3 st Annual INCOSE
international symposium
:
Y. N []

/

¥ » # July 17 - 22, 2021

Formulas and Guidelines for Deriving Functional System
Requirements from a Systems Engineering Model

Created by John Shelton, Victoria Heisler, and Kristina Sebacher

www.incose.org/symp2021

Contents e

* Our Task

* Our Conviction

* Approach: Formulaic Requirement Authorship
* |ssues to be Overcome

* Approach Expansion: The Modeling Part

* Approach Expansion: The Translation Part

* Our Results

Our Task

* Our Assignment

— Create English-language Functional Requirements
In a traditional pdf book for the client.

« Assumptions

— We would be using MagicDraw with SysML and
UPDMZ2 add-ons for modeling. There was no
budget or schedule for additional tool acquisition or
comparison.

Our Conviction S
» Modeling should have primacy.
— Model first!

— Center technical discussion around the model.
Discuss it, feed back, and repeat until “"done”.

 MBSE Is not SEBM.

www.incose.org/symp2021 4

s

Our Approach: Formulaic Requirement Authorship gy

Part 1: Produce SysML Activity Diagrams...

(‘act [Activity] Trivial Case | Trivial Case] J

«allocates
Interfacing System A

wallocates
System

wallocates
Interfacing System B

-

W

«Mumbered Au:ti'.r'rt'_.r»J

2.1 Do Stimulus

LFﬂtimulﬂting Signal

8

input1

[1] §

«Mumbered Activity»
2.2 Do Activity 1

outputl
COutput Signal

«Mumbered Activitys
>'|:‘ 2.3 Do Reaction 1
I

®

Part 2. ...then formulaically produce
English-language requirements, one
per allocated action.

 Requirement Text: Upon receipt of
[Stimulating Signal], the System shall
[Do Activity 1], [producing/displaying]
[Output Signal].

 Rationale: See [Activity #] in model.
[Add custom thoughts as needed.]

* Requirement Type: Functional

www.incose.org/symp2021 5

Issues to be Overcome %

Definitions

 What is a Functional Requirement?

— Our client wanted functional requirements to be distinct from performance requirements. Many
definitions do not distinguish between them.

— Based on the context of our client’s request, we defined a functional requirement as one which
describes system behavior without qualification or quantification.

— Requirements which provide qualification or quantification are defined as Performance
Requirements, and are outside of the scope of this effort.

— By this definition, Functional Requirements should generally be defined prior to Performance
Requirements.

« Once function is understood, performance parameters can be defined. Some will be common. Others will
be custom.

- Examples: — Functional
— Upon command from the driver, the garage door shall open.

— Upon command from the driver, the garage door shall open within X seconds. —
— Upon command from the driver, the garage door shall open with x-sigma reliability. 7 Performance
— Upon command from the driver, the garage door shall open to x percent of its capacity.

Issues to be Overcome @

Overall Process Description

* We wanted to abide by our conviction to be model-based.
But we found little guidance for creating system-level
requirements from a model.

— OOSEM assumes we already have requirements in Step 1!

* We were Initially given 3 months to complete the task. We
suspected that we might get more time, once we demonstrated
the value of the approach. So we established an agile
approach to add value on Day 1. This was key to our success!

— But what does an agile modeling process intended to support
requirement authorship look like? Again, we found little guidance.

Issues to be Overcome @

More Definitions

« What is an overly prescriptive requirement?
— Common definition: A requirement that prescribes behavior at levels lower than the SOI.

— Model Symptom: Actions in an Activity Diagram occurring serially, perhaps attributed to sub-systems, without
interaction with other systems or actors. These behaviors should be consolidated / abstracted / stated more simply.

What is an under-prescribed requirement?
— Common definition: We found little guidance to prevent under-prescription of requirements.

— Model Symptom: Actions in an Activity Diagram which cannot be solely assigned to a single system. Does it
require interaction with another system or actor in order to complete? If so, it needs to be decomposed further!

« What is a testable requirement?

— Repeatability — The conditions under which the requirement is applicable should be defined. Adding conditions to a
requirement gave some people pause; we defined “Compound Requirements” more rigorously in order to make this
work.

— Observability — The behavior should be verifiable without invasive instrumentation.

— Other considerations.

www.incose.org/symp2021 8

Issues to be Overcome e
SysML and Modeling Norms

« Parameter Objects:

— In such an early complex architecting effort, basic
definitions and usages of parameters constantly
change, making parameters a problematic object type.

* Requirement Objects:

— Since our goal was to generate requirements, there
was a temptation to use requirement objects in our
model. We found them to be redundant with the Activity
diagrams, so in the end, we did not use them.

Our Approach n s

Overview

« Use a series of formulas to translate SysML into
English book-form requirements.

 There should be one functional requirement generated
per action allocated to the System of Interest.

* Formulas should be combinable, to account for any
contextual situation.

Approach Expansion: The Modeling Part @

The 3 Rules of Activity Diagram Modeling

1. Allocate Actions to Systems Using
Swimlanes

2. Model External Stimuli and Observable
Outputs

3. Model Serial Actions with Care

www.incose.org/symp2021 | i

The 3 Rules of Activity Diagram Modeling %

Rule 1: Allocate Actions to Systems Using Swimlanes

* Only allocate an action to a system when all expected sub-actions are
performed internal to that system.

 Ifitis possible that some sub-behaviors will be performed by external
systems, then the behavior is too abstract. Additional discussion is needed!

« Use hierarchical activity diagrams to decompose until this level of maturity is
reached.

« Use token manipulators (splitters/combiners, send/receive signals,
decision/merge nodes, etc) frequently to model parallel activities,
characterizing the system’s behavior generically. Scenario modeling is
iInsufficient.

www.incose.org/symp2021 12

The 3 Rules of Activity Diagram Modeling %

Rule 2: Model Stimuli and Observable Outputs

* Functions which are testable should be stimulated from outside the system.
— Not every Activity Diagram will show an external stimulus. But if you trace a behavior
back through the series of diagrams to its origin, it should kick off with an external
stimulus.

— Sometimes the time scale is long, and we talk about “state-based behaviors”. But
even a state-based behavior should kick off with a state change which is stimulated
from outside of the system. No system behavior should be completely spontaneous;
spontaneous behavior is not testable.

* Functions which are testable should be observable from outside the system.

— Information should cross the system boundary, outbound, to be detected without
Invasive instrumentation.

www.incose.org/symp2021 13

The 3 Rules of Activity Diagram Modeling @

Rule 3: Model Serial Actions with Care

 Serial Actions are actions allocated to a single system in
series, with no external inputs or outputs in between.

 Serial Actions are a symptom of over-prescription, and can
lead to higher numbers of functional requirements to
manage. They should be avoided when possible.

* They are not always avoidable. Sometimes they are
necessary to reduce ambiguity, or to model a decision-
making process where externally-observable outputs vary
depending upon the outcome of that process.

www.incose.org/symp2021 14

Approach Expansion: The Translation Part

The Trivial Case

An external stimulus and

externally-observable output
heightens the chances that this

(‘act [Activity] Trivial Case | Trivial Case] J

requirement will be testable.

«allocates
Interfacing System A

wallocates
System

-x at
In cing Sfstem B

-

. o .
(sMumbered Au:ti'.r'rt'_.raJ

2.1 Do Stimulus

LFﬂtimulﬂting Signal

Vg

input1

[1]

" sNumbered Activitys
’JIZI 2.2 Do Activity 1

outputl

COutput Signal

Do Activity is an English-language action name which will
appear prominently in the final requirement text. Review of it,
as well as the entire diagram, should be a multidisciplinary
and collaborative effort which includes the whole team.

eNumbered Activitys
4:‘ 2.3 Do Reaction 1

|

®

Formulaic requirement metadata reduces time
spent in authorship. Other metadata can be
added to the model, and output here, as well.
Possibilities include unique identifier numbers,
classification tags, safety tags, verification

methodology tags, and more.

www.incose.org/symp2021

Requirement Text: Upon receipt of
[Stimulating Signal], the System shall
[Do Activity 1], [producing/displaying]
[Output Signal].

Rationale: See [Activity #] in model.
[Add custom thoughts as needed.]

Requirement Type: Functional

15

Approach: Translation

Datastores

(act [Activity] Trivial Case [Datastore Case] |

Datastores were not used conventionally!

ey

s

Parameters would have been more
proper, and more problematic.

zallocates
Interfacing System A

wallocates
System

xallocates
Interfacing System B

s

. 4 .
(«Numbered Au:'t'r'.r'rt'_.rn]

2.1 Do Stimulus

T Stimulating Signal

" gNumbered Activity»
’J':‘ 2.7 Do Activity 1

Output Signal

f

i

wdatastores
Datastore

i

" eMumbered Activity»
2.3 Do Reaction 1

|

®

When tokens flow from Datastore into
Do Activity 1, but not the other way.
Requirement Text: Upon receipt of
[Stimulating Signal], the System shall utilize
[Datastore] to [Do Activity 1],
[producing/displaying] [Output Signal].

Or

When tokens flow both into and out of
Do Activity 1 from the datastore.
Requirement Text: Upon receipt of
[Stimulating Signal], the System shall [Do
Activity 1], [producing/displaying] [Output
Signal], and updating [Datastore].

A

www.incose.org/symp2021 16

We defined “dependency” from a tester’s perspective. A N
teln 2!

S O I u tl O n : Tran S I atl O n requirement is “independently verifiable” if the output is ‘.l' ;
) directly observable. A requirementis “dependently verifiable” L lu,j
Serial Act| ons if it is verified by observing output from other serial activities

the modeler should be cognizant of in their language

choices. If Activity 2 could occur without Activity 1 occurring,

(act [Activit] Basic Serial Activities | Basic Serial Activities] J / then Activity 1 is not verifiable. The language chosen to
name these actions must reflect this logic.

® // Used for the Dependent Sibling
: Requirement Text: Upon receipt of

(&Nu mbered Al:lt:;rt'_:n p

b [Stimulating Signal], the System shall
[Do Activity 1].
| y

-
_ Y N
(Mumbered Activitys And
1.3 Do Activity 2 J

JH uuwﬁ Py Used for the Independent Sibling
m/ . e J Requirement Text: Upon [Do Activity 1],
& the System shall [Do Activity 2],
[producing/displaying] [Output Signal].

/ downstream. This dependency has certain assumptions that

Dependent Sibling

|

. acomments

 eNumbered Activitys | &l Activities in thi
1.2 Do Activity 1 — | |Swimlane are

|__| Stimalating Sigrjal

Serial Activi
-1

b A

www.incose.org/symp2021 | I

Our Approach r s

Other Formulas

« Send/Recelive Signals in Activity Diagrams

* Interruptible Regions in Activity Diagrams
 Redundancy of Language In Activity Diagrams
« Streaming Behaviors

* Timer Objects

* Functional Constraints

And all of them need to be combined, when they all co-
exist on a diagram.

www.incose.org/symp2021 18

sy

Our Results W

Strengths and Weaknesses of the Approach Made Apparent in Implementation

e Current Status

— The system is yet to be defined and built. But we are confident that the client and
bidders have a unified understanding of the SoS’s expected behaviors and the
system’s functional requirements.

« The Silver Bullet Process

— We needed an outlet valve to write requirements for behaviors that we didn’t model all
the way due to time or budget constraints. We called this our “silver bullet process”.
Our silver bullet process was to add the behavior as a high-level SoS action, without
decomposing it. We then wrote a requirement that the system “support” that capability.

 Number and Detail of Requirements

— This process outputs a |ot of functional requirements. There were many more, and
more detailed, than some clients were accustomed to.

sy

Our Results W

Strengths and Weaknesses of the Approach Made Apparent in Implementation

. Team Structure
- MBSE is best when it’s collaborative and multi-disciplinary. Teams should be set up to support these precepts. Team silos are the enemy of
MBSE.

. Definition of Truth
- This approach does not resolve the question: “What is truth?” This is especially important in a situation where multiple artifacts describe the
same phenomena. Here, we have a model and a requirements document both describing system behavior.

- Typically, a client-contractor governing contractor will point to a set of requirements which is the “true set”. The English-language requirement
document is likely to be that “true set”, as it was for us. But this could evolve as MBSE gains traction in the community.

. The Future
- Extending The Process to Other Requirement Types
. Authorship of other requirement types, such as architectural and performance requirements, could benefit from a similar approach.

Our team has already created a formulaic approach to architectural requirement authorship.

- Firming up This Process
Use of parameters instead of datastores might be incorporated with greater tool and language fluency.
We found that having guidance which describes the appropriate level for creating signals and datastores is important.
We also found that having team SOPs for modeling is important, if more than a few people are directly contributing to the model.

. You will hear from us again!

www.incose.org/symp2021 20

N 3 st Annual INCOSE
international symposium
‘ irtual event
" T VH’
‘{ LI 7 July 17 - 22, 2021
ol s~ 4

www.incose.org/symp2021

