
www.incose.org/symp2022

Augmenting Agile Software 

Development to Improve Systems 

Thinking

By: Emily Barrett ebarrett@mitre.org 



TRUSTS Framework

www.incose.org/symp2022 2

• Transform with Resilience during Upgrades to Socio-Technical 

Systems (Neville et al., 2021)

• Specifies characteristics of complex work systems that enables 

them to respond adaptively and resiliently to threats

TRUSTS Five Factors of Work-System Resilience

Response 

Coordination

Maneuver Capacity

Control Scheme

Progressive 

Responding

Demand and 

Deviation 

Awareness



Objective 

• Discover opportunities in Agile Software Development for which 

the TRUSTS framework can provide developers with 

requirements for resilience without compromising the overall 

integrity of Agile

• Use added TRUSTS layer to minimize technical debt 

accumulation through continuous deployment in Agile 

development 

www.incose.org/symp2022 3



Agile Process

www.incose.org/symp2022 4

Define Requirements

High Level Planning

Begin Sprint N

Write Story/Scenario

Functionality/

Acceptance Tests

Deploy

Quality Assurance

Release

Story Finding

Stories Left?

System Testing

Debug

Yes

No



Agile: Why is it Important?

• Work/tasks broken down into manageable chunks or sprints 

(about 1 month each)

• Each principle of Agile occurs in each sprint 

• Encourages continuous changes to requirements throughout 

development cycle

• Retrospective occurs at end of each sprint: what went right? 

What went wrong? What are we doing in the next sprint?

www.incose.org/symp2022 5



Critiques of Agile

• Focuses too much on velocity, not enough on quality (Behutiye et 

al., 2017; Cunningham, 1992)

• Technical debt: the tradeoff between short-term benefits of rapid 

delivery and the long-term value of developing a software system 

that is easy to evolve, modify, repair, and sustain (Nord et al., 

2012)

www.incose.org/symp2022 6



Significance of Resilience

• Resilience: the ability to responsively adapt to anticipated and 

detected changes in the operational environment (Woods, 2006)

• Defining resilience requirements early in development can help 

reduce technical debt

www.incose.org/symp2022 7



Agile Touchpoints for TRUSTS

www.incose.org/symp2022 8

Define Requirements

High Level Planning

Begin Sprint N

Write Story/Scenario

Acceptance Tests

Deploy

Retrospective

Release

Story Finding

Stories Left?

System Testing

Debug

Yes

No

TRUSTS framework 

informs requirements

TTX, surveys, 

scoring scheme



Tabletop Exercises (TTX)

• Short-term vs long-term TTX

– One eight-hour session vs multiple weeks meeting 1-2 hours/week

– Long-term allows for smaller ask of team’s time, evolution over time, 

use of external resources

• Incorporate 1 hour of long-term TTX into each sprint’s 

retrospective

– Outcome from TTX informs next sprint’s requirements 

www.incose.org/symp2022 9



Preliminary Results

• Use case observations: airspace control concept dev project
– “I don’t care, just hand me requirements”

– TRUSTS team felt too late for requirements step, but too early for TTX 
step

• Initial interviews: 6 Agile SMEs 
– “Sponsors overly concerned with ‘Agile metrics’ like velocity, but ‘did we 

deliver what we wanted to’ should determine success” 

– “During a sprint, outside of weekly meetings, 1 step was talking through 
each piece of puzzle, outlining each piece, each person builds out 
separate piece and the hardest part was connecting everything after 
that”

www.incose.org/symp2022 10



Next Steps

• Deliver survey to software developers/others with Agile 

experience

– Priorities of 12 Agile Principles

– Understand prior knowledge of resilience engineering

– “Who’s responsible for system resilience?”

• Engage in another round of interviews focused more on the 

technology development side and TTX incorporation

– Develop protocol and best practices for teams running TTX

www.incose.org/symp2022 11



www.incose.org/symp2022 12

Discussion



References

Behutiye, W. N., Rodríguez, P., Oivo, M., & Tosun, A. (2017). Analyzing the concept of technical debt in 

the context of agile software development: A systematic literature review. Information and Software 

Technology, 82, 139–158. https://doi.org/10.1016/j.infsof.2016.10.004

Cunningham W. (1992). The WyCash Portfolio Management System. OOPSLA'92 Object Oriented 

Programming Systems, Languages and Applications, Vancouver, B.C., Canada, October 18-22. NY: ACM, 

29-30. doi: 10.1145/157710.157715. 

Neville, K.J., Rosso, H., Pires, B. (2021). A systems-resilience approach to technology transition in high-

consequence work systems. Proceedings of the 9th Symposium on Resilience Engineering, June 21-24, 

Toulouse, France

Nord, R. L., Ozkaya, I., Kruchten, P., & Gonzalez-Rojas, M. (2012). In Search of a Metric for Managing 

Architectural Technical Debt. 2012 Joint Working IEEE/IFIP Conference on Software Architecture and 

European Conference on Software Architecture. https://doi.org/10.1109/wicsa-ecsa.212.17

Woods, D. D. (2006). Essential characteristics of resilience. In E. Hollnagel, D. D. Woods, & N. Leveson 

(Eds.), Resilience Engineering: Concepts and Precepts (pp. 21-34). Ashgate.

www.incose.org/symp2022 13

Approved for public release; Distribution unlimited. Public release case number 22-1836. 

©2022 The MITRE Corporation. ALL RIGHTS RESERVED.

https://doi.org/10.1016/j.infsof.2016.10.004

