

32nd Annual **INCOSE**
international symposium
hybrid event

Detroit, MI, USA
June 25 - 30, 2022

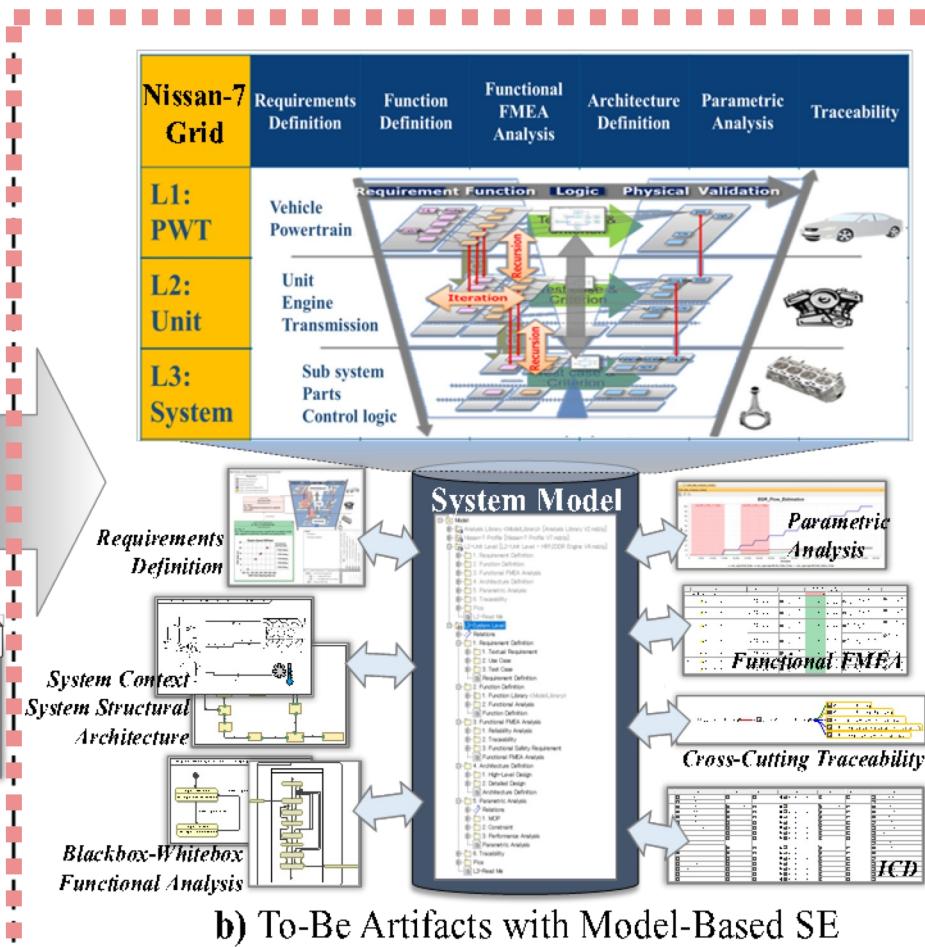
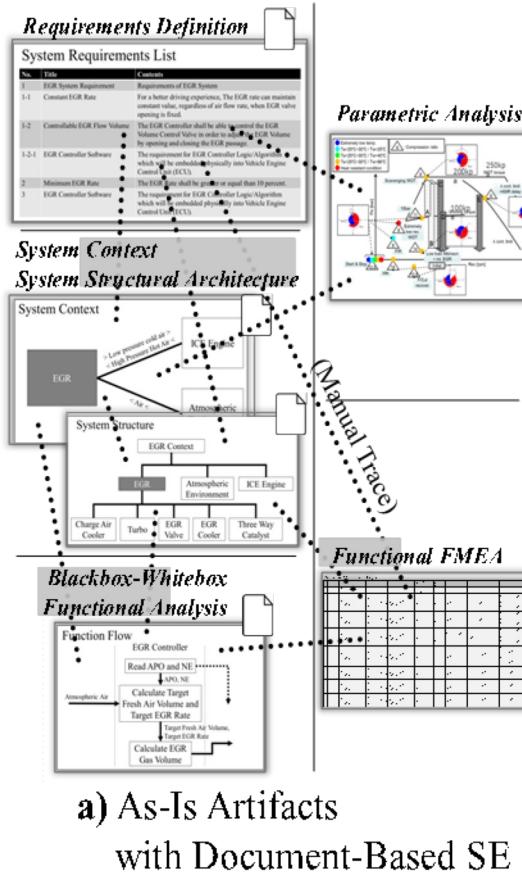
Model-Based Systems Engineering

A Pragmatic MBSE Approach of Nissan Powertrain Team to Minimizing Document-Based SE

Nissan: Takeshi Morita, Yutaka Ayame, Yukimi Mizuno

Dassault Systemes: Habibi Husain Arifin, Ken Kawamura, Ho Kit Robert Ong

www.incose.org/symp2022



Table of Content

- Overview
- MBSE Motivation
- Steps of MBSE Journey
- Lesson Learned
- Future Works
- Q&A

Overview

A case study of collaboration
between *Nissan Powertrain* and *Dassault Systèmes CATIA Cyber Systems Team*

A pragmatic MBSE approach with Nissan-7 Methodology:

- To encourage the *Nissan Powertrain* SE
- To construct and leverage **System Model** as a **Single Source of Truth**

MBSE Motivation

1. Interdisciplinary Communication

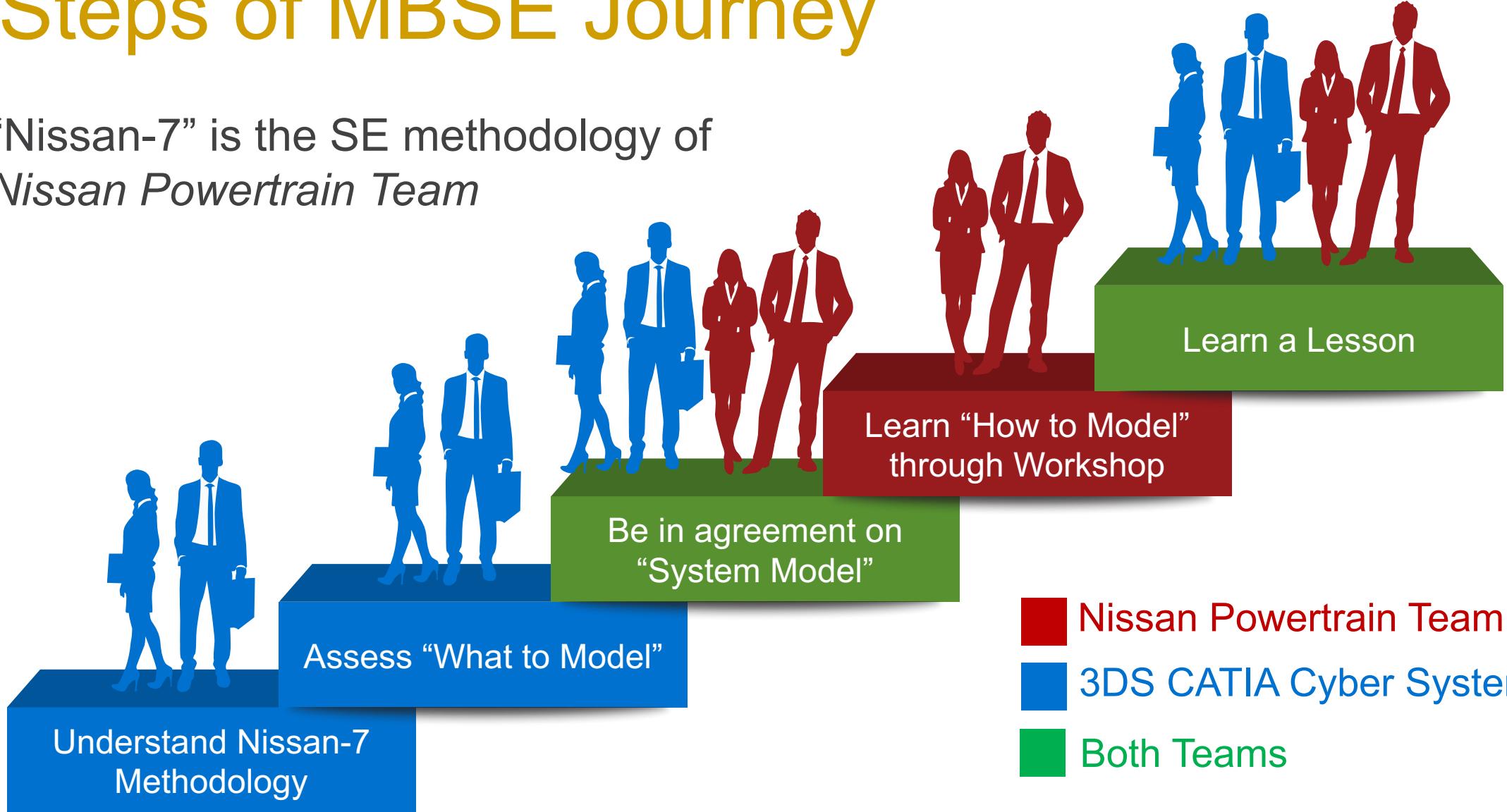
To improve communication among multidisciplinary teams with single source of truth

3. Functional safety and reliability analysis

To increase efficiency and traceability for functional safety and reliability analysis.

2. Designing and Managing Requirements and Interfaces

To maintain, synchronize, and ensure in terms of correctness, completeness, and consistency of requirements and interfaces.


4. Increased Complexity and Knowledge Capture

To manage complexity with holistic system architecture and capture knowledge for technology capitalization.

Steps of MBSE Journey

“Nissan-7” is the SE methodology of
Nissan Powertrain Team

Sample of System Model

Requirements Definition

Structural Architecture

Functional Analysis

System Model

Functional FMEA

#	Name	Subject parts	Function	Guide Word Completeness	Guide Word	Failure Mode
1	⚠ P0400_EGR_Control_Function_Failure	WO2018-142510A1_LP_EGR_System	Control_EGRV (context EGR_Controller)	Not Completed		
2	⚠ P0400-1_EGRCF_Failure	WO2018-142510A1_LP_EGR_System	Control_EGRV (context EGR_Controller)	Completed	Not Provided	FM Not providing EGR/V signal
3	⚠ P0400-2_EGRCF_Failure	WO2018-142510A1_LP_EGR_System	Control_EGRV (context EGR_Controller)	Completed	Not Provided	FM Not providing EGR/V signal
	⚠ P0400-3_EGRCF_Failure	WO2018-142510A1_LP_EGR_System	Control_EGRV	Not Completed	Incorrectly Providing EGR/V inc	

Traceability

EGR_Flow_Estimation

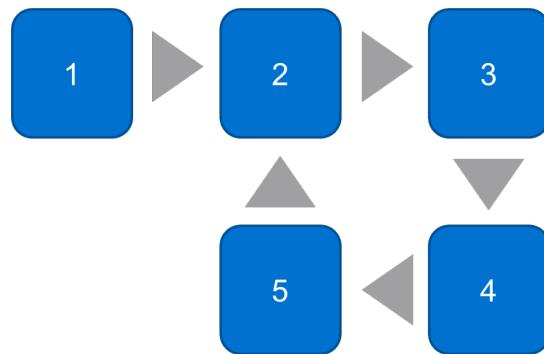
Key Points

- Layered Concept
- Nissan-7 Process
- Early V&V

Lesson Learned

Feedback from Nissan Powertrain team about main benefits of system models:

- *“Utilizing holistic system architecture in design and technical studies helps to prevent information loss and perform impact analysis between an SoI and its external systems.”*
- *“Utilizing a system model in technology capitalizations helps to structure engineering know-how and capture knowledge of experienced engineers to reuse, transfer, and adapt that knowledge to new technologies, e.g. electrification in automotive transformation.”*


Takeshi Morita, 2022

Conclusion

Nissan-7 Layered Concept

Nissan-7 Tailored Process

Early V&V

Future Works

Reduce Learning Curve

Overcome it through discussions, trainings, and workshops.

Replicate the Benefits

Replicate the benefits of the MBSE approach in the actual development process.

Include Trade-Off Study

Include Trade Study Analysis with Nissan-7 Trade Off Matrix.

A Pragmatic MBSE Approach of Nissan Powertrain Team to Minimizing Document-Based SE

Q&A

References

1. Ayame, Y., 2019, 'Practical tailored MBSE process "Nissan-7"', *29th INCOSE International Symposium*, INCOSE.
2. Biggs, G., Armonas, A., Juknevicius, T. & Post, K., 2018, 'Integrating Safety and Reliability Analysis into MBSE: overview of the new proposed OMG standard', *28th Annual INCOSE International Symposium*, Washington, DC, USA.
3. Biggs, G., Post, K., Armonas, A., Yakymets, N., Juknevicius, T. & Berres, A., 2019, 'OMG standard for integrating safety and reliability analysis into MBSE: Concepts and applications', *29th Annual INCOSE International Symposium*, Orlando, FL, USA.
4. Cole, B., Mittal, V., Gillespie, S., La, N., Wise, R. & Institute, 400 10th St N, A., 2019, 'Model-based systems engineering: application and lessons from a technology maturation project', *17th Annual Conference on Systems Engineering Research (CSER)*, Elsevier B.V.
5. Kleiner , S. & Kramer, C., 2013, 'Model Based Design with Systems Engineering Based on RFLP Using V6', in *Smart Product Engineering*, Springer-Verlag Berlin Heidelberg.
6. Liu, F. & Pfeiffer, J., 2015, 'Estimation Algorithms for Low Pressure Cooled EGR in Spark-Ignition Engines', *SAE International Journal of Engines*.
7. Maurer, M. & Winner, H., 2013, *Automotive Systems Engineering*, Springer-Verlag, Berlin.
8. Mito, Y., Tanzawa, K., Watanabe, M. & Eiyama, Y., 2012, 'Advanced Combustion Performance for High Efficiency in New I3 1.2L Supercharged Gasoline Engine by Effective Use of 3D Engine Simulation', *SAE 2012 World Congress & Exhibition*, SAE.
9. Pfluegl, H., Ricci, C., Borgarello, L., Magnin, P., Sellier, F., Berzi, L., Pierini, M., Mazal, C. & Benzaoui, H., 2015, 'A Framework for Electric Vehicle Development: From Modelling to Engineering Through Real-World Data Analysis', in *Electric Vehicle Systems Architecture and Standardization Needs*, Springer International Publishing.
10. Yoshimoto, K. & Hanyu, T., 2021, 'NISSAN e-POWER: 100% Electric Drive and Its Powertrain Control', *IEEJ Journal of Industry Applications*, vol 10, no. 4, pp. 411-416.

32nd Annual **INCOSE**
international symposium
hybrid event

Detroit, MI, USA
June 25 - 30, 2022

www.incose.org/symp2022