>Applied</u> >50% of the features

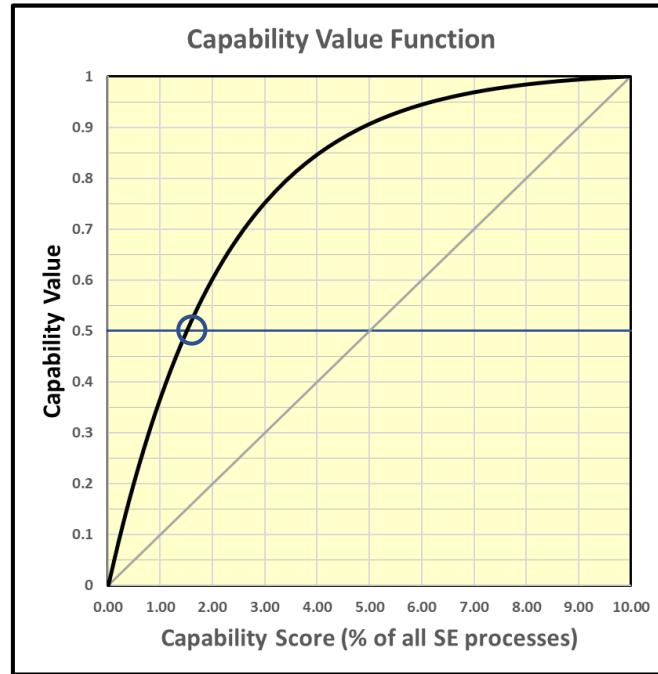
System Engineering Productivity scores

Score	0	2	4	6	8	10
Meaning	No Time Savings	Job Completed 10% faster	Job Completed 25% faster	Job Completed 35% faster	Job Completed 50% faster	Job Completed 66% faster

- Data gathered through a survey
- Estimates how productive each user felt using the software and if the tool allowed them to complete their tasks *faster*

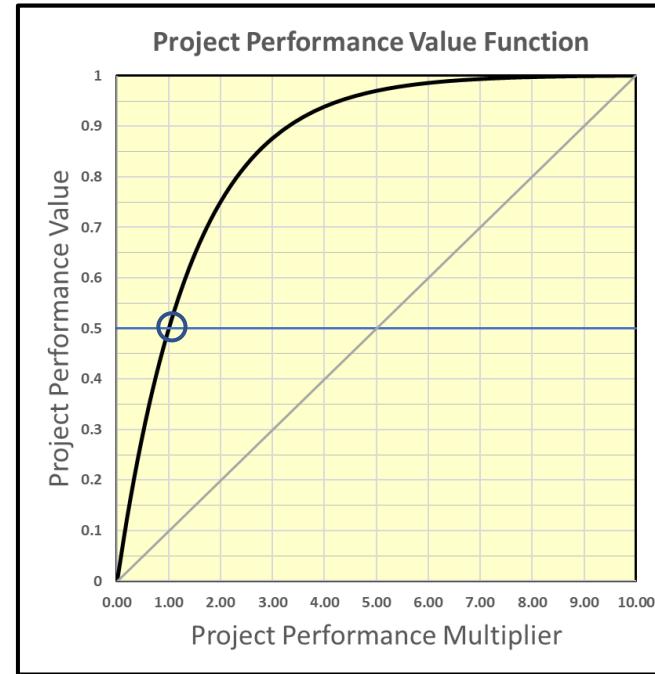
Assumptions Used for ROI and ROA

- Company size:


	<u>S</u>	<u>M</u>	<u>L</u>	<u>XL</u>	<u>Company X</u>
(in man-years)	2	5	25	100	user entered
- SE labor cost: \$104,000 per man-year (*Indeed.com, Nov 4, 2020*)
- Base profit level: 10% of SE labor expense
- NPV Cost of Capital: 8 %
- ROI = sum of Net Cash Flows (yrs 0-2) divided by sum of tool Investments
- ROA = Sum of Net Cash Flow (yrs 3 to 5) divided by SE staff headcount (EP). Annual Net Cash flow is Investments (tool costs) minus Benefits (increased project profit + reduction in labor costs)
- Project Performance = “Challenge” adjusted improvements in base profit level

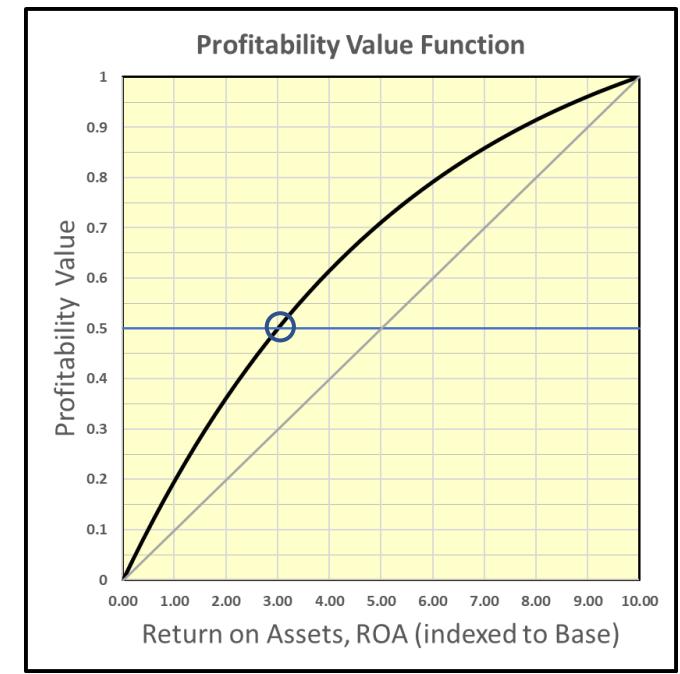
Sample ROI and ROA Calculations

SE Tools ROI calculations	INDIVIDUAL	selected tool = Innoslate					Total	
	Year 0	Year 1	Year 2	Year 3	Year 4	Year 5		
SE task required labor	150,000	150,000	150,000	210,000	210,000	210,000	1,080,000	
Cost to perform SE tasks	\$ 7,283,654	\$ 7,283,654	\$ 10,197,115	\$ 10,197,115	\$ 10,197,115	\$ 10,197,115	\$ 55,355,769	
Cost of new SE tools	\$ 150,000	\$ -	\$ 85,717	\$ 68,226	\$ -	\$ -	\$ 303,943	
Cost of SE tool training	\$ 34,020	\$ -	\$ 19,441	\$ 15,474	\$ -	\$ -	\$ 68,934	
Cost of SE tool maint/renew	\$ -	\$ 150,000	\$ 85,717	\$ 68,226	\$ 68,226	\$ 68,226	\$ 440,394	
Reduction in SE labor costs	\$ 4,260,937	\$ 4,260,937	\$ 5,965,313	\$ 5,965,313	\$ 5,965,313	\$ 5,965,313	\$ 32,383,125	
Improve in Project Perform	\$ 2,890,392	\$ 2,890,392	\$ 3,002,885	\$ 3,002,885	\$ 3,002,885	\$ 3,002,885	\$ 17,792,325	
Base Profit (SE base hrs)	\$ 728,365	\$ 728,365	\$ 1,019,712	\$ 1,019,712	\$ 1,019,712	\$ 1,019,712	\$ 5,535,577	
Assumed Base SE profit %	0.10							
	\$ 4,552,283.65	\$ 3,823,918.27						
Innoslate	Year 0	Year 1	Year 2	Year 3	Year 4	Year 5	Total	
Sum Investments	\$ 184,020	\$ 150,000	\$ 190,875	\$ 151,925	\$ 68,226	\$ 68,226	\$ 813,270	
Sum Benefits (Return)	\$ 7,151,329	\$ 7,151,329	\$ 8,968,198	\$ 8,968,198	\$ 8,968,198	\$ 8,968,198	\$ 50,175,450	
Net Cash Flow	\$ 6,967,309	\$ 7,001,329	\$ 8,777,323	\$ 8,816,273	\$ 8,899,972	\$ 8,899,972	\$ 49,362,180	
		3yr ROI	4333%			\$ 191,589	3yr ROA	
		SUM Benefits	\$ 23,270,857		SUM Benefits	\$ 26,904,593	per m-year	
Rate for NPV (%)	8						\$80,630.21	
Innoslate	Year 0	Year 1	Year 2	Year 3	Year 4	Year 5	Yr 0-2 Total	Yr 3-5
Cost of SW Tool	\$ (184,020)						\$ (184,020)	\$ -
Depreciation of SW Tool		\$ 7,363	\$ 7,363)	\$ 7,363	\$ 7,363	\$ 14,726	\$ 14,726
Operating Expense of SW Tool		\$ (82,800)	\$ (82,800)	\$ (82,800)	\$ (82,800)	\$ (82,800)	\$ (165,600)	\$ (248,400)
NPV cashflow	\$ (184,020)	\$ (75,437)	\$ (75,437)	\$ (82,800)	\$ (75,437)	\$ (75,437)	\$ (334,894)	\$ (233,674)
Total Benefits	\$ 7,151,329	\$ 7,151,329	\$ 8,968,198	\$ 8,968,198	\$ 8,968,198	\$ 8,968,198	\$ 23,270,857	\$ 26,904,593
Net Cash Flow	\$ 6,967,309	\$ 7,075,893	\$ 8,892,761	\$ 8,885,398	\$ 8,892,761	\$ 8,892,761	\$ 22,935,963	\$ 26,670,920


Value Function Calculations (1/2)

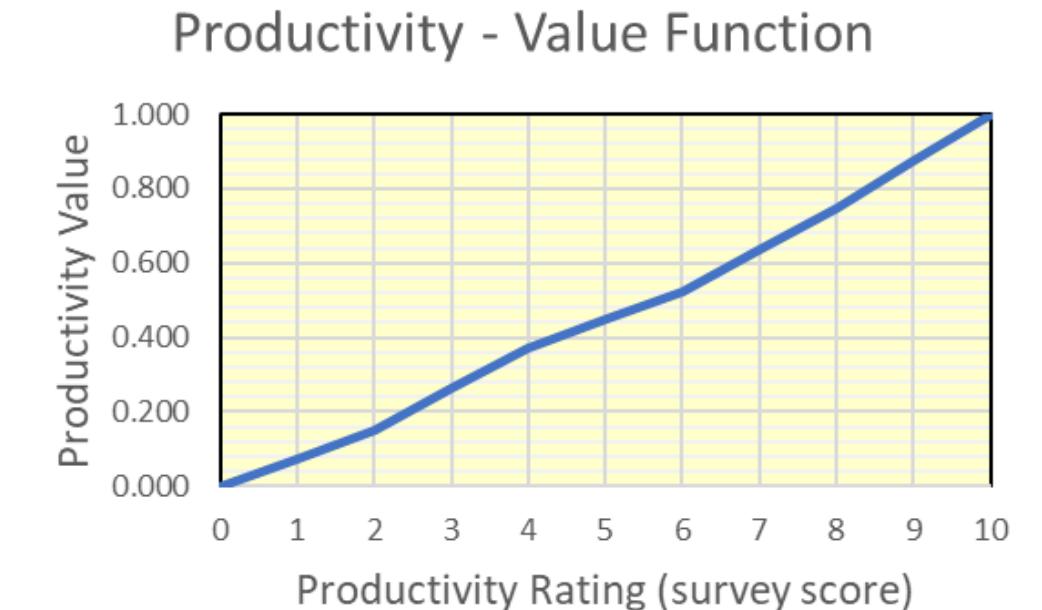
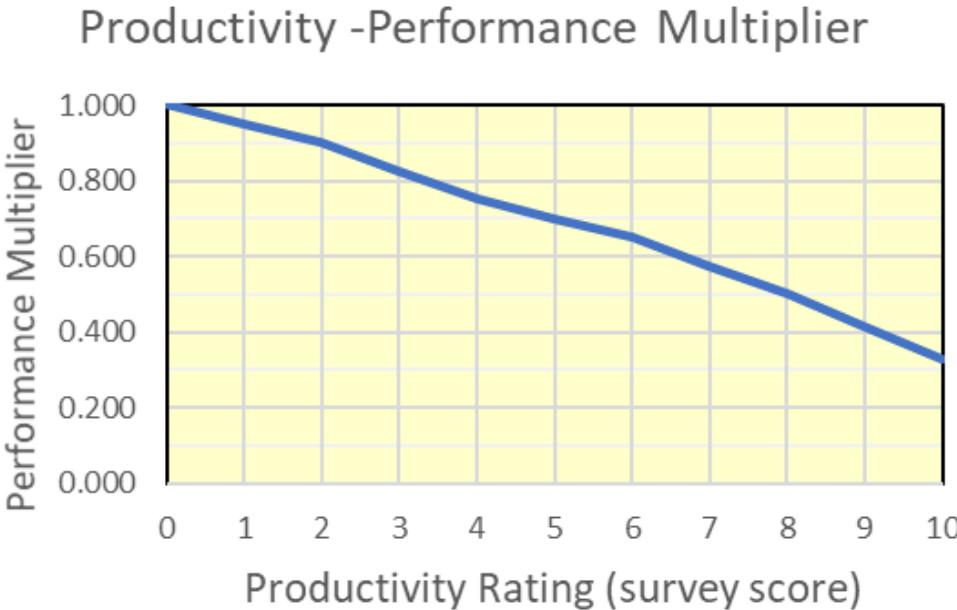
Capability Value

Score (x-axis) is percent of all SE processes performed by SE tool


$$(Z_{0.5} = .85)$$

Project Performance Value

Score (x-axis) is “SE challenge” weighted net profit from SE tool



$$(Z_{0.5} = .90)$$

Profitability Value

Score (x-axis) is ratio of ROA_{tool} / ROA_{base}
 $(Z_{0.5} = .70)$

Value Function Calculations (2/2)

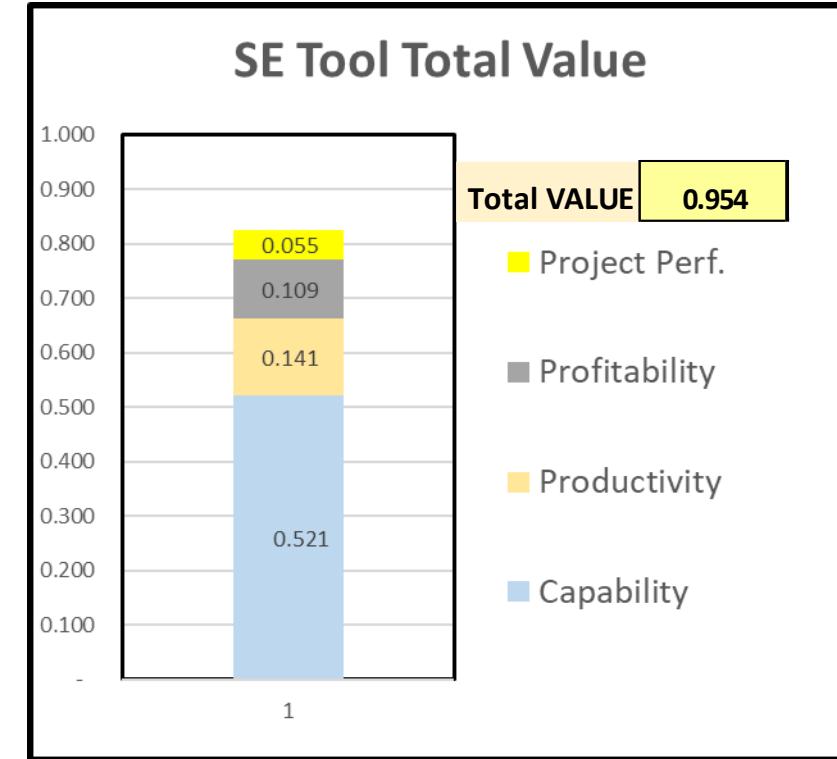
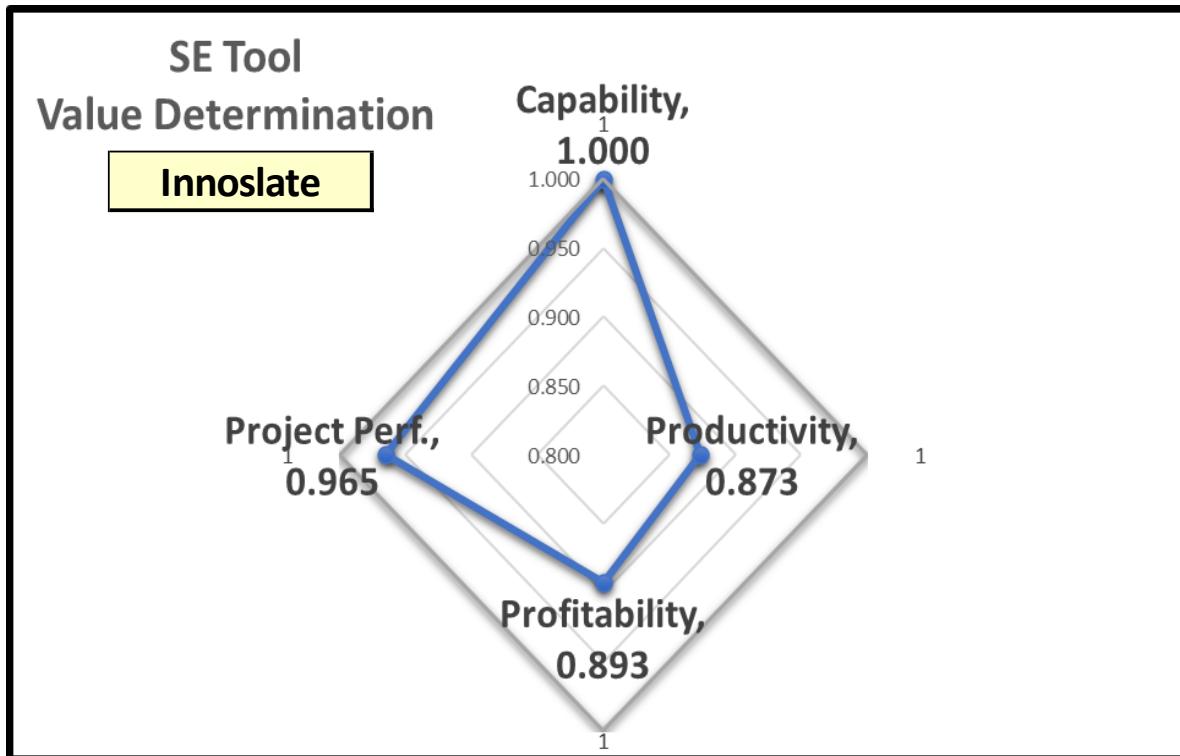
Productivity Value

Score (x-axis) is results (rating) from SE tool productivity survey

- Survey indicated labor reduction values from 0 to 67 percent of benchmark values
- 67% performance reduction used as Value = 1.0

Concordance – How It Saves Labor

Productivity Improvement	0.0%	0.0%	34.2%	weighting
Concordance Factors	Basic	Stand-alone	Integrated	factor
fewer errors	100	100	75.00	0.2
faster processes	100	100	60.00	0.2
auto-generated products	100	100	75.00	0.2
tasks eliminated	100	100	80.00	0.2
shared information	100	100	75.00	0.1
communication efficiency	100	100	90.00	0.1
weighted average	100.00	100.00	74.50	1.00



- Factors to apply Integrated tool concordance benefits are in the ROI model . . . but these additional productivity factors are not used
- There is **no data** to measure or justify these very real benefits

Selected SE Tool – Value Assessment

Total Value of selected SE tool is automatically calculated from User Input parameters

- Company size, objectives, SE workload, SE task challenge, etc.
- Value by category (Capability, Productivity, Profitability, Project Performance)
- Total Value (sum of category values weighted by user priorities)

Agenda

Purpose

- Purpose
- Objectives

Scope

- Scope
- User Inputs

Methods

- Background
- Approach

Calculations

- Data
- Calculations

Results

- Financial
- Value

Findings

- Findings
- Conclusions

ROI Tool Financial Results

Investments (Years 0 to 2)					Size	\$\$/yr
	Small	Medium	Large	X-Large		
Base (benchmark)	\$ 4,963	\$ 16,507	\$ 82,533	\$ 330,130		
	\$ 13,447	\$ 33,616	\$ 168,082	\$ 672,329		
	\$ 23,857	\$ 59,642	\$ 298,212	\$ 1,192,847		
Benefits - Labor Cost Savings (Years 0 to 2)						
	Small	Medium	Large	X-Large		
Base (benchmark)	\$ (0)	\$ (0)	\$ (0)	\$ (0)		
	\$ 104,477	\$ 261,194	\$ 1,305,968	\$ 5,223,874		
	\$ 324,373	\$ 810,934	\$ 4,054,668	\$ 16,218,671		
Benefits - Labor Hours Savings, man-months (Years 0 to 2)						
	Small	Medium	Large	X-Large		
Base (benchmark)	(0)	(0)	(0)	(0)		
	9	23	114	456		
	30	76	379	1,515		

ROI Tool Overall Results

Summary of Research Results

Return on SE Software Investments			Total Value (weighted)
	ROI	ROA	Proj Perf.
Base (benchmark)	0%	9%	100%
Stand Alone	677%	20%	113%
Integrated	1260%	45%	162%

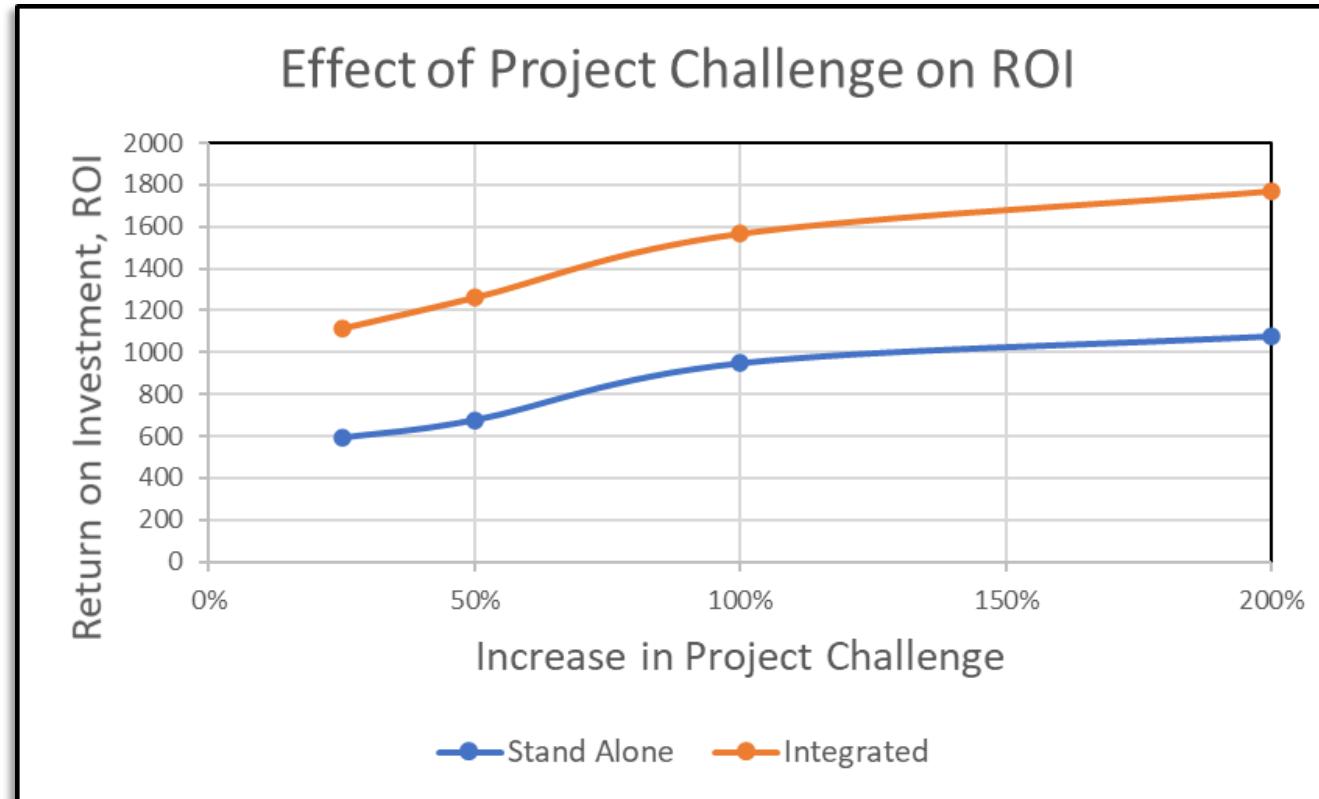
ROI = \sum Net Profit / \sum Investments for first 3-yr period

ROA = \sum Net Profit / \sum SE Headcount for second 3-yr period

ROI and ROA can also be calculated for an individual user-selected SE tool

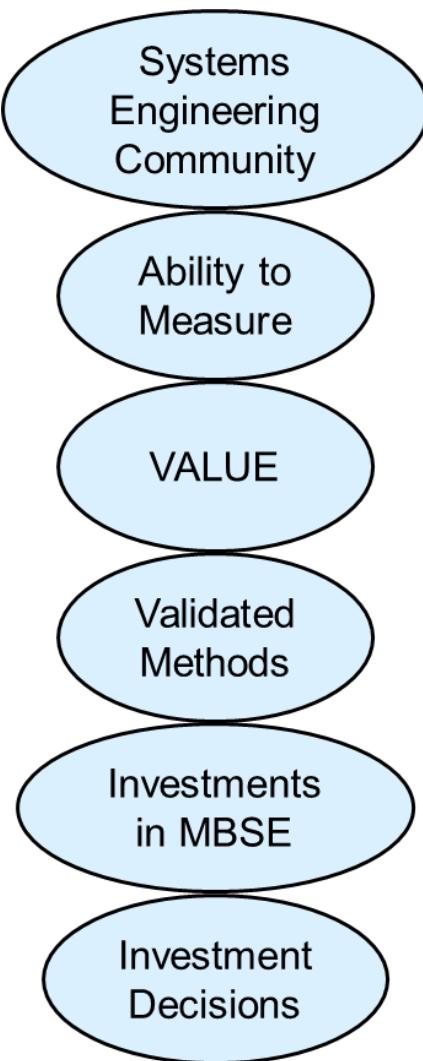
Summary of ROI Tool Results

Stand Alone Tools


- Investment of **2%** of SE annual salary: **17%** labor savings, **677%** ROI
20% ROA (Net Profit/SE)
+13% Project Performance

Integrated Tools

- Investment of **4%** of SE annual salary: **54%** labor savings, **1260%** ROI
45% ROA (Net Profit/SE)
+62% Project Performance
- Engineering Headcount Reduction


Company size:	<u>Small</u>	<u>Medium</u>	<u>Large</u>	<u>X-Large</u>
	3	7	38	150

Effect of Project Challenge on ROI

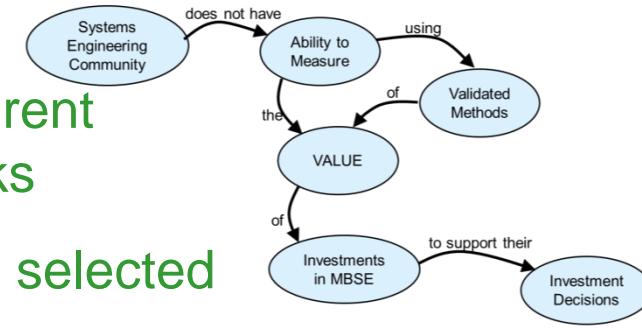
- Model results are all based on project challenge levels of Moderate/High
 - A 50% increase from current project to future projects

SE ROI Research Results

Commercial or non-commercial organizations of different sizes, varying objectives, varying amounts of SE tasks

Estimated ROI and ROA (\$\$) for investment (\$\$) in a selected SE tool (individual or category)

Value to the organization as determined by Profitability, Productivity, Capability, and Project Performance (weighted)


- ✓ Method to determine Value from organization and SE tool attributes
 - Tool Productivity and Proficiency data is difficult to measure, not validated
 - Organization Productivity is very difficult to measure, not validated

Amount (\$\$) of financial investments in SE tool acquisition and training

Determination of value over a several year period for alternative SE tools (individual or category)

Agenda

Purpose

- Purpose
- Objectives

Scope

- Scope
- User Inputs

Methods

- Background
- Approach

Calculations

- Data
- Calculations

Results

- Financial
- Value

Findings

- Findings
- Conclusions

Summary of Research Findings

Stand Alone Tools

- Investment of **2%** of SE annual salary: **17%** labor savings, **677%** ROI
20% ROA (Net Profit/SE)
+13% Project Performance

Integrated Tools

- Investment of **4%** of SE annual salary: **54%** labor savings, **1260%** ROI
45% ROA (Net Profit/SE)
+62% Project Performance
- Engineering Headcount Reduction

Company size:	<u>Small</u>	<u>Medium</u>	<u>Large</u>	<u>X-Large</u>
	3	7	38	150

Research Conclusions

- ROI and ROA for investments in SE tools can be estimated for a wide range of organizations, but cannot be validated
 - Empirical evidence of SE tool productivity, process applicability, and user proficiency levels does not exist (but is needed)
 - Anecdotal evidence of SE process benefits to project performance does exist
 - but extrapolation to general user experiences is speculative
- ROI and ROA estimates are much higher than expected
 - Dominant factor is SE labor savings (cost reductions) achieved from SE tool productivity benefits, far exceeding cost of SE tool investments
- Research studies from the INCOSE community to establish SE tool performance metrics can greatly improve confidence in ROI estimates

Future Research Topics

- Define and measure *concordance* offered by SE tools
- Develop aggregated Value Functions for SE ROI
- Perform subject matter expert analyses to determine:
 - Tool Effectiveness, time required to become proficient, etc.
 - Expected labor savings to perform SE tasks
 - Refine the definition of proficiency

Thank you for your attention !

Questions ?

References

Anon. How to Select a SysML Modeling Tool for MBSE. From SysML Forum. April 2018. <https://mbsetoolreviews.com/select-mbse-modeling-tool/>

Chami, Mohammas, Jean-Michel Bruel (2018) A Survey on MBSE Adoption Challenges. (2018) In: INCOSE EMEA Sector Systems Engineering Conference (INCOSE EMEASEC 2018), 5 November 2018 - 7 November 2018 (Berlin, Germany).

Chell, Brian and Jerry Sellers. Chell, B. The Sellers-Chell Method: A Standardized Technique for Assessing and Selecting a Model-Based Systems Engineering (MBSE) Tool. Life Cycle Modeling website. <http://www.lifecyclemodeling.org/>

Cloutier, Robert 2015. "The Ongoing Adoption of Model Based Systems Engineering". Proceedings of the 2015 Industrial and Systems Engineering Research Conference.

Dam, Steven. (2019). "Is There a Return on Investment from Model-Based Systems Engineering (MBSE)?". SPEC Innovations website. Accessed August 26, 2020. <https://www.innoslate.com/resource/is-there-a-return-on-investment-from-model-based-systems-engineering-mbse/>

Dam, Steven. (2020) "The Role of V&V in the Early Stages of the Lifecycle". SPEC Innovations website.

Damodaran, Aswath (2015). "An Introduction to Valuation". Lecture materials. Stern School of Business, New York University.

DeJong, Kent. Et al (2011). "Sandia Report: Process for Selecting Engineering Tools – Applied to Selecting a SysML Tool" SAND2010-7098. Sandia National Laboratories. <https://mbsetoolreviews.com/process-selecting-sysml-tool/>

Elm, Joseph. (2012). "The Business Case for Systems Engineering Study: Results of the Systems Engineering Effectiveness Study". Special Report CMU/SEI-2012-SE-09. Software Engineering Institute, Carnegie Mellon

Hoffman, Dr. Edward. (1994). Issues in NASA Program and Project Management, NASA SP-6101 (08). NASA, 1994.

Honour, Eric. (2004). "Understanding the Value of Systems Engineering" June 2004. INCOSE International Symposium 14(1)

Honour, Eric. (2006). "A Practical Program of Research to Measure Systems Engineering Return on Investment (SE-ROI)". INCOSE Symposium Proceedings, 2006. Orlando FL

Land, Rikard., et al. (2008) "COTS Selection Best Practices in Literature and in Industry". In: Mei H. (eds) High Confidence Software Reuse in Large Systems. ICSR 2008. Lecture Notes in Computer Science, vol 5030. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68073-4_9

Libby, Robert, P. Libby, and D. Short (2014). *Financial Accounting*, 8th Ed. McGraw Hill Education. New York.

Lin, Han, et al. (2006). "COTS Software Selection Process". SAND2006-0478. Sandia National Laboratories.

Orosz, Steven (2015). "Defining Essential Systems Engineering using Model-Based System Engineering". SYS800 – Special Problems in System Engineering, Stevens Institute of Technology. 2015.

Vaneman, Warren, J. Sellers, and S. Dam. (2019) "Essential LML. Lifecycle Modeling Language (LML): A Thinking Tool for Capturing, Connecting and Communicating Complex Systems". SPEC Innovations, 2018, Manassas, VA.