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Challenges for Complex Systems and System s
of Systems

g

Multi-domain Brings a new set of challenges to
Operations designers, integrators, and evaluators.

Complex Mission Evolving mission capabilities and
Capabilities evolution of technologies

Our GMU Team

Expertise Interoperability amidst evolution
9‘ of technology and mission
C4ISR & Cyber AI/ML driven technologies
. for Systems, Systems of : :
wasiog | Y | St | [P oo o e

E2¥  Components

capabilities

www.incose.org/symp2022 2



Al-Enabled Capabilities in Complex Systems  @F=u

Systems Engineering applies through out

Mission Engineering

Operational
Mission
Outcomes

Mission
Threads

System of

g

Mission engineering (ME) is ‘above the system level’,
addressing systems of systems (SoS) in a mission context
Al for contextually understanding mission thread and SoS
capabilities

Recent Al Application Example: Planning battlefield
operations, recommend courses of actions etc.

Al for managing and integrating heterogeneous and distributed
systems

Systems with authomous and non-authomous systems

Recent Al Application Example: Space Situational Awareness,
Missile Defense, etc.

Al at system, sub-system, and functional level

(New independent systems/upgrade legacy systems)
Recent Al Application Examples: Control, Guidance, and
Navigation of Robots, Missiles, Autnomous Cars, etc.
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What is the Challenge with Al-Enabled Capabilities? @FE==y

{
» Deep Neural Networks (DNNs) remain the predominant implementation of Al and Machine “'1" 4
Learning

« Al Systems with DNNs can perceive, learn, decide, and act*

Input layer : Hidden laycrs i Output layer

“ Black-box
t' A Output 1 model . Why this action?
N

"' ‘ Why not another action?
}m :m = | x{M ]}y [ =)

When do | succeed/fail? R
1 - When can | trust the results”
X (s maft)
X;: input instance

ISAE S

How can | fix an error?

« Current Al models excel in performance, but extremely hard to interpret
o There is a trade-off between the performance and interpretability of Al models
o Decision making constructs are opaque which makes trust, validation, and certification difficult

« EXplainable Al (XAl) is developing techniques to address this problem
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Why Explainable Al? S

Let’s try a thought experiment {

Q: What will be the weather tomorrow? Q: How do you know what will be the weather tomorrow”

A alexa @) alexa
It will be chilly and cloudy. 4% | heard it on the radio 54 %
i | |Ooked up on my phone

Remember to put on a warm jacket
Weather radar showed a cold front

| love looking at NOAA models, you
wanna know the barometric pressure!

ML with XAl
HIV Corona  Rabies This is
5 =5 * Corona virus because: End User
- Learning 1. Ro between 2 and 3
Herpes  Ebola Adenovirus Pr 2. Incubation 4 to 14 days
0Cess 3. Droplets in the air for long
4. A pandemic 1. | understand why/why not

| know when | succeed/fail

3. | know when | can trust the
results

4 | know why there is an error

Learned Explainable Explanation '
Function Model Interface S

N

A $2; Layer
Influenza HPV  Rotavirus Input  Hidden

ﬂi« Layer La er
Training Data




Our Approach to Complex Systems Design S

v ey

and Al Challenges o "y
Systems Engineering

Complex systems are built on SE foundations

Modeling and Simulation Explainable Artificial

' Intelligence

Use models as a basis for Al in which the solution

simulatiqns to devglop datg _for M&S (including results, rationale,
analysis, education, decision justification, assumptions,

making, efc. etc.) can be interpreted and
understood by humans.

Provide a window of opportunity to understand, analyze and validate the assumptions,
theories, operations, and decision-making constructs of modern complex systems.
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Applying XAl to aid with Systems Engineering &=
of Complex Systems Wiy

Mission Engineerin
= = * Problem: Creating balance and unbalance in complex

operational environments
Missi . o S * Al Methods: Convolutional Neural Networks
ission . Sy~ , . ,
Outcomes & T = « XAl Methods: Gaussian Processes with uncertanity

Operational

Mission
Threads
* Problem: Machine reasoning for integration of system of
p systems
System of . + Al Methods: Hierarchical Task Networks

« XAl Methods: Probabilitic Ontology with Multi-Entity
Bayesian Networks

* Problem: Guidance of high-speed aerospace systems
« Al Methods: Reinforcement Learning
+ XAl Methods: Shapley Additive Explanations

Systems Engineering applies through out
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System Level Al: Guidance and Navigation of High- A~
speed Aerospace Vehicles W

Sample Problem

* Problem Formulation:
o Provide guidance commands to high-speed aerospace vehicles e

25 1

« Why Al is Needed:

o Real-time trajectory generation is computationally prohibitive for
high-speed mission 10-

o Human intervention and guidance is not feasible beyond | | |
supersonic speeds " onmnpeiie

20 A

15 4

Altitude [km]
Control [deg]

Emergency Decent Problem

Control History

 What Al Techniques can be used: ke i

o Reinforcement Learning (RL) enables training of an
artificial intelligence (Al) agent to operate in dynamic
uncertain environments o

10 A

o Impressive performance outcomes to learn nearly-optimal ' ,
solutions in a variety of application domains o 1w 20

Time [s]

Emergency descent of vehicle from 30km

: altitude to 3km altitude in minimum time
www.incose.org/symp2022 _




Reinforcement Learning Problem Formulation

.5y

RL Agent
» Designed to train the RL agent an L , * RL trained from SB3 Python package
zmergznc;y d(tescegt prc()jblem : » Proximal Policy Optimization (PPO)
» Reward structure based on : 9l ff K
distance to target and FPA : training parameters (backup)
v... :
00",’.. > AGENT
Tt.. Action Space
. State Ré(Nard Action .
““‘¢ St Rt At ----------- L] ° AOA Command
2 ' R, « +20° in variable
increments of 2°

- Distance to target |

 Velocit
e AOA / erasssssassssssasssanannns » * Emergency descent problem space
. EPA » Atmosphere, simulation clock,

scheduler, etc.
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Al Result (Vehicle Descent From 30 km to 3 km)  @Fsu
‘{‘-l.l:"ly
v
Al BASED ON REINFORCEMENT LEARNING:
* Provides AoA commands to guide the vehicle to a pre-determined safe altitude
* Included randomly sampling vehicle initial conditions

 Completed after 500k episodes o , , ,
Sufficient cumulative reward of +30 to train policy

__ 30000
g T s
o 200007 —— RL Solution S
S —— Safe Altitude g %
+= 10000 g 25
E= 5
< . = %’ 15
0.0 0.2 0.4 0.6 0.8 £ s
=
)
-5
Downrange Angle [deg] 5 h‘
— v '15
o0 =
= 201 0 100k 200k 300k 400k 500k
3 10 A |7 Episode
<
=
= 0-
5 ™
—-10 | I— .
QJ I I I 1 I I I I
H — \ AoA commands issued by the
= Time [s] RL agent
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Examination Via Explainable Al (XAl) Techniques F~o

. . . . . "I B
Brief Introduction to Explainable Al : SHAP Applied to RL Problem*\\lr-’l,k}/
o |nvestigates trained Deep Neural Network ; ° Inputs: Time, A|t|tUde, VG'OCity, and Fllght Path Angle
(DNN) models with analytical techniques to i * Output: Angle of Attack (between -20" and 20)

extract decision making attributes : * Number of Trajectories: 1000

. SHapley Additive exPlanations (SHAP) * Objective: Reach a particular target in a minimum time

. . High
o State of the art for reverse engineering the -
output of any predictive model : altitude D )
o Yields importance of input features for a S velocity E
given prediction : z
o Focuses on coalitions in cooperative game :  tme 3
theory - FPA
T T T T T T T T Low
. -6 -4 -2 0 2 4 6 8
Output =04 '"i. OUtpUt?OA SHAP value (impact on model output)
il .
Age =65 +0; =65" . . .
ge=m = SHAP = — A9e=6 @ Higher altitude values oppose a change in AoA whereas
sex=F — Explanation — Sex=F | lower altitudes support it.
BP=180 — —8r=180: (D Higher velocity values positively influence change in AoA
BMI =40 — — BMI=40:
T ; G) FPA and Time have least impact.
Base rate =0.1 Base rate =0.1 :

11
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System of Systems Level Al: Anytime Reasoning and Analysi
for Kill-Web Negotiation and Instantiation across Domains ‘ta'lr'.iyf’

(ARAKNID)

e  Problem Formulation

= Near real-time flexible and adaptive integration of system
of systems

= Part of the DARPA’s Adapting Cross-domain Kill-webs
(ACK) program and Mosiac Warfare Concepts

htt%s://www.darpa.miI/program/adapting-cross-domain-kill-
webs

=  Why Al is needed:

= Manage data, capabilities, and outcomes on various
missions in real-time to help with decisions involving
highly complex and capable complex systems

= What Al and XAl techniques can be used:
» Hierarchal Task Networks for mission planning

= Combining Probabilistic Ontologies with Multi-entity
Bayesian Networks to provide explainable Al insights into
the design of adaptable system of systems architectures
www.incose.org/symp2022

Automating machine-to-machine
interactions is a significant tactical
advantage when seconds and minutes
matter (Important decisions are ultimately
made by a real person)
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Al Technology: Hierarchical Task Networks (HTN%
L o

SURerTask Hierarchical Task Network
Parameters: T ( H TN)

® param Decomposes
to -(J « Applied in automated planning
SubTask1 SubTask2 SubTaskN \subTaskzearam [\ suTaskigarem [, o Represents task (action) flows

Parameters: Parameters: Parameters:

param «  param *  param CS“"T“:DW” — — Dependency among actions form
ubTas aram) Y ” .
(sarmscmmen ) a “task — subtask” hierarchy.

SubTask1 * Produces executable sequence
SuperTask Parameters: by decomposing tasks to
Parameters: * param subtasks
° param \SubTask1(param)/ \SubTaskIZ(param)/ XSubTaskN(param)/ - -
SubTask? H — Preconditions and post-conditions
SRR (a.k.a., constraints) can be
Pecomposes Paren specified with predicates & logic
SubTackN expressions
Parameters:
param
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Multi-Entity Bayesian Networks (MEBN) and S
Probabilistic Web Ontology Language (PR-OWL) W

DetectabilityMFrag

Context « Bayesian Network (BN): directed acyclic graph
s & factored representation of a joint probability
distribution.

isA(run,AssetExecution) hasDerivedAttribute(run,detectability)

isA(detectability,Detectability)

Input

Nodes

« MEBN: composable templates for BNs based
on First-Order Logic (FOL)

— Knowledge is encoded as set of MEBN
Fragments (MFrags) that can be instantiated &
combined to form standard BNs for a specific
situation

( hasTvpeDetectabilitv(run)) ( hasSourceDetectability(run) ) ( hasTargetDetectability(run) )

! *////Reﬁdent

hasDetectability(detectability) )

Chrse. — Generalize knowledge and apply to never-
‘ before-seen situations

uuuuuuuuu

P r' L = . | il PROWL: language for modeling uncertainty in
A set of MFrags can | .= : OWL based on MEBN semantics

te virtuall
generale virglaly — OWL: W3C recommendation for ontologies

infinite standard BNs |
— Ontology: formal specification of domain
UnBBayes: https://sourceforge.net/projects/unbbayes/ knowledge
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Visual Qualitative Dynamic Explanation

of Bayesian Networks

O

R I

“Dynamic” explanations are generally about
behaviors, changes, and reasoning processes

Asia (-) Smoker (+)
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longAgn 0% light 0%j \/ . . . . . .
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-
- . . .
-==" d d bab d
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o = . . . ) .
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ight 15.87% | light 15.87% light = =TT 319 ___——‘
heavy 40.05% heavy 40.05% heavy =™ 7144% O - H d H b H
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Mission Engineering Al: Exploiting Complex .
Environments to Create Advantage Wy

e Problem Formulation

o Understanding how to win in Mosaic warfare via Real
Time Strategy (RTS) Games + Al

o How do new capabilities, rules, and modifications
affect winning outcomes?

 Why Al is needed:

o How to account, model, and plan for intelligent opponents?

o Discover winning strategies amidst adaptive and intelligent
agents

 What Al and XAl Techniques can be used

o Convolution Neural Networks (CNNs) to understand
enviorment

o SHAP to investigate CNNs
o Gaussian Processes to account for uncertanity

Based on DARPA’'s Gamebreaker Project in collaboration with Purdue University
www.incose.org/symp2022




microRTS: Game Specification

Distribution A: Approved for Public Release, Distribution Unlimited

Game Map

Light Unit
(Fast, Low Damage)

Heavy Unit
(Slow, High Damage)

—————— Damaged Heavy Unit

Barracks (Builds military units with resources)

Resources
N I O T O / Worker (Gathers resources)
T T T T Base (Builds workers with resources)

T.772,P0: 5 (-260.0), P1: 7 (260.0)



Distribution A: Approved for Public Release, Distribution Unlimited

Game Map

Light Unit
(Fast, Low Damage)

Heavy Unit
(Slow, High Damage)

....... ————— Damaged Heavy Unit

Barracks (Builds military units with resources)

Resources
- d o~ Worker (Gathers resources)
~~~~~~ — 1 4~ Base (Builds workers with resources)

T.772,P0: 5(-260.0), P1: 7 (260.0)



Distribution A: Approved for Public Release, Distribution Unlimited

L2G: Learn to Gamebreak “l'.,//

* Players: Two Al agents
complete against each other

 Convolution Neural Networks
predict who is winning the
game

« XAl Methods (SHAP and GPs)
identify the winning advantage

for the players

— l.e., which feature contribute most to
winning probability

Mission Engineering Insight with XAl:

Change the winning advantage found by XAl to shift the game balance



Summary and Conclusions @

SE + M&S + XAl provide layers/views of information and tools for different target
audiences to aid in design and evaluation of complex systems.

We applied state-of-the-art from
knowledge representation and XAl to
Systems, Systems-of-Systems and
Mission Engineering problems

(e.g., Probabilistic Ontologies, MEBN,
SHAP, XAl).

We highlighted ongoing research
projects performed by the GMU's C4l &
Cyber Center, focusing on technical
achievements that addressed SE +
M&S + XAl

Finally, our presentation addresses
and advances the tools and
techniques required for System
Engineering for Al (SE4Al).

These capabilities are applicable to a
wide spectrum of problems in loT,
Autnomous Vehicles, Cybernetics,

Industry 4.0, Smart Cities, etfc.
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SYSTEMS ENGINEERING CALL FOR ML AND EXPLAINABLE Al f&

Unsolved Problems in ML Safety* 3 LI
nsoive ropiems iIn darety \\ 'L 7
u RObUStness Create models that are resilient to adversaries, unusual situations, and Black Swan events. ] 6% Alignment Build models that represent and safely optimize hard-to-specify human values. ]
—
& Monitoring Detect malicious use, monitor predictions, and discover unexpected model functiunu]ily.] Systemic Safety Use ML to address broader risks to how ML systems are handled, such as cyberattacks. ]
|

\ }

|
Systems Engineering for Al (SE4AI)

SE Test and Evaluation Explainable Al Verification and Validation
* Input and output testing * Algorithmic level « Expected System Behavior
» Sensitivity Analysis » Sub-system level « Stakeholder Needs
* Design of Experiments « System level « External system interface

Systems Engineering of Al is needed to help address these problems and
transition Al into practical systems

Hendrycks, Dan, Nicholas Carlini, John Schulman, and Jacob Steinhardt. "Unsolved problems in ml safety." arXiv preprint arXiv:2109.13916 (2021) 22
**Lewis, David K. 1973. Counterfactuals. Cambridge: Harvard University Press.
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