

32nd Annual **INCOSE**
international symposium

hybrid event

Detroit, MI, USA
June 25 - 30, 2022

June 30, 2022: 10:45-11:25 EDT (Track 6, Digital Engineering, Session 11.6.2)

Case Study: Using Digital Threads in a large System of Systems (SoS) for System Certification

Oliver Hoehne, PMP, CSEP, CSM
Technical Fellow, Systems Engineering
WSP USA
oliver.hoehne@wsp.com

AGENDA

- ❖ **Introduction**
 - Brief System of Systems (SoS) Overview
 - California High-Speed Rail System (CHSRS) Program
 - Use of Digital Threads in the CHSRS Program
- ❖ **SoSE Challenges Faced**
 - Systems Engineering Challenges
 - SoS Engineering Challenges
- ❖ **SoSE Activities Performed**
 - Certification Strategy
 - Step by Step Process Description
- ❖ **Summary, Achieved Outcomes & Conclusion**

INTRODUCTION: SYSTEM OF SYSTEMS

SoS DEFINITION & CHARACTERISTICS

ISO/IEC/IEEE 15288:2015(E)

Annex G
(informative)

ISO/IEC/IEEE 15288,
2015, ANNEX G

Application of system life cycle processes to a system of systems

G.1 Introduction

A system of systems (SoS) is a system-of-interest (SOI) whose elements are themselves systems. A SoS brings together a set of systems for a task that none of the systems can accomplish on its own. Each constituent system keeps its own management, goals, and resources while coordinating within the SoS and adapting to meet SoS goals. In the context of terminology discussed in subclause 5.2.3 (as shown in Figure 3),

the composite set of systems including the original SOI, enabling systems and interacting systems, together constitute an SoS. Where there are concerns that affect the composite set, the system of systems becomes the SOI, which is considered to satisfy some business or mission objective that cannot be satisfied by the individual constituent systems, or to understand emergent behavior of the combination.

This annex addresses the application of system life cycle processes to such SoS. It describes general characteristics, the common types of SoS, and the implications throughout the life cycle.

G.2 SoS characteristics and types

SoS are characterized by managerial and operational independence of the constituent systems, which in many cases were developed and continue to support originally identified users concurrently with users of the SoS. In other contexts, each constituent system itself is a SOI; its existence often predates the SoS, while its characteristics were originally engineered to meet the needs of their initial users. As constituents of the SoS, their consideration is expanded to encompass the larger needs of the SoS. This implies added complexity particularly when the systems continue to evolve independently of the SoS. The constituent systems also typically retain their original stakeholders and governance mechanisms, which limits alternatives to address the needs of the SoS.

SoS have been characterized into four types based on the governance relationships between the constituent systems and the SoS (Figure G.1). The strongest governance relations apply to directed system of systems, where the SoS organization has authority over the constituent systems despite the fact that the constituent systems may not have originally been engineered to support the SoS. Somewhat less control is afforded for acknowledged SoS, where allocated authority between the constituent systems and the systems of systems has an impact on application of some of the systems engineering processes. In collaborative SoS, which lack system of systems authorities, application of systems engineering depends on cooperation among the constituent systems. Virtual systems of systems are largely self organizing and offer much more limited opportunity for systems engineering of the SoS.

Emergence is a key characteristic of SoS – the unanticipated effects at the systems of systems level attributed to the complex interaction dynamics of the constituent systems. In SoS, constituent systems are intentionally considered in their combination, so as to obtain and analyze outcomes not possible to obtain with the systems alone. The complexity of the constituent systems and the fact they may have been designed without regard to their role in the SoS, can result in new, unexpected behaviors. Identifying and addressing unanticipated emergent results is a particular challenge in engineering SoS.

Definition: A system of systems (SoS) is a system-of-interest (SOI) whose elements are themselves systems.

A SoS brings together a set of systems for a task that none of the systems can accomplish on its own.

Each constituent system (CS) retains its own management, goals, and resources while coordinating within the SoS and adapting to meet SoS goals.

SoS Characteristics: SoS are characterized by managerial and operational independence of the constituent systems, which in many cases were developed and continue to support originally identified users of the constituent concurrently with users of the overall SoS.

INTRODUCTION: SYSTEM OF SYSTEMS

SoS EMERGENCE

ISO/IEC/IEEE 15288:2015(E)

Annex G
(informative)

ISO/IEC/IEEE 15288,
2015, ANNEX G

Application of system life cycle processes to a system of systems

G.1 Introduction

A system of systems (SoS) is a system-of-interest (SOI) whose elements are themselves systems. A SoS brings together a set of systems for a task that none of the systems can accomplish on its own. Each constituent system keeps its own management, goals, and resources while coordinating within the SoS and adapting to meet SoS goals. In the context of terminology discussed in subclause 5.2.3 (as shown in Figure 3), the composite set of systems including the original SOI, enabling systems and interacting systems, together constitute an SoS. Where there are concerns that affect the composite set, the system of systems becomes the SOI, which is considered to satisfy some business or mission objective that cannot be satisfied by the individual constituent systems, or to understand emergent behavior of the combination.

This annex addresses the application of system life cycle processes to such SoS. It describes general characteristics, the common types of SoS, and the implications throughout the life cycle.

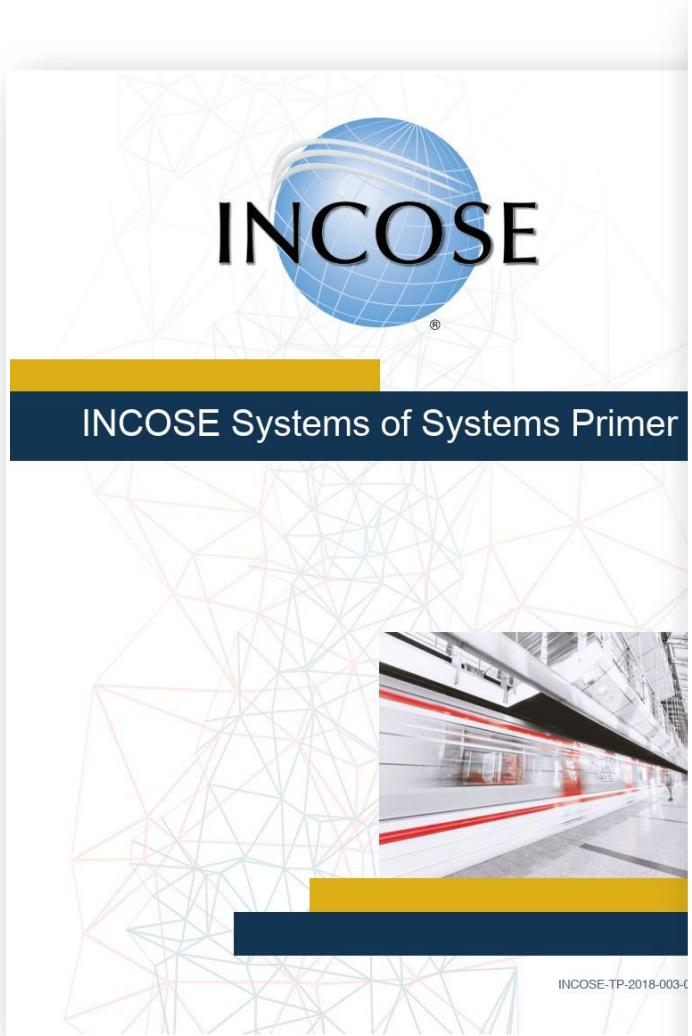
G.2 SoS characteristics and types

SoS are characterized by managerial and operational independence of the constituent systems, which in many cases were developed and continue to support originally identified users concurrently with users of the SoS. In other contexts, each constituent system itself is a SOI; its existence often predates the SoS, while its characteristics were originally engineered to meet the needs of their initial users. As constituents of the SoS, their consideration is expanded to encompass the larger needs of the SoS. This implies added complexity particularly when the systems continue to evolve independently of the SoS. The constituent systems also typically retain their original stakeholders and governance mechanisms, which limits alternatives to address the needs of the SoS.

SoS have been characterized into four types based on the governance relationships between the constituent systems and the SoS (Figure G.1). The strongest governance relations apply to directed system of systems, where the SoS organization has authority over the constituent systems despite the fact that the constituent systems may not have originally been engineered to support the SoS. Somewhat less control is afforded for acknowledged SoS, where allocated authority between the constituent systems and the systems of systems has an impact on application of some of the systems engineering processes. In collaborative SoS, which lack system of systems authorities, application of systems engineering depends on cooperation among the constituent systems. Virtual systems of systems are largely self organizing and offer much more limited opportunity for systems engineering of the SoS.

Emergence is a key characteristic of SoS – the unanticipated effects at the systems of systems level attributed to the complex interaction dynamics of the constituent systems. In SoS, constituent systems are intentionally considered in their combination, so as to obtain and analyze outcomes not possible to obtain with the systems alone. The complexity of the constituent systems and the fact they may have been designed without regard to their role in the SoS, can result in new, unexpected behaviors. Identifying and addressing unanticipated emergent results is a particular challenge in engineering SoS.

Emergence: A key characteristic of SoS – the unanticipated effects at the systems of systems level attributed to the complex interaction dynamics of the constituent systems.


In SoS, constituent systems are intentionally considered in combination, to obtain and analyze outcomes not possible to obtain with the systems alone.

The complexity of the constituent systems and the fact they may have been designed without regard to their role in the SoS, **can result in new, unexpected behaviors**.

Identifying and addressing unanticipated emergent results is a particular challenge in engineering SoS.

INTRODUCTION: SYSTEM OF SYSTEMS

INCOSE SoS PRIMER – FURTHER READING

INCOSE
INCOSE Systems of Systems Primer

INCOSE-TP-2018-003-01

Systems tend to...	Systems tend to...
Have a clear set of stakeholders	Have more stakeholders and possibly overlapping interests
Have clear objectives and purpose	Have more objectives and purposes
Have a clear management structure and clear accountabilities	Have distributed and unclear accountabilities
Have clear operational priorities, with escalation to resolve priorities	Have more complex operational routes and less clear escalation
Have a single lifecycle	Have more complex lifecycles and implementations
Have clear ownership with the ability to move resources between elements	Have more shared ownership and resources

Types of SoS
A taxonomy has evolved (proposed by Maier 1998, and extended by others) to categorise SoS into four different types based on the nature of the relationships between the constituent systems. These types are often complex, and may be classed differently depending on the perspective from which they are viewed at, or their current operating mode at any one time.

Directed SoS are built and managed to fulfil specific goals. Although constituent systems may accept that their normal operational mode is not the best for the SoS, they can be forced to do so. This can be found in metropolitan transportation systems where constituent systems may collaborate to deliver metro services in a specific direction in order to participate.

Acknowledged SoS have objectives recognized by a central authority, a manager, and dedicated SoS resources. Constituent systems have their own agendas, but their objectives, funding, development and sustainability are based on agreed collaboration. Air traffic control and safe airspaces globally all recognise their shared responsibility to manage the system and adhere to regulations and protocols.

Collaborative SoS comprise constituent systems that have some central purposes, which can evolve based on the needs of the system. An electrical grid is an example. Autonomous consumers receive electricity to consumers. Unlike an acknowledged SoS, constituent systems adhere to standards and regulations, but not necessarily to the same roles and working practices.

Virtual SoS have no central authority, nor an explicit management structure. SoS can exhibit large-scale emergent behavior, such as self-organization. The Internet is an example. The Internet Engineering Task Force (IETF) defines the standards and protocols. Independent service providers manage the system. No management or governance is either central or distributed. There is no central purpose for all parties.

INCOSE Systems of Systems Primer

INCOSE-TP-2018-003-01

SoS Authority
How do we handle collaboration and agreement when there is no overall director? Effective patterns for collaboration are needed, but are often difficult to recognise or establish. The defense sector tackles this with a focus on finding ways to balance the values & needs of constituent systems with those of the SoS. Other application domains tackle this through incentivizing constituent systems, creating an environment where they can meet their own goals whilst collaborating to support SoS goals.

SoS Principles
What are the key SoS thinking principles? Surveys of SoS practitioners have identified areas where basic principles are lacking. These include: lack of formalized SoS processes; lack of SoS success stories; and information about workflows. Much more research on SoS working contexts is needed to develop a body of recognized best practice.

Leadership
What are the roles & characteristics of effective SoS leaders? The increasingly complex collection of independent systems in an SoS typically straddles disciplines, application domains, organizations and even national boundaries, and each constituent system is capable of following their own interests and agenda. As a result, effective means of leadership are important. Structure and directorship, usually found in SE projects is often absent for SoS, and other methods are needed to ensure coherence and direction.

Constituent Systems
How to integrate constituent systems? Each constituent system has its own agenda and goals, and can act autonomously. Some may be legacy systems not designed for SoS contexts, not easily adapted, resulting in interoperability challenges. Operating an SoS means finding means to coordinate, incentivize and manage multiple separate constituent systems, with separate working cultures, schedules, processes and working practices, as well as coping with technical challenges such as communications and data exchange. Mismatched assumptions and expectations are a real risk.

INCOSE Systems of Systems Primer

INCOSE-TP-2018-003-01

SoS Pain Points

What does a systems engineer need to know about SoS?
Many existing systems do play a role in an SoS, whether they are explicitly aware of this or not. Working in an SoS context brings a number of challenges, and it can help to be aware of these. Surveys conducted by the INCOSE SoS Working Group have identified "pain points" which are particularly associated with SoS by practising systems engineers (summarized by Judith Dahmann 2014).

[1] COMPASS project: <http://thecompassclub.org/>
[2] DANSE project: <http://danselip.eu/home/>
[3] INTO-CPS project: <http://projects.au.dk>

Autonomy, Interdependence & Emergence
How can system engineering address the complexities of SoS inter-dependencies and emergent behaviors? The emergent, uncoordinated evolution of constituent systems can lead to unanticipated emergent effects at the SoS level, often only becoming apparent once the SoS is simulated or tested. Complex emergent behaviors are common between constituent systems at different stages of maturity, often not well understood or anticipated. The scale, diversity & independence in an SoS makes it difficult to produce models that can accurately predict SoS-level performance. Recent work has begun to research SoS and emergence, SoS uncertainty & complexity, and modelling & simulation – see, for example, [1, 2, 3].

INCOSE-TP-2018-003-01.0

5

CALIFORNIA HIGH-SPEED RAIL SYSTEM (CHSRS)

BRIEF INTRODUCTION

WHO WE ARE WHAT WE DO INSIGHTS CAREERS

Investors News Contact us

GLOBAL - ENGLISH FRANÇAIS

Source: <https://www.wsp.com/en-GL/projects/california-high-speed-rail>

CALIFORNIA HIGH SPEED RAIL

CALIFORNIA HIGH-SPEED RAIL SYSTEM

PROCUREMENT STRATEGY / CONTRACT PACKAGING

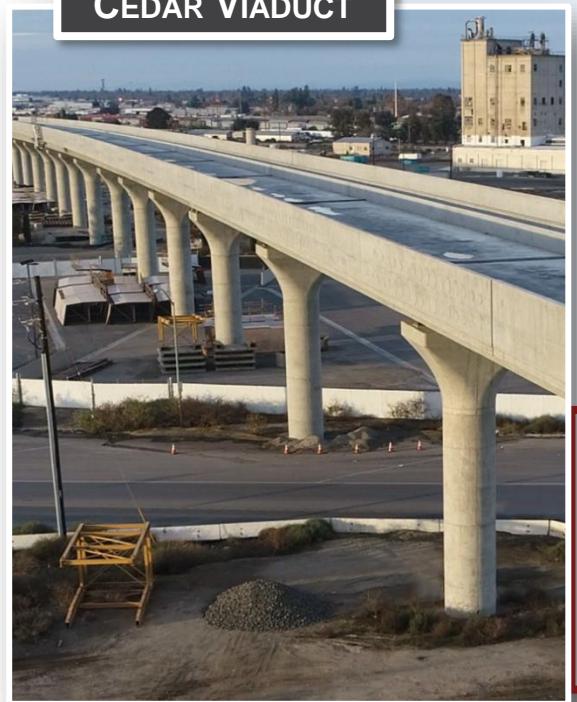
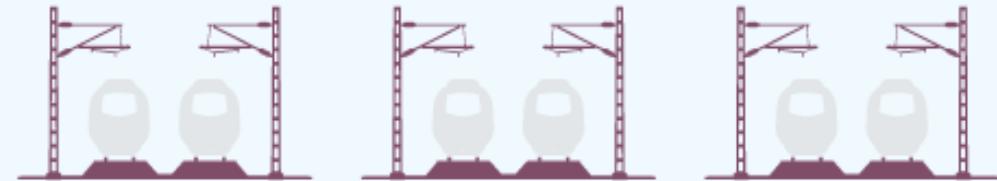


EXHIBIT X.X IMPLEMENTATION AND DELIVERY STRATEGY

Source: 2018 Business Plan & 2019 Project Update Report to the California State Legislature.

Note: Revised Draft 2020 Business Plan available: https://hsr.ca.gov/docs/about/business_plans/2020_Business_Plan.pdf

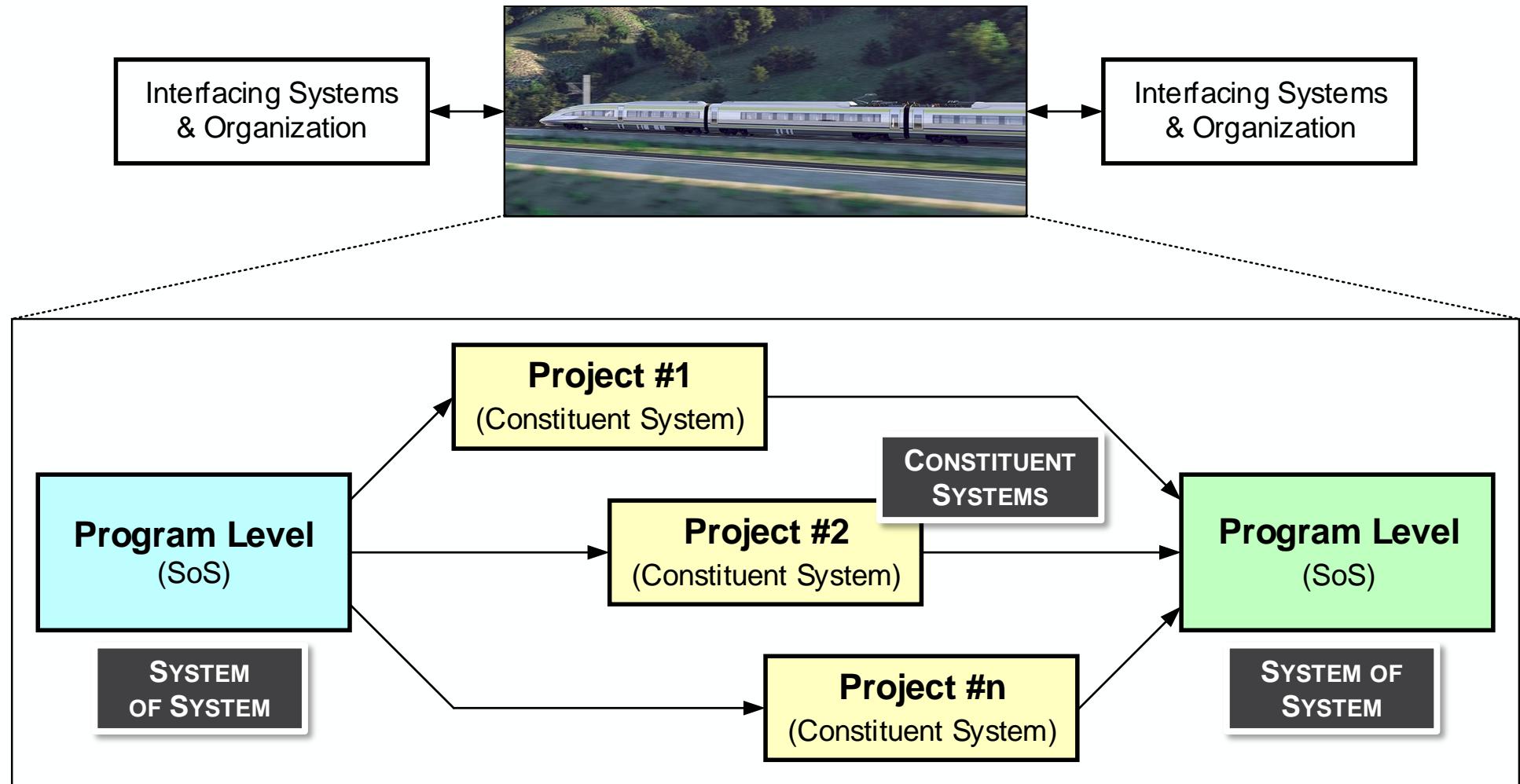
CEDAR VIADUCT


OPERATOR

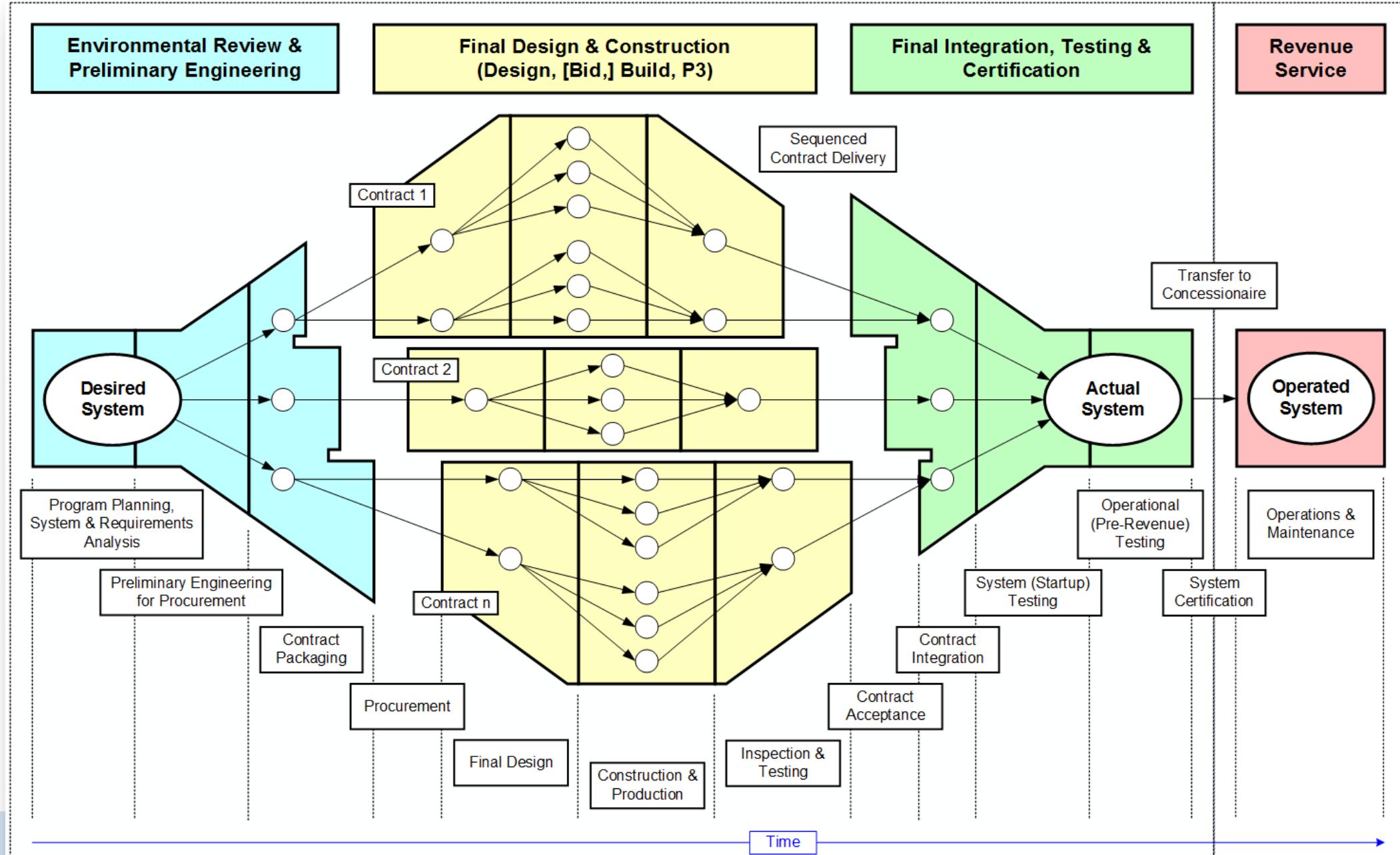
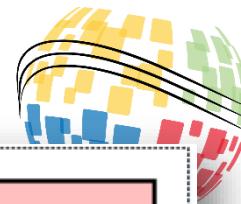
ROLLING STOCK

RAIL INFRASTRUCTURE

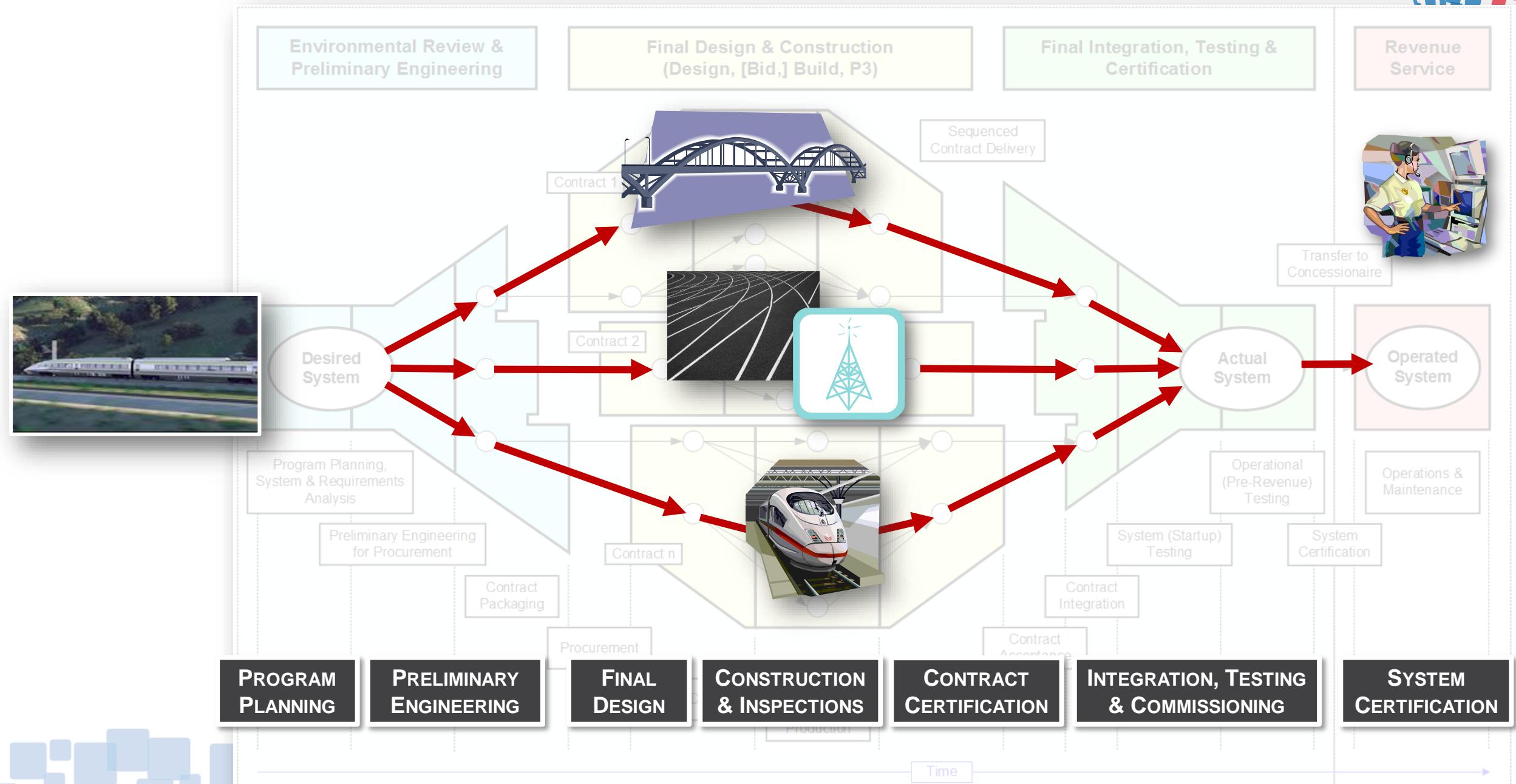
CIVIL WORKS

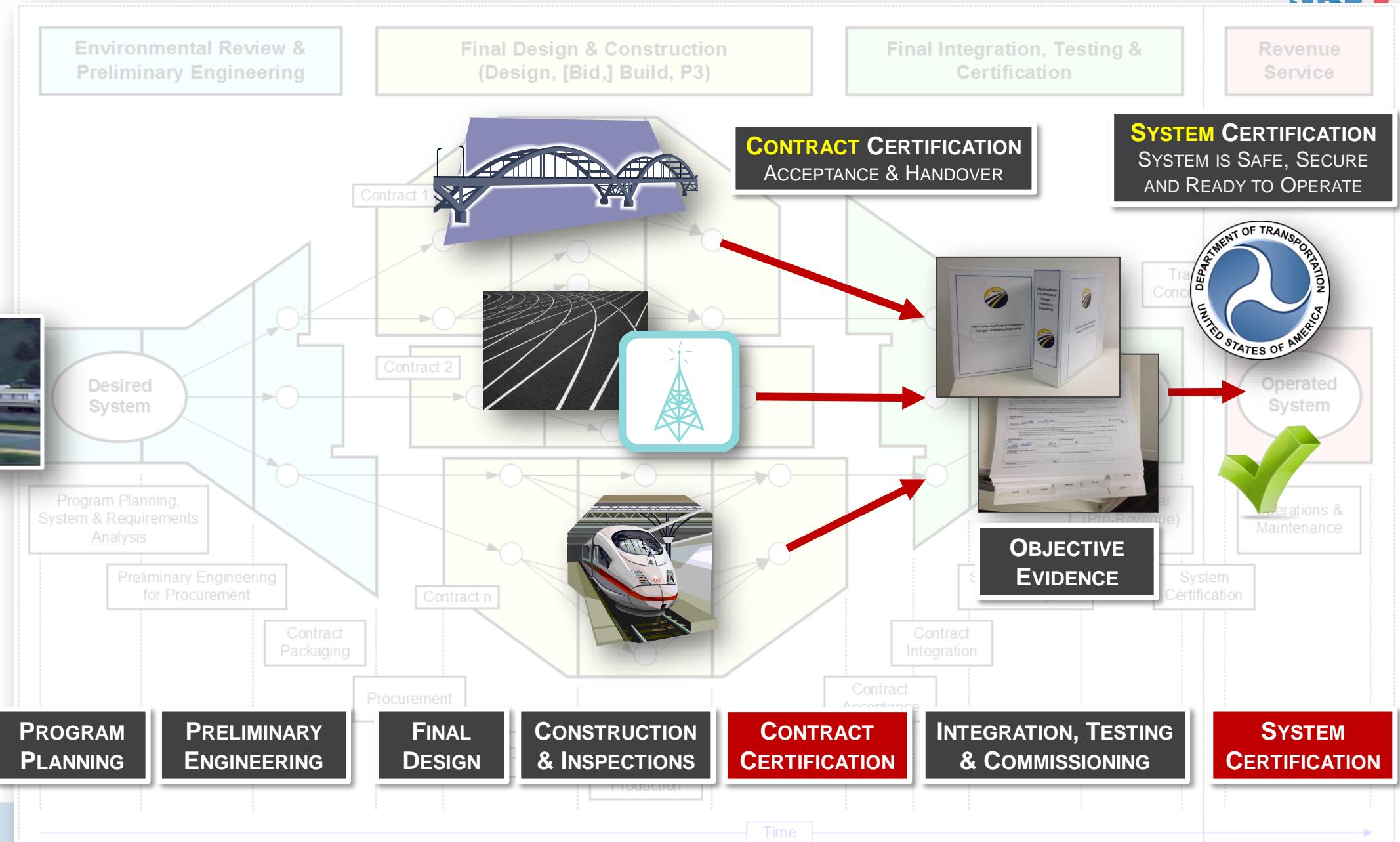


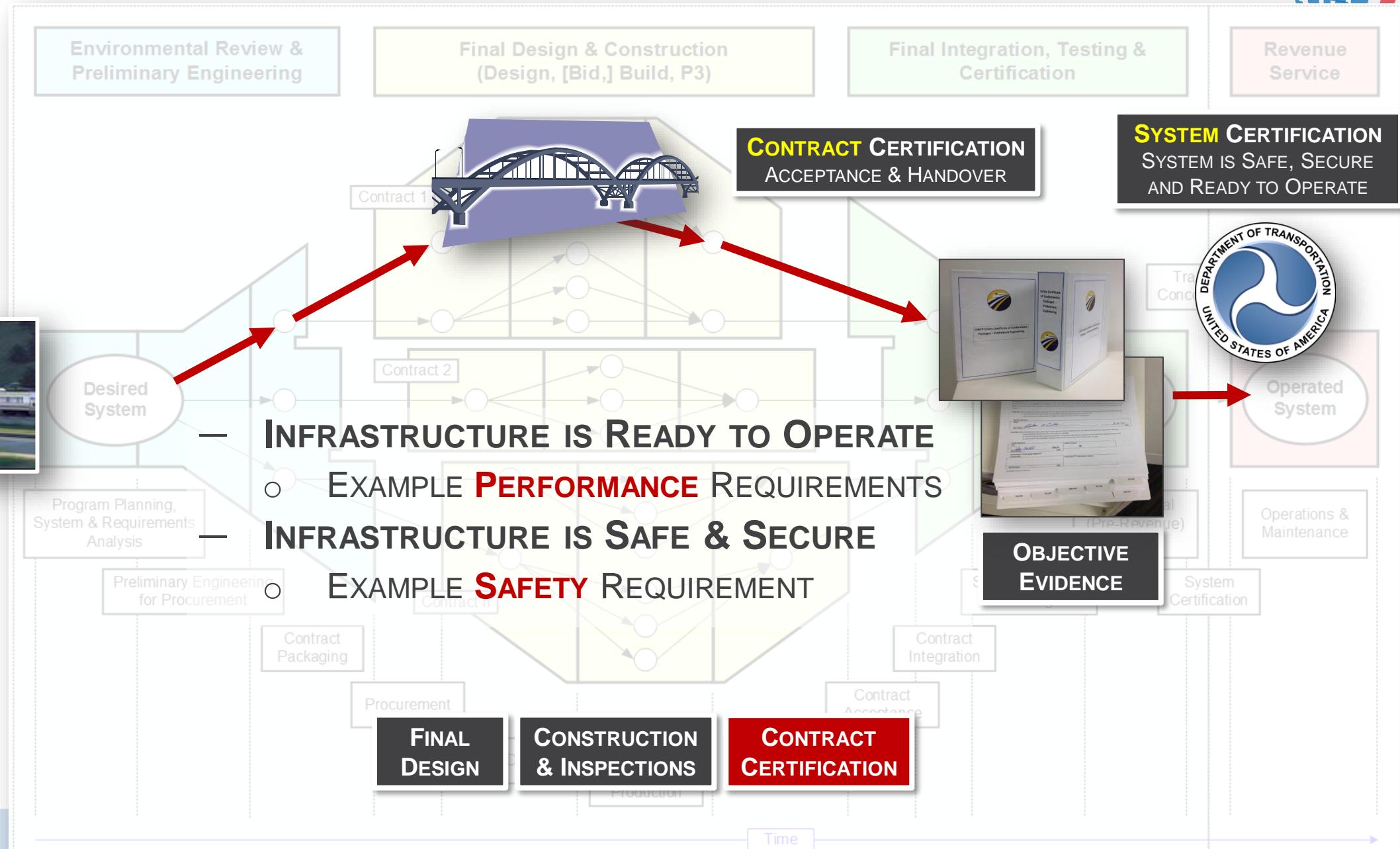
AVENUE 12

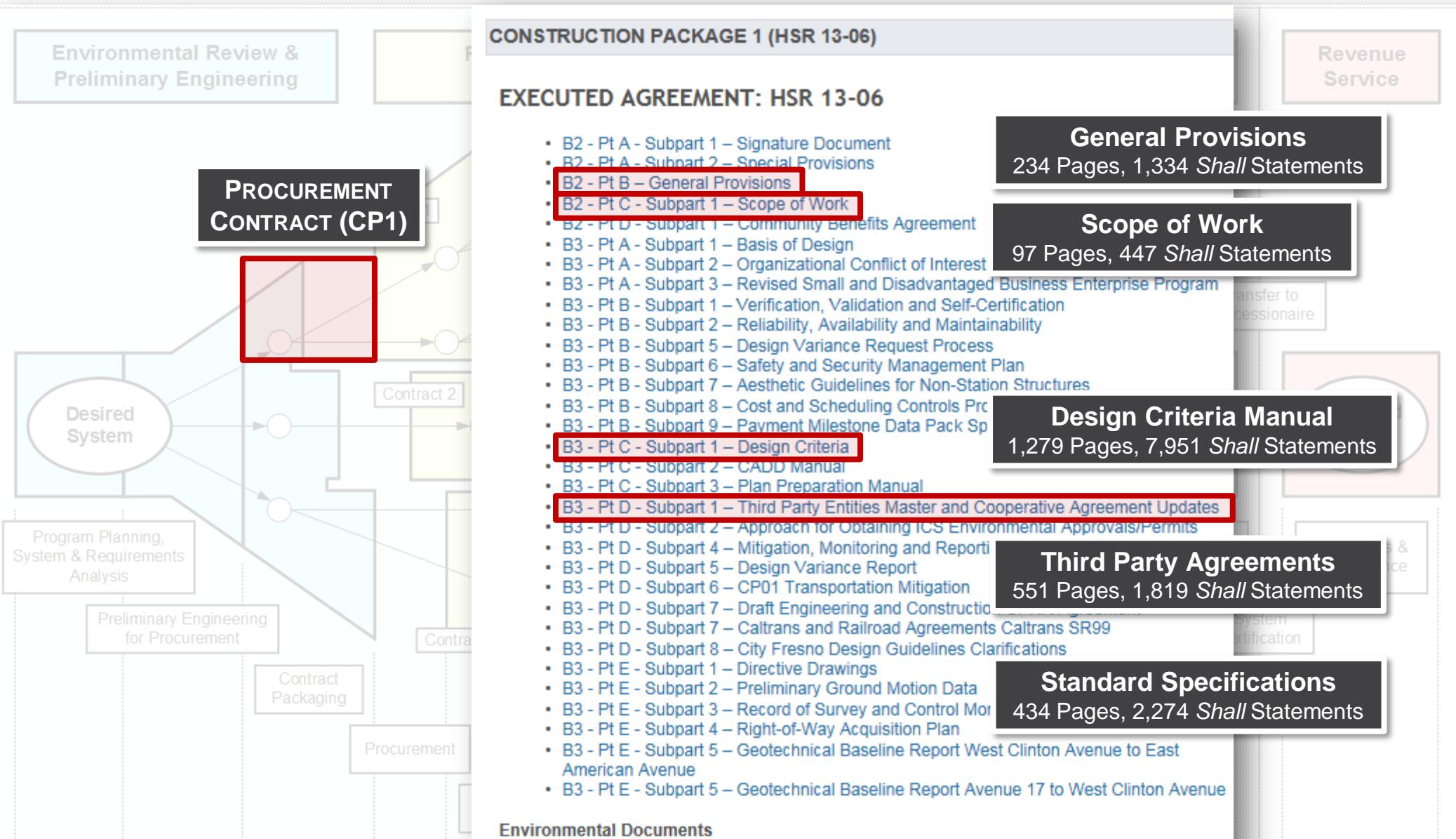
CALIFORNIA HIGH-SPEED RAIL SYSTEM

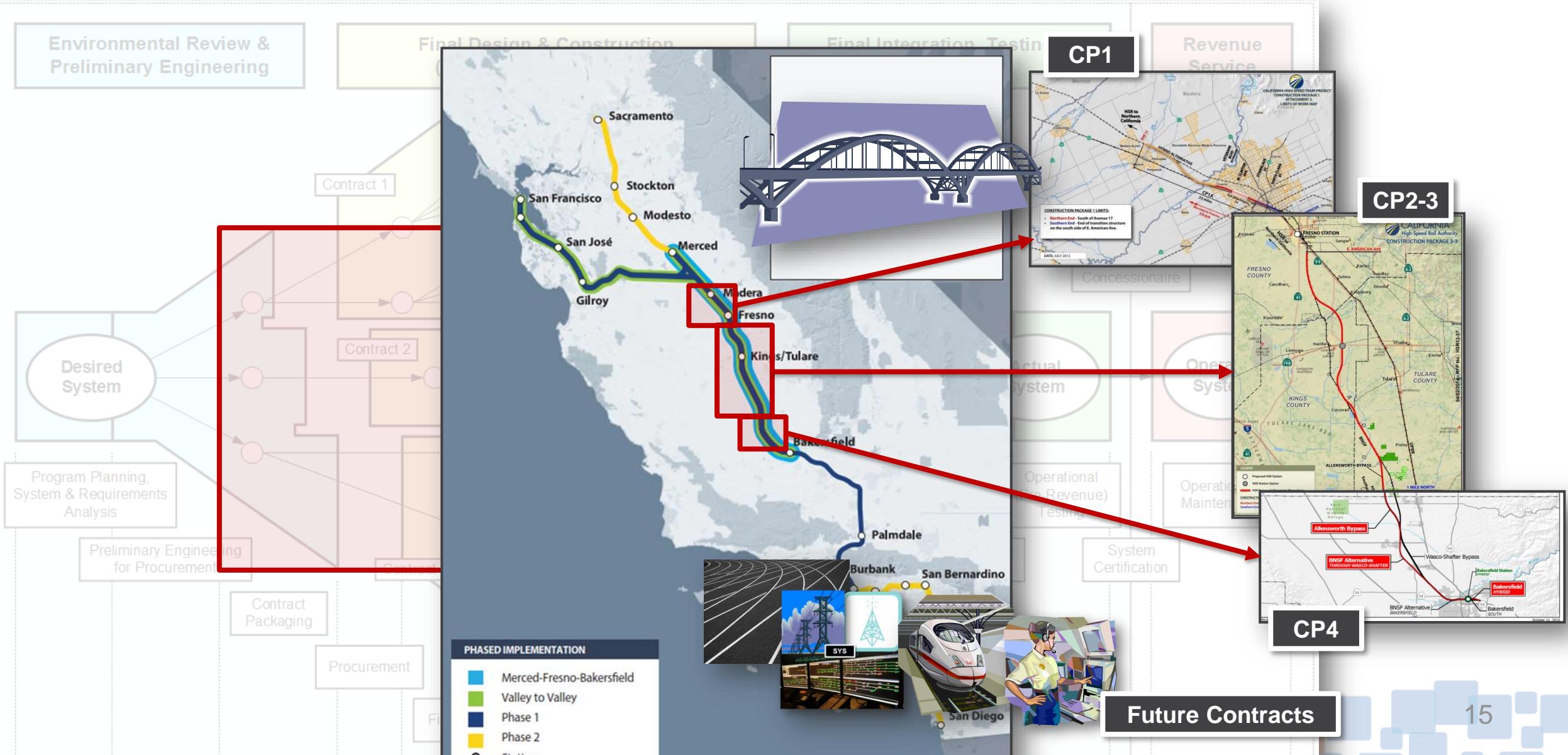

CHSRS AS A SoS (PROGRAM OF PROJECTS)


CHSRS: PROGRAM DEVELOPMENT LIFE CYCLE


CHSRS: USE OF DIGITAL THREADS (TRACEABILITY)

CHSRS: CONTRACT VS. SYSTEM CERTIFICATION

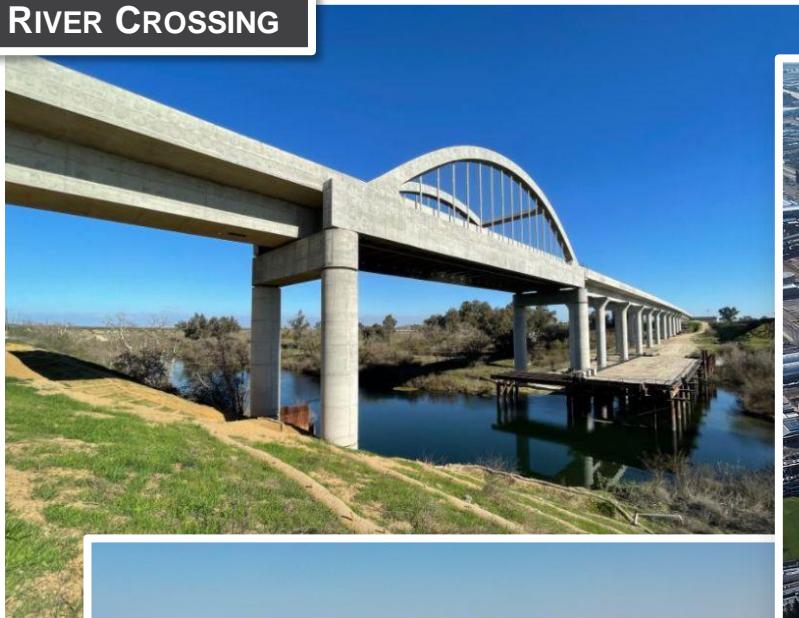

CHSRS: FOCUS OF THIS PRESENTATION



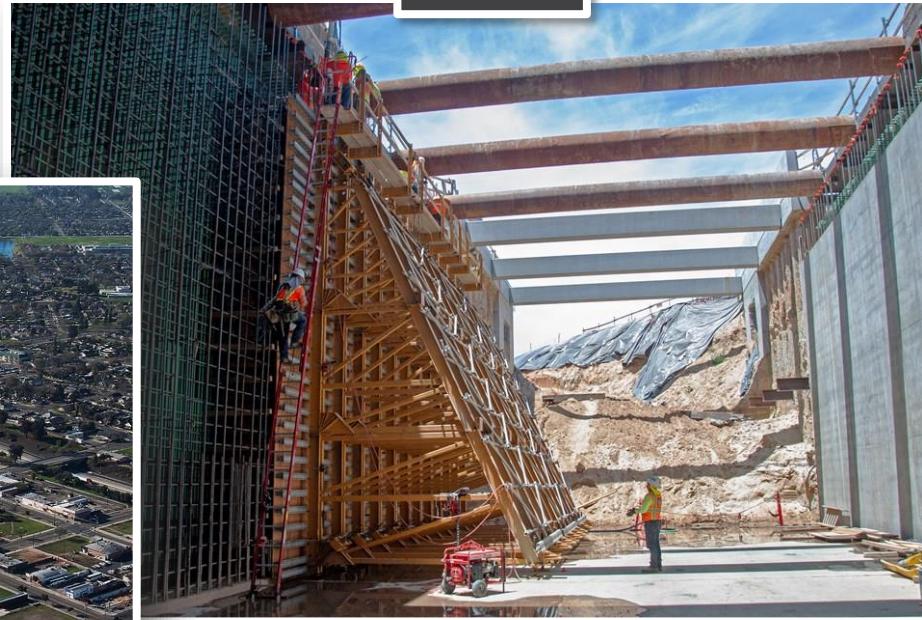
- ❖ **Introduction**
 - Brief System of Systems (SoS) Overview
 - California High-Speed Rail System (CHSRS) Program
 - Use of Digital Threads in the CHSRS Program
- ❖ **SoSE Challenges Faced**
 - Systems Engineering Challenges
 - SoS Engineering Challenges
- ❖ **SoSE Activities Performed**
 - Certification Strategy
 - Step by Step Process Description
- ❖ **Summary, Achieved Outcomes & Conclusion**

SYSTEMS ENGINEERING CHALLENGES FACED REQUIREMENTS QUANTITY

SYSTEMS ENGINEERING CHALLENGES FACED PROGRAM OF (INDEPENDENT) PROJECTS



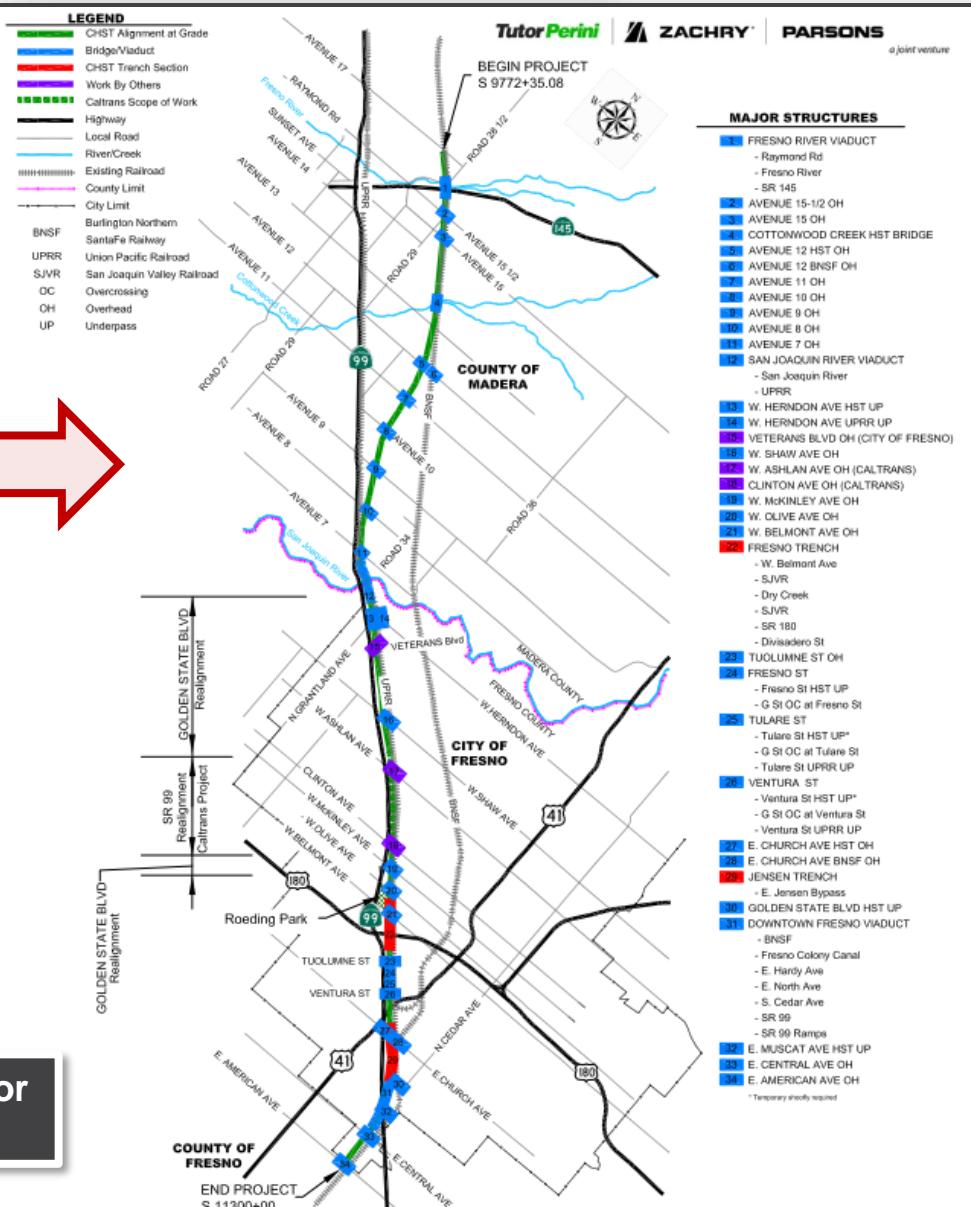
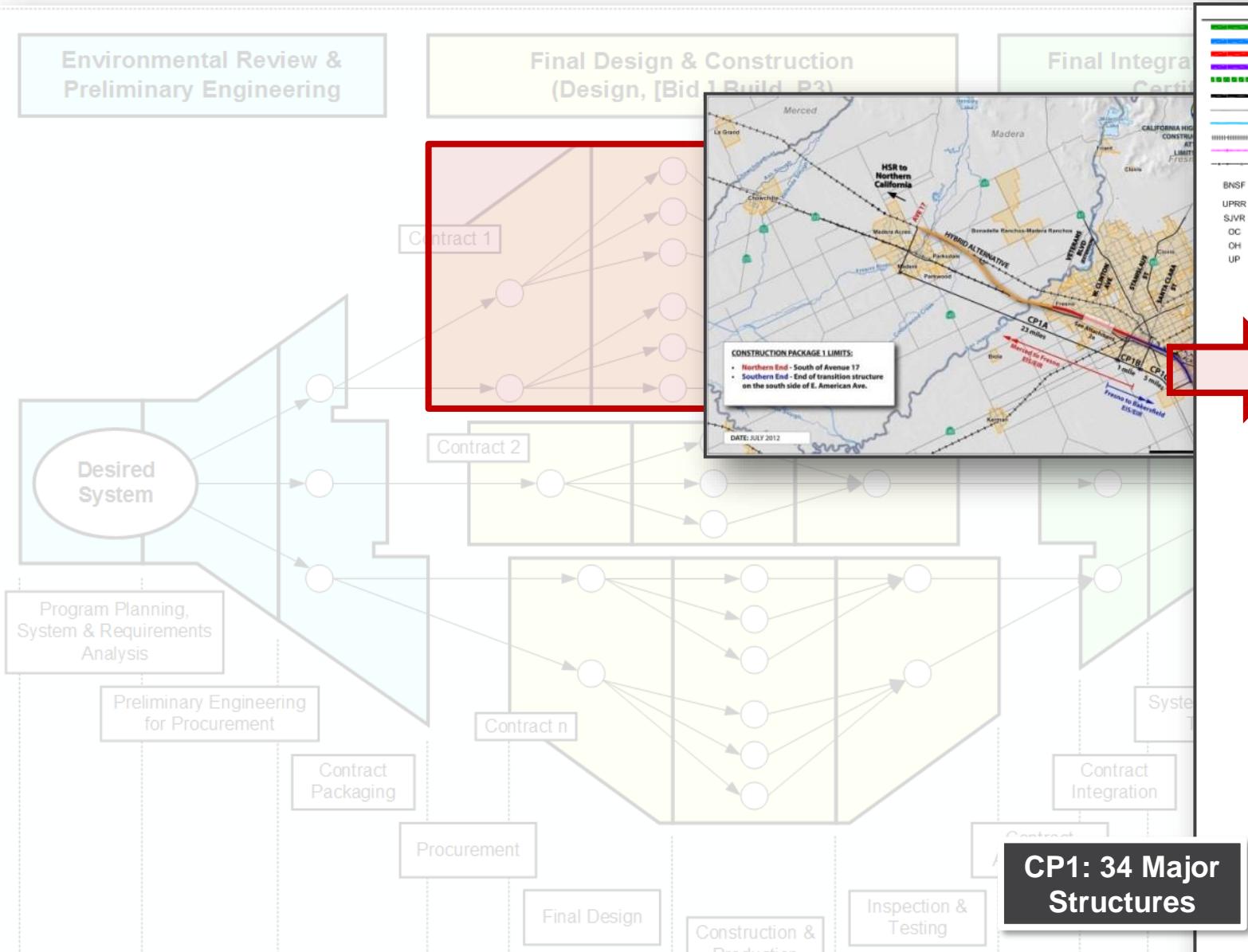
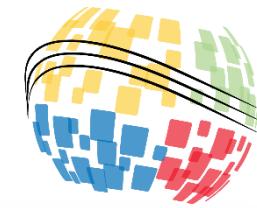
SYSTEMS ENGINEERING CHALLENGES FACED NUMBER OF DESIGN/CONSTRUCTION ELEMENTS



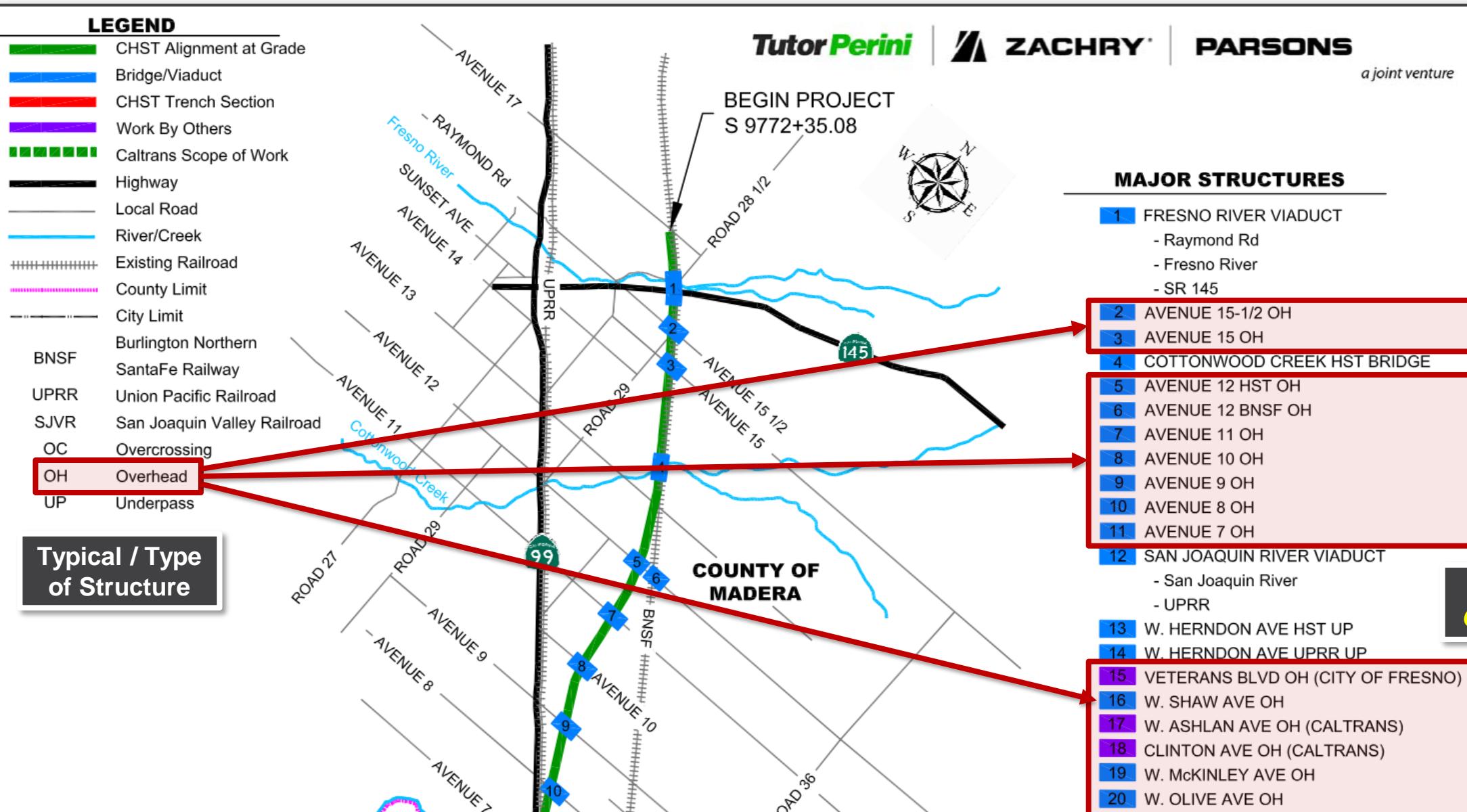
TRENCH

RIVER CROSSING

UNDERCROSSING




VIADUCTS

225+ MAJOR
STRUCTURES



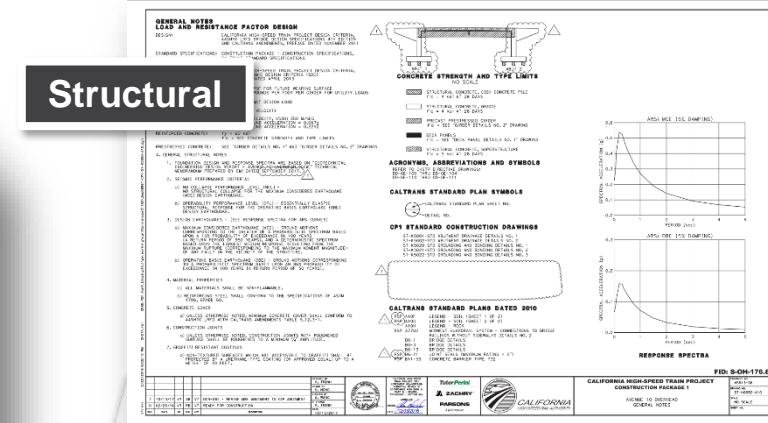
SYSTEMS ENGINEERING CHALLENGES FACED NUMBER OF DESIGN/CONSTRUCTION ELEMENTS

SYSTEMS ENGINEERING CHALLENGES FACED

NUMBER OF DESIGN/CONSTRUCTION ELEMENTS (CONT'D)

SYSTEMS ENGINEERING CHALLENGES FACED

NUMBER OF DESIGN SUBMITTALS

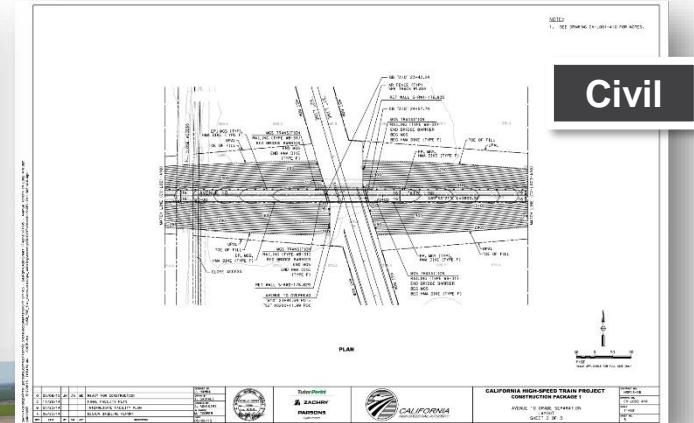


Geotechnical

Prepared for:
California High-Speed Rail Authority

Geotechnical Engineering Design Report Avenue 10 Overhead (New)

California High-Speed Train Project
Design-Build Construction Package 1
Madera to Fresno, California

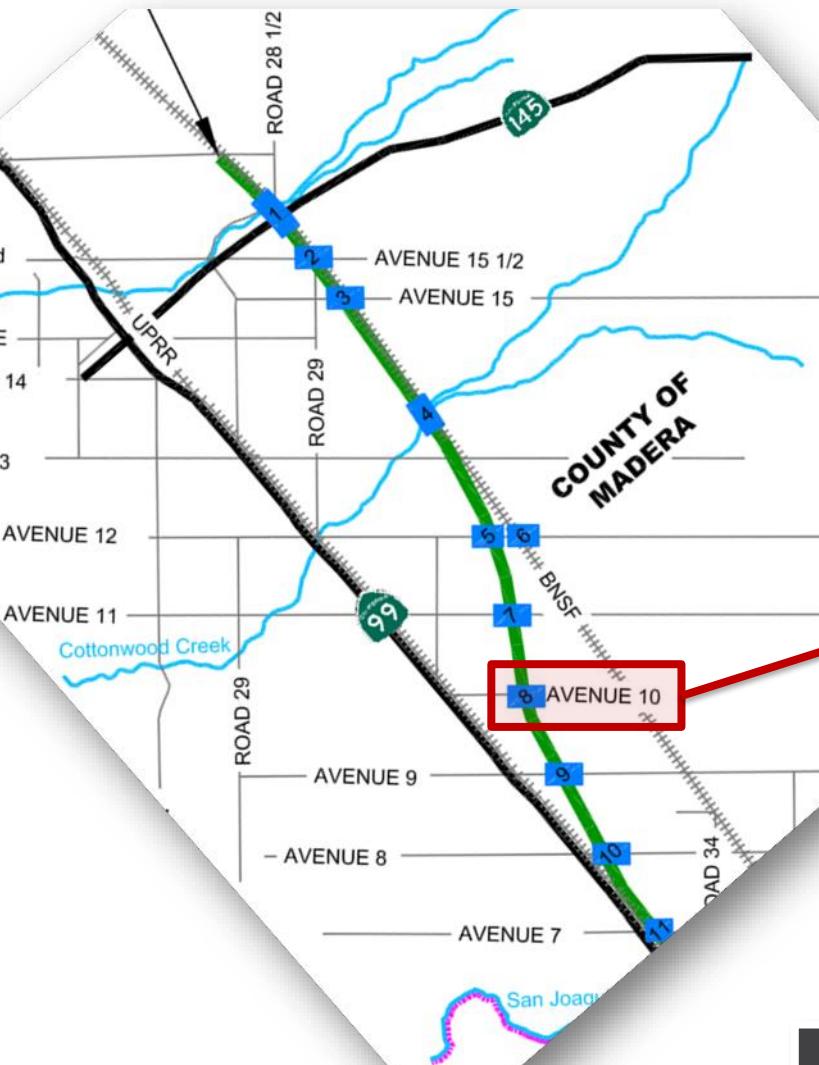

Structural

TutorPerini | ZACHRY | PARSONS, A Joint Venture

Geotechnical Engineering Design Report Avenue 10 Overhead (New)

California High-Speed Train Project
Design-Build Construction Package 1
Madera to Fresno, California

Civil



Std. Const. Drwgs.

Retaining Walls

SYSTEMS ENGINEERING CHALLENGES FACED NUMBER OF DESIGN V&V REPORTS, SUBMITTAL CERTIFICATIONS

Structural

California High-Speed Train

**AVENUE 10 OVERHEAD
RFC DESIGN SUBMITTAL
DESIGN CHANGE NOTICE 081
VERIFICATION AND VALIDATION REPORT**

March 2018
Agreement No. HSR 13-06

Prepared by:

Certificates of Compliance

California High-Speed Train
Design-Build Project

TOOTECHNICAL ENGINEERING DESIGN REPORT (GEDR)
AVENUE 10 OVERHEAD (NEW)

April 2015

Prepared by:

Geotechnical

Avenue 10 HVC DCH-081 Design Submittal Verification & Validation Report				
Table 2 - CIL				
Permit Req.	Appointed Per.	Allocations	In Compliance with Contract Requirements	Reference
No (appropriate for)	N/A	N/A	Guideline Structures	Yes S-4310B-A10
All other procedures	N/A	N/A	Guideline Structures	Yes S-4310B-A20
HSR	HSR-0805: The Authority conveys with the following definition: High-Speed Rail (HSR) is a mode that are mostly committed, or may chose to commit, to the use of high-speed, mostly comfortable vehicles and paved, graded, or paved, railroads, on which they can be easily operated by rail transport.	N/A	Guideline Structures	Yes ST-40055-A10
ZACHRY PARSONS, A Joint Venture				
ZACHRY PARSONS, A Joint Venture				
California High-Speed Train Design-Build Project Construction Package 1				
AVENUE 10 GRADE SEPARATION READY FOR CONSTRUCTION PLANS V&V FACT SHEET				
April 2015				
Agreement No. HSR 13-06				
Prepared by: Tutor Perini ZACHRY PARSONS				

Std. Const. Drwgs.

Std. Const. Drwgs.					
Table 2 – C1L					
	Sealed By	Appointed By	Allocation	Is Compliance with Finalized Document	Reference Document
Structures growing & on addressed by the INF team.	N/A	N/A	Structures	Yes, Drawing and specifications shown in the INF are to be used in the construction phase in order to coordinate with the INF. The INF TDRP (per meeting of 10/29/19) is to be complied with. INF	14-45002-01-L 14-45002-01-S 14-45002-01-T 14-45002-01-05 14-45002-01-06
Structures existing prior to the INF team (actual as planned).	N/A	N/A	Guidelines	Yes, Drawing and specifications shown in the INF are to be used in the construction phase in order to coordinate with the INF. The INF TDRP (per meeting of 10/29/19) is to be complied with. INF	14-45002-07-D

Retaining Walls

SYSTEMS ENGINEERING CHALLENGES FACED

NUMBER OF SUBMITTAL RECORDS

Submittal Log		
Name	Title	SubmittalType
17699	FCN 227 Avenue 10 HST Box Culvert	INFO
17621	Avenue 10 OH Joint Seal	INFO
17536	Avenue 10 Pavement Remediation Plan	INFO
17469	Avenue 10 OH Construction SSCR	SONO
15564	Easement Avenue	Safety & Security Certification Report
14656	Avenue 10 OH MSE Structure Pkg	APPROVAL
14435	Avenue 10 HST Box Culvert RFC	APPROVAL
11795	Avenue 10 HST Overhead SSCR	SONO
11774	60% Avenue 10 HST Box Culvert	SONO
11368	RFC Avenue 10 Overhead Design	APPROVAL
10926	Avenue 10 Grade Separation Design	INFO
10814	Avenue 10 Overhead GEDR	SONO
10699	90 Perc Dsgn Avenue 10 OH	SONO
10065	Avenue 8, Avenue 9, and Avenue 10	3RD PARTY

Fourth Revision		
	004	PCM_TPZP_03882_COF_Relocations
	004	Signed Plan Set
	004	CHSRA_trans_05027_Signed_Plans_DCN_081_Avenue_10_OH_Design_SW04_13_00_019_4
	004	Authority's Response
	004	DCN081 Avenue 10 Overhead Design
	004	DCN081 Avenue 10 Overhead Design
	004	DCN081 Avenue 10 Overhead Design
	004	Submittal Cover Page
	004	DCN081 Avenue 10 Overhead Design
	004	DCN081 Avenue 10 Overhead Design
	004	DCN081 Avenue 10 Overhead Design
	004	DCN081 Avenue 10 Overhead Design
	004	DCN081 Avenue 10 Overhead Design
	000	RFC_AVenue_10_Overhead_Design
	000	RFC_AVenue_10_Overhead_Design

Design Change Notice (DCN)

Plans (Design Drawings)

Verification & Validation, Submittal Certification

61 - 81

81 Files

SYSTEMS ENGINEERING CHALLENGES FACED ALLOCATED REQUIREMENTS & OBJECTIVE EVIDENCE

Submittal Log		
	Avenue 10	X
Name	Title	Submittal Type
17699	... FCN 227 Avenue 10 HST Box Culvert	INFO
17621	... Avenue 10 OH Joint Seal	INFO
17536	... Avenue 10 Pavement Remediation Plan	INFO
17469	... Avenue 10 OH Construction SSCR	SONO
15564	... Easement T1-091 (AT&T) – Avenue 10	APPROVAL
14656	... Avenue 10 OH MSE Structure Pkg	APPROVAL
14435	... Avenue 10 HST Box Culvert RFC	APPROVAL
11795	... Avenue 10 HST Overhead SSCR	SONO
11774	... 60% Avenue 10 HST Box Culvert	SONO
11368	... RFC Avenue 10 Overhead Design	APPROVAL
10926	... Avenue 10 Grade Separation Design	INFO
10814	... Avenue 10 Overhead GEDR	SONO
10699	... 90 Perc Dsgn Avenue 10 OH	SONO
10065	... Avenue 8, Avenue 9, and Avenue 10	3RD PARTY

RFC_Avenue_10_Overhead_Design

RFC_Avenue_10_Overhead_Design

2015Dec03_Ave_10_OH_RFC_VV_Cert_Compliance

2015Dec03_Ave_10_OH_StartRpt_ICE_Assessment

81 Files

Verification & Validation, Submittal Certification

Allocated Requirements
(Technical Contract Requirements [TCR])

Object Evidence
(Reference and RM Tool Traces)

California High-Speed Train Design-Build Project
Construction Package 1

Contractor V&V Report
(Including Requirements Verification Traceability Matrix [RVTM])

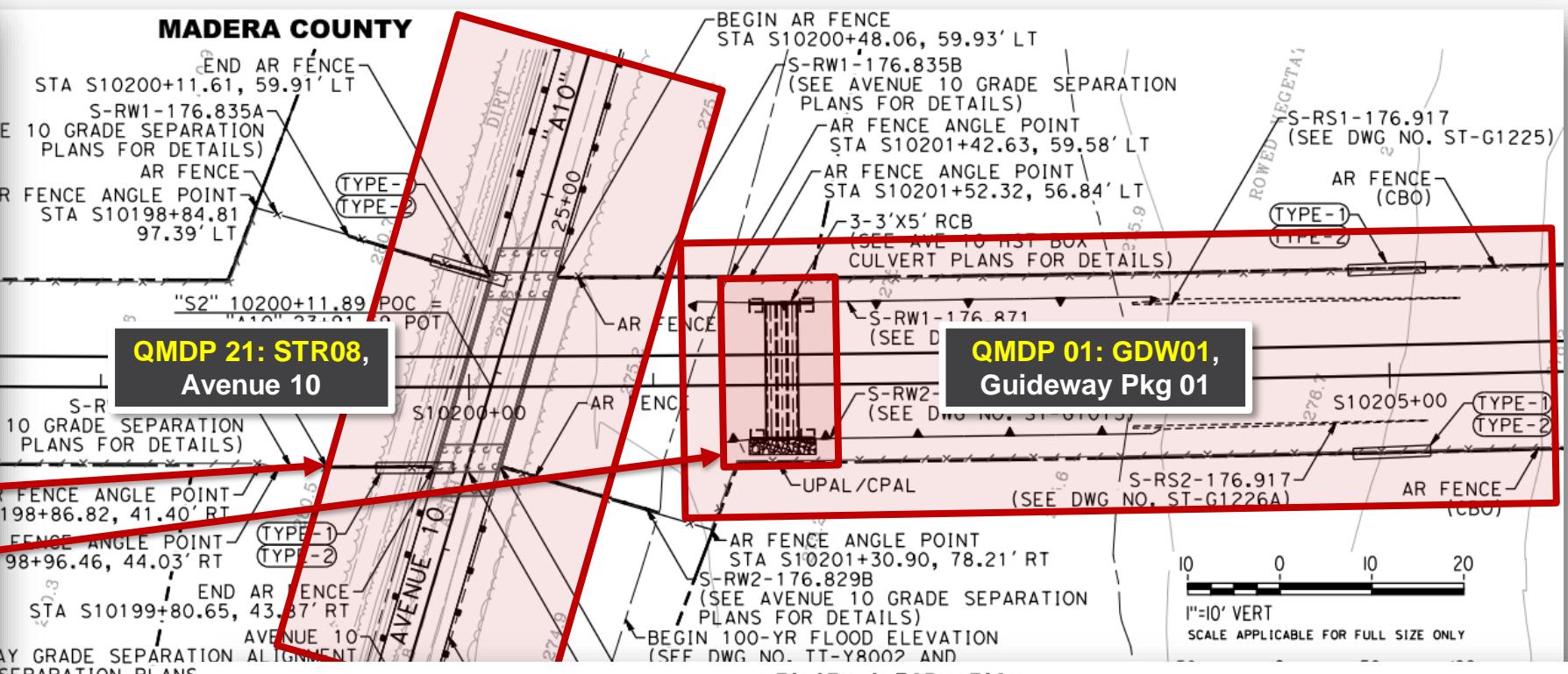
AVENUE 10 OVERHEAD RFC DESIGN SUBMITTAL VERIFICATION AND VALIDATION REPORT

August 2015

Agreement No. HSR 13-06

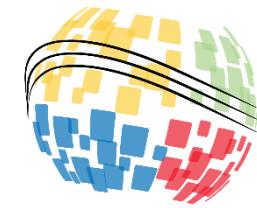
Prepared by:

Avenue 10 OH RFC Design Submittal Verification & Validation Report


In Compliance with Contract Documents	Reference
Yes	Overhead Standard Construction Drawings ST-K5020-STD, ST-K5021-STD, ST-5022-STD
Yes	ST-K1100-A10, Calcs. Section 2.3
Yes	ST-K1100-A10, Calcs. Section 2.3
Yes	ST-K1100-A10
Yes	Environmental Certification
Yes	ST-K1100-A10, ST-K3350-A10, Calcs. Section 3.2.2
Yes	ST-K1100-A10

SYSTEMS ENGINEERING CHALLENGES FACED

CONSTRUCTION CERTIFICATION: QUALITY MILESTONE (DATA PACK, QMDP)


Submittal Log		
Avenue 10 X		
Name	Title	SubmittalType
17699	... FCN 227 Avenue 10 HST Box Culvert	INFO
17621	... Avenue 10 OH Joint Seal	INFO
17536	... Avenue 10 Pavement Remediation Plan	INFO
17469	... Avenue 10 OH Construction SSCR	SONO
15564	... Easement T1-091 (AT&T) – Avenue 10	APPROVAL
14656	... Avenue 10 OH MSE Structure Pkg	APPROVAL
14435	... Avenue 10 HST Box Culvert RFC	APPROVAL
11795	... Avenue 10 HST Overhead SSCR	SONO
11774	... 60% Avenue 10 HST Box Culvert	SONO
11368	... RFC Avenue 10 Overhead Design	APPROVAL
10926	... Avenue 10 Grade Separation Design	INFO
10814	... Avenue 10 Overhead GEDR	SONO
10699	... 90 Perc Dsgn Avenue 10 OH	SONO
10065	... Avenue 8, Avenue 9, and Avenue 10	3RD PARTY

NO.	FACILITY	CONFLICT NO.	SIZE	OWNER	RELOCATE	PROPOSED	DESIGN PLAN SET
1	OH POWER	E1-92	12kV	PG&E			TBD
2	IRRIGATION	IRR2-03	30"	MID			MADERA IRRIGATION DISTRICT RECONSTRUCTION AND RELOCATION OF IRRIGATION FACILITIES LATERAL 6.2-14.0 AND LATERAL 6.2-9.2-5.0 IN MADERA COUNTY
3	TELECOM	T1-91	UNKNOWN	AT&T			RFC - (PROP. AT&T DUCTBANK AVE. 13, 12, 10, 9, 8, AND 7)
4	STORM DRAIN	SDA-030	2-36"	AUTHORITY			ACK CIVIL GRADING AND DRAINAGE PLAN (STA S10192+00 TO S10220+00)
5	STORM DRAIN	SDA-032	3-3'x5'	AUTHORITY			ACK CIVIL GRADING AND DRAINAGE PLAN (STA S10192+00 TO S10220+00)
6	IRRIGATION	IRR2-004	18"	MID	RELOCATE		MADERA IRRIGATION DISTRICT RECONSTRUCTION AND RELOCATION OF IRRIGATION FACILITIES LATERAL 6.2-14.0 AND LATERAL 6.2-9.2-5.0 IN MADERA COUNTY
7	IRRIGATION	IRR	UNKNOWN	MID		PROPOSED	MADERA IRRIGATION DISTRICT RECONSTRUCTION AND RELOCATION OF IRRIGATION FACILITIES LATERAL 6.2-14.0 AND LATERAL 6.2-9.2-5.0 IN MADERA COUNTY

SoS ENGINEERING CHALLENGES FACED

INDEPENDENTLY MANAGED (& OPERATED) PROJECTS (CONSTITUENT SYS.)

Milestones & the Field Engineers responsible for them

GDW01 MADERA COUNTY GUIDEWAY - Litto
 GDW02 SJRV TO FRESNO TRENCH GUIDEWAY - Litto
 GDW03 FRESNO TRENCH TO AMERICAN AVENUE GUIDEWAY - Litto

NE01 ROAD 26 - Katrina
 NE02 SCHMIDT CREEK HST - Katrina
 NE03 SCHMIDT CREEK CULVERT BOX - Katrina
 NE04 WILDLIFE CROSSING MP167.4 - Katrina
 NE05 ROAD 27 - Katrina
 NE 06 AVE 17 - Katrina

STR01 FRESNO RIVER VIADUCT (FRV) - Gavin
 STR02 AVENUE 15-1/2 OH - Katrina
 STR03 AVENUE 15 OH - Katrina
 STR04 COTTONWOOD CREEK BR - Katrina
 STR05 AVENUE 12 HST OH - Katrina
 STR06 AVENUE 12 BNSF OH - Katrina
 STR07 AVENUE 11 OH - Katrina
 STR08 AVENUE 10 OH - Katrina

STR08 / Ave 10

STR09 AVENUE 9 OH - Katrina

STR10 AVENUE 8 OH - Katrina

STR11 AVENUE 7 OH - Katrina

STR12 SAN JOAQUIN RIVER VIADUCT (SJRV) - Doug

STR12A W HERNDON AVE HST OP - Doug

STR12B W HERNDON AVE UPRR OP - Doug

STR13 SHAW AVENUE OH - Sri

STR14 MCKINLEY AVENUE OH - Sri

STR15 OLIVE AVENUE OH - Sri

STR16 BELMONT AVENUE OH - Sri

STR17 FRESNO TRENCH - Tyler B

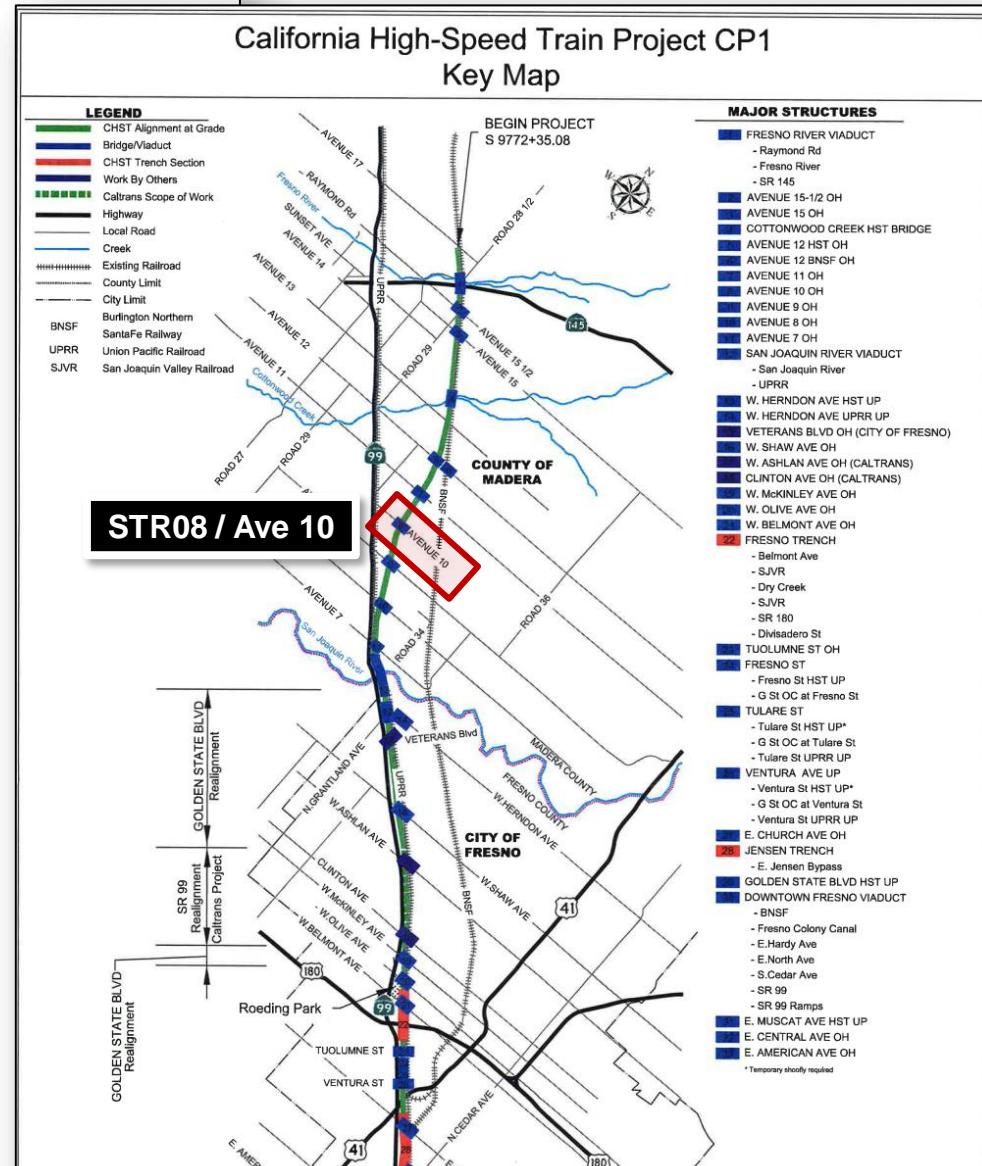
STR18 TUOLUMNE STREET OH - Matt K

STR19 FRESNO STREET UP - Gavin

STR20 TULARE STREET UP - Gavin

STR21 VENTURA AVENUE UP - Gavin

STR22 E CHURCH AVENUE HST - Gavin


STR22A E CHURCH AVENUE BNSF OH - Gavin

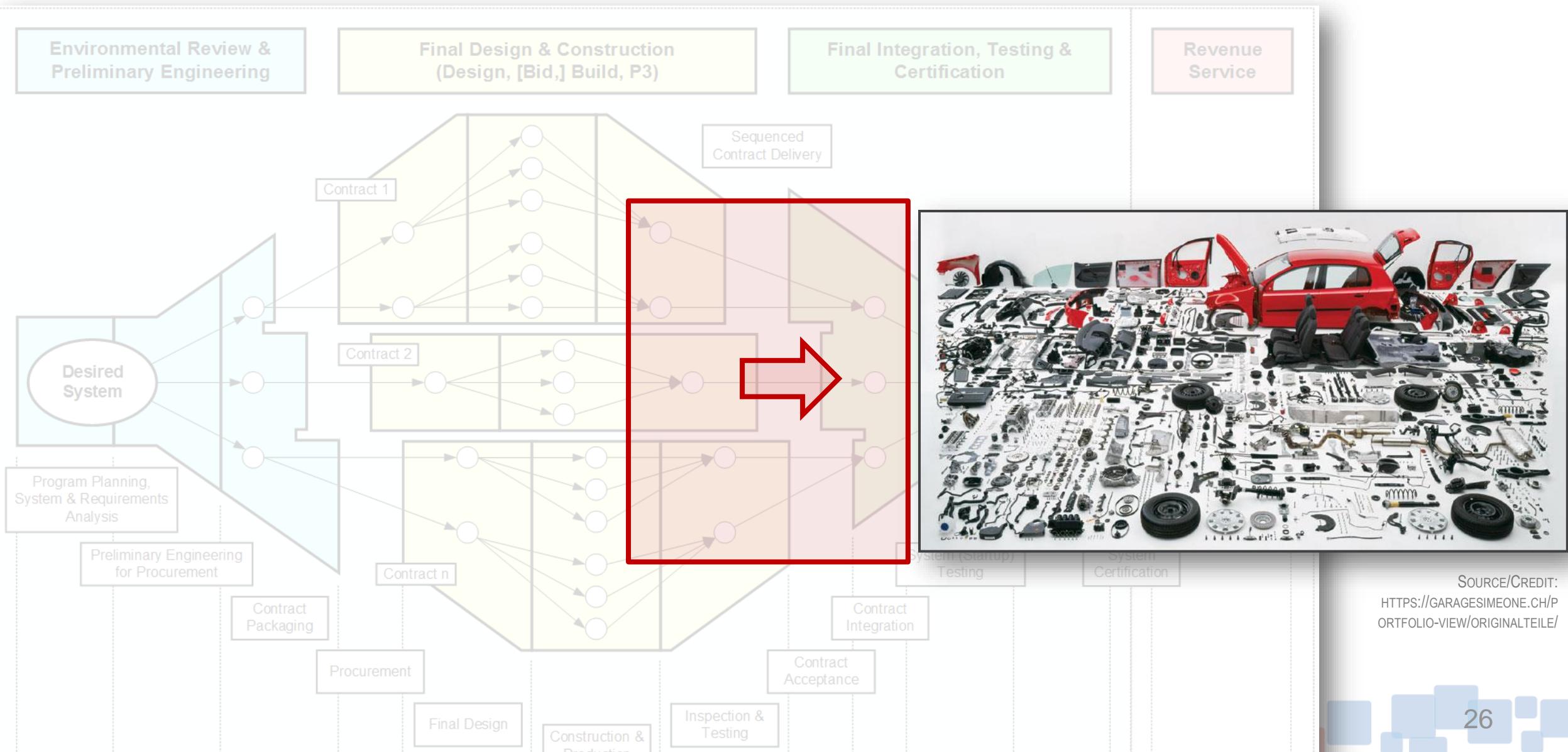
STR23 JENSEN TRENCH - Tyler B

STR 24B E MUSCAT AVE HST - Gavin
 STR25 CENTRAL AVENUE OH - Gavin
 STR26 AMERICAN AVENUE OH - Gavin

3RDP001 AT&T - Juan
 3RDP002 PG&E - Bianca
 3RDP003 CITY OF FRESNO - Bennie
 3RDP004 COUNTY OF FRESNO - Bennie
 3RDP005 COUNTY OF MADERA - Bennie
 3RDP006 UPRR - Addison
 3RDP007 BNSF - Addison
 3RDP008 CALTRANS - Bennie
 3RDP009 MADERA IRRIGATION DISTRICT - Greg
 3RDP010 FRESNO IRRIGATION DISTRICT - Greg
 3RDP011 FMFCD - Greg
 3RDP012 KINDER MORGAN - Addison
 3RDP013 LEVE III - Addison
 3RDP014 COMCAST - Addison
 3RDP015 SPRINT - Addison
 3RDP016 TW TELECOM - Addison
 3RDP017 TIME WARNER - Addison
 3RDP018 QWEST - Addison
 3RDP019 CVIN - Addison
 3RDP020 SEBASTIAN KERMAN TELECOM - Addison
 3RDP021 MCI - Addison
 3RDP022 SIERRA TELEPHONE - Addison

List of Quality Milestone Data Packs (QMDPs)

SoS ENGINEERING CHALLENGES FACED INDEPENDENTLY MANAGED (& OPERATED) PROJECTS (CONT'D)

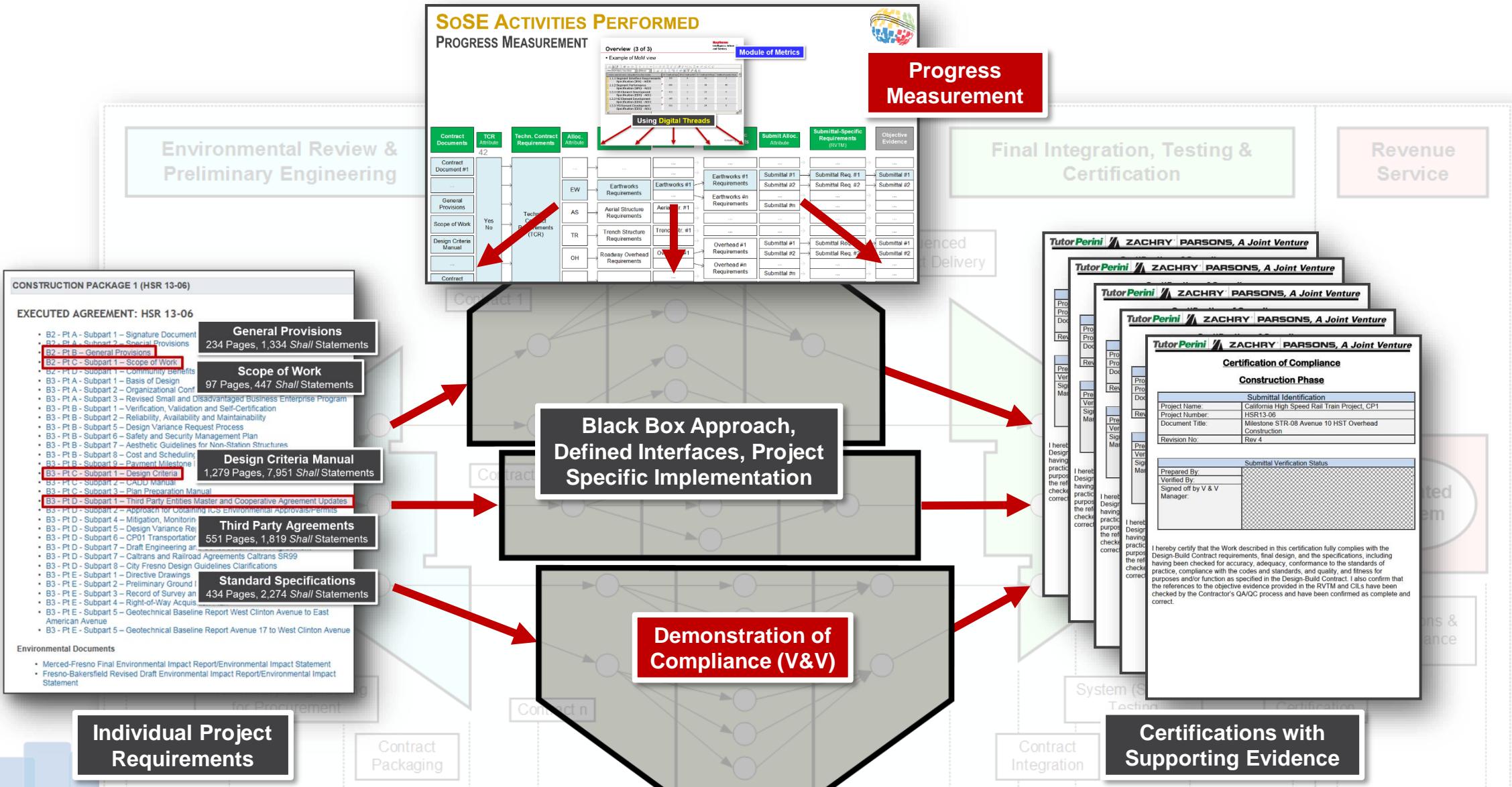


QUALITY MILESTONE ID			STRUCTURES	STATIONING	QUALITY MILESTONE ID				
R-CIVIL	S-RDWY	H-TRACK			T-CIVIL TRACK		BNSF		
RDWY	STRUC	STRUC			NORTH/SOUTH				
Management Segment 1 (STA 587+30 to 1595+00)									
S1R1	S151				Start Segment 1	587+30	S1TN1	5000 ft	
					Lincoln (Cul-de-Sac)	630+30	ROW 1	0.95 mi	
S1R3	S153				End ROW 2	636+90	ROW 2		
					Start ROW 3	636+90	S1TN3	5278 ft	
S1R5	S155					683+06	ROW 3	1.01 mi	
					Adams OC	689+68	ROW 4		
S1R7	S157				End ROW 4	689+68	S1TN5		
	*S158				Start ROW 5	707+00	ROW 5	5305 ft	
S1R9	S159				South OC	735+89	ROW 6	1 mi	
					End ROW 6	742+73	S1TN7	5261 ft	
S1R11	S1511				Start ROW 7	742+73	ROW 7	0.996 mi	
					Manning OC	788+82	ROW 8		
S1R13	S1513				Manning Change OC	788+83	S1TN9	8482 ft	
					End ROW 8	795+34	ROW 9	1.61 mi	
S1R14					Start ROW 9	795+34	S1TN10		
					End BNSF	869+00	ROW 10	880+16	
S1R15					Start BNSF	880+16	S1TN11	4209 ft	
					Floral OC	895+45	ROW 10	0.8 mi	
S1R17	S1515				End ROW 10	922+25	S1TN12		
S1R19	S1517				Start ROW 11	922+25	ROW 11	6844 ft	
					Nebraska OC	953+20	S1TN13	1.296 mi	
					End ROW 11	990+69	S1TN15		
					Start ROW 12	990+69	ROW 12	8431 ft	
					Mountain View OC	1004+61	ROW 13	1.6 mi	
					End BNSF	1062+00	S1TS1	10185 ft	
					End North Track	1075+00	ROW 13	1.93 mi	
					Start South Track	1075+00	S1TS3		
S1H1	1H-01	Conejo Ave AS			1114+48				
	S1H3	1H-02	Peach Ave BR		1134+25				
					1146+23				
					1149+29				
					End ROW 13	1176+85			
					Start ROW 14	1176+85			
					Clarkson / Minnewawa	1175+00	S1TS3	5782 ft	
					REMOVED Clovis OC STA 1221+78	1202+00	ROW 14	1.1 mi	
					End ROW 14	1234+67	S1TS5		
					Start ROW 15	1234+67	ROW 15	8026 ft	
					Elkhorn OC	1247+36	ROW 16	1.52 mi	
					Fowler OC	1276+61	S1TS7		
					End ROW 16	1314+93			
					Start ROW 17	1314+93			

CP2-3

#	Activity ID	QMDP #	Activity Name	Stationing
1	MIL_1285	QMDP 01	EOP to County Line	14769+23 - 14822+00
2	MIL_1290	QMDP 02	County Line to S Scofield	14822+00 - 14877+00
3	MIL_1295	QMDP 03	S Scofield to Garces Abut1	14877+00 - 14931+21
4	MIL_1145	QMDP 04	Garces Hwy Underpass	14931+31 - 14932+23
5	MIL_1300	QMDP 05	Garces Abut. 2 to Woollomes Ave	14932+23 - 14989+50
6	MIL_1305	QMDP 06	Woollomes Ave to Pump Station	14989+50 - 15055+00
7	MIL_1310	QMDP 07	Pump Station to S. Magnolia	15055+00 - 15096+50
8	MIL_1315	QMDP 08	S. Magnolia to Pond Rd. Abut. #1	15096+50 - 15119+73
9	MIL_1115	QMDP 09	Pond Rd Underpass	15119+72 - 15120+94
10	MIL_1320	QMDP 10	Pond Rd. Abut. 2 to Peterson Rd. Abut. 1	15120+94 - 15182+09
11	MIL_1155	QMDP 11	Peterson Rd Underpass	15182+09 - 15183+11
12	MIL_1325	QMDP 12	Peterson Rd. Abut. 1 to Elmo Hwy	15183+12 - 15242+00
13	MIL_1330	QMDP 13	Elmo Hwy to Sherwood Ave	15242+00 - 15294+50
14	MIL_1335	QMDP 14	Sherwood Ave to Poso Creek Abut. 1	15294+50 - 15329+88
15	MIL_1105	QMDP 15	Poso Creek Overpass	15329+89 - 15332+27
16	MIL_1340	QMDP 16	Poso Creek Abut. 1 to Taussig Ave.	15332+27 - 15375+50
17	MIL_1345	QMDP 17	Taussig Ave to Canal 9-22	15375+50 - 15426+88
18	MIL_1350	QMDP 18	Canal 9-22 to McCombs Ave.	15426+88 - 15505+00
19	MIL_1185	QMDP 19	McCombs Ave Overpass	15501+55 - 15501+95
20		QMDP 20	McCombs Ave.to SR-46 Abut. 1	15509+00 - 15560+89
21	CP4	QMDP 21	SR 46 Underpass	15560+89 - 15562+12
22	MIL_1360	QMDP 22	SR-46 Abut. 1 to Pedestrian Underpass	15563+00 - 15587+00
23	MIL_1085	QMDP 23	HST Pedestrian Underpass	15588+25 - 15590+25
24	MIL_1365	QMDP 24	Pedestrian Underpass to Poso Ave	15590+00 - 15614+00
25	MIL_1195	QMDP 25	Poso Ave Underpass	15613+83 - 15614+43
26	MIL_1370	QMDP 26	Poso Ave to Wasco Viaduct Abut. 1	15614+00 - 15660+00
27	MIL_1270	QMDP 27	Wasco Viaduct	15660+20 - 15679+73

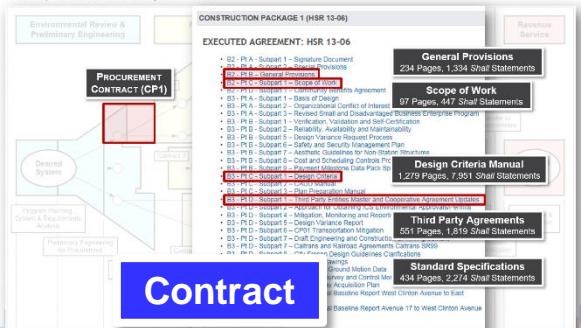
SoS ENGINEERING CHALLENGES FACED CERTIFICATION APPROACH: PUTTING IT ALL BACK TOGETHER



- ❖ **Introduction**
 - Brief System of Systems (SoS) Overview
 - California High-Speed Rail System (CHSRS) Program
 - Use of Digital Threads in the CHSRS Program
- ❖ **SoSE Challenges Faced**
 - Systems Engineering Challenges
 - SoS Engineering Challenges
- ❖ **SoSE Activities Performed**
 - Certification Strategy
 - Step by Step Process Description
- ❖ **Summary, Achieved Outcomes & Conclusion**

SoSE ACTIVITIES PERFORMED

HIGH-LEVEL VERIFICATION, VALIDATION & CERTIFICATION STRATEGY



SoSE ACTIVITIES PERFORMED

VERIFICATION & VALIDATION APPROACH

SYSTEMS ENGINEERING CHALLENGES FACED REQUIREMENTS QUANTITY

Contract

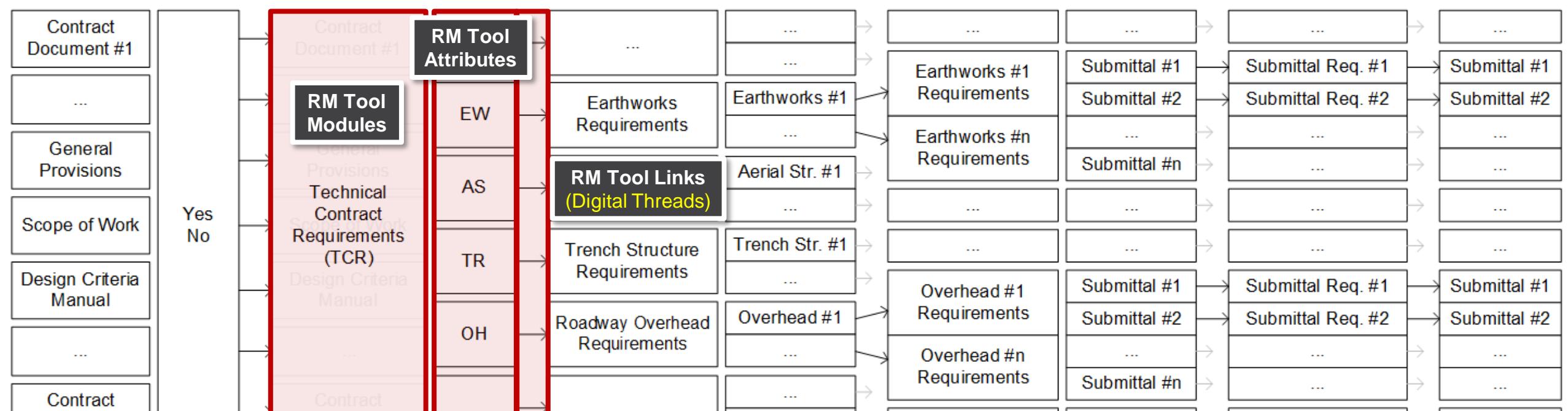
Contract Documents

TCR Attribute

Techn. Contract Requirements

Alloc. Attribute

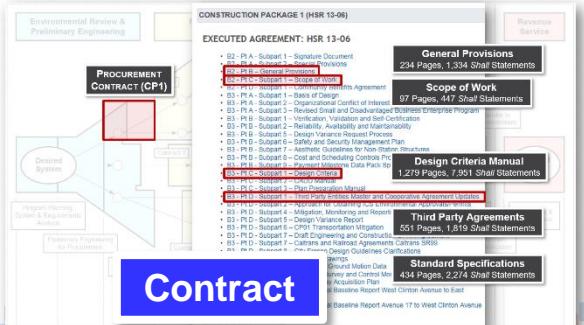
General / Typical Requirements


Site Alloc. Attribute

Sites

SYSTEMS ENGINEERING CHALLENGES FACED ALLOCATED REQUIREMENTS & OBJECTIVE EVIDENCE

Submittals



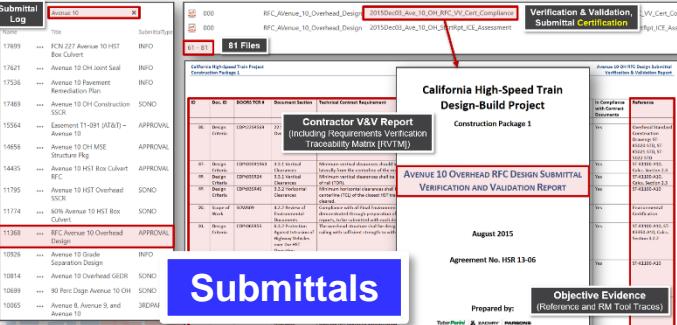
SoSE ACTIVITIES PERFORMED

VERIFICATION & VALIDATION APPROACH: 6 KEY STEPS

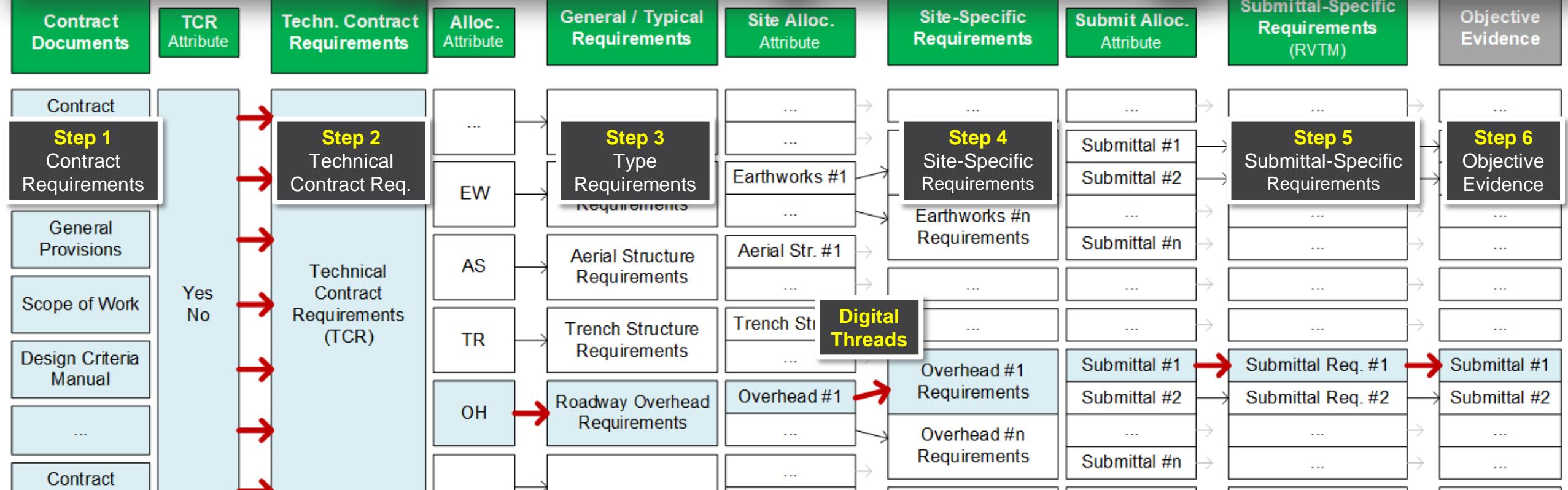
SYSTEMS ENGINEERING CHALLENGES FACED REQUIREMENTS QUANTITY

Contract

SYSTEMS ENGINEERING CHALLENGES FACED

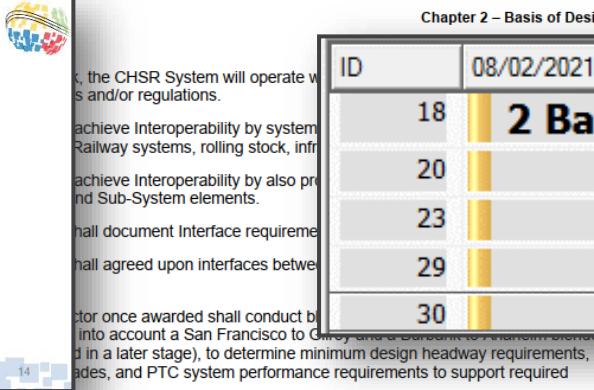
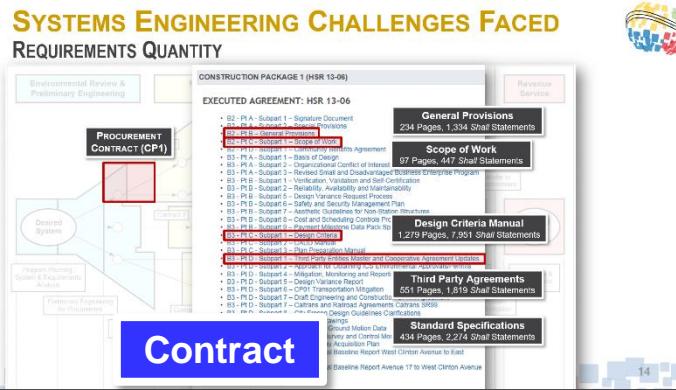

Types

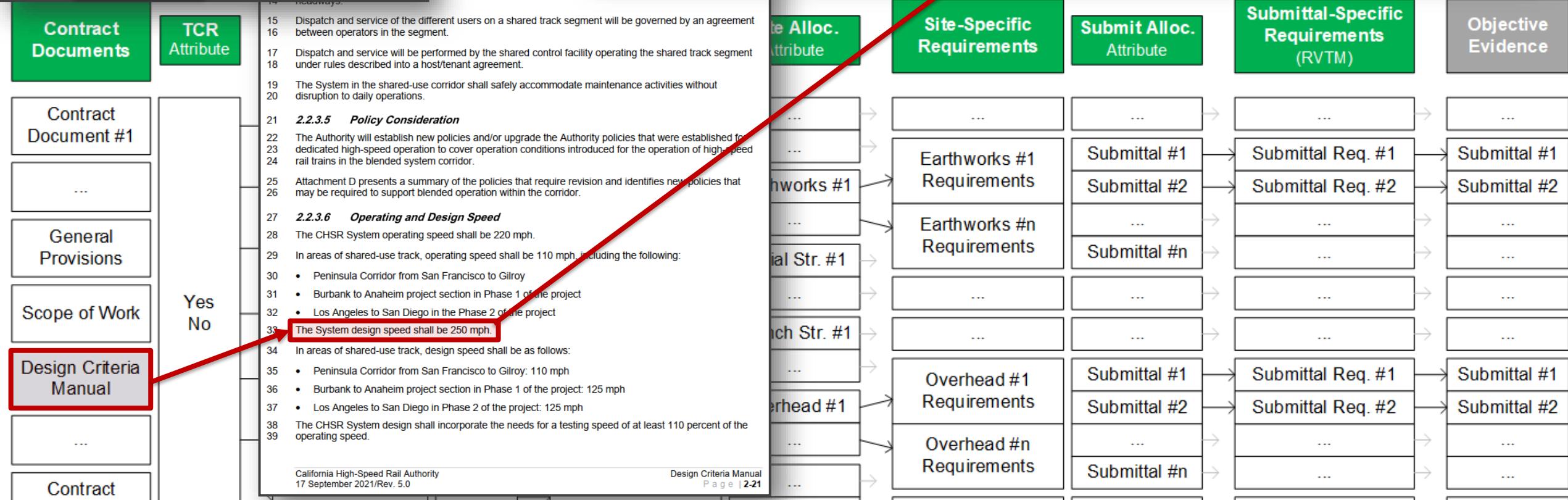
SYSTEMS ENGINEERING CHALLENGES FACED NUMBER OF DESIGN SUBMITTALS



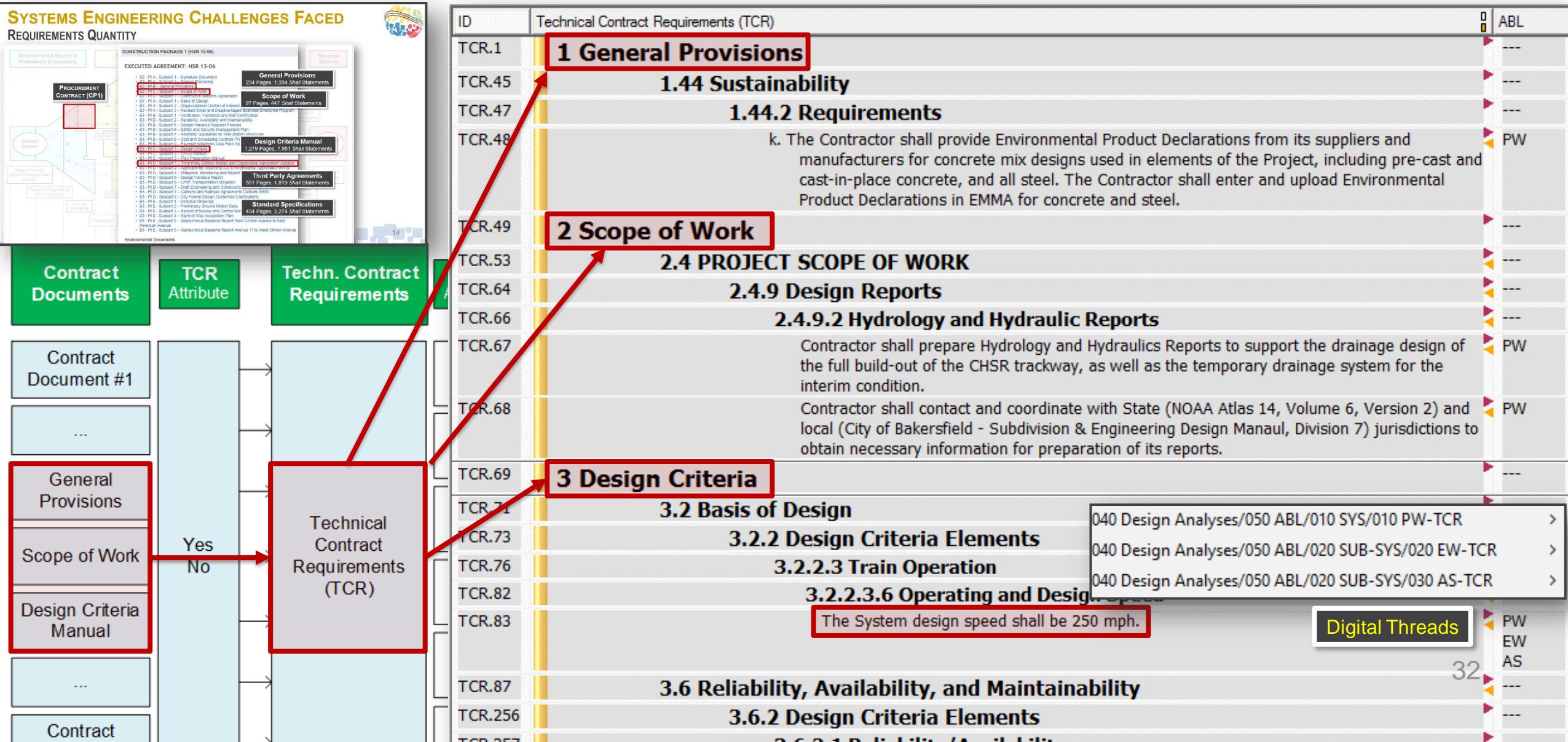
Sites

SYSTEMS ENGINEERING CHALLENGES FACED ALLOCATED REQUIREMENTS & OBJECTIVE EVIDENCE

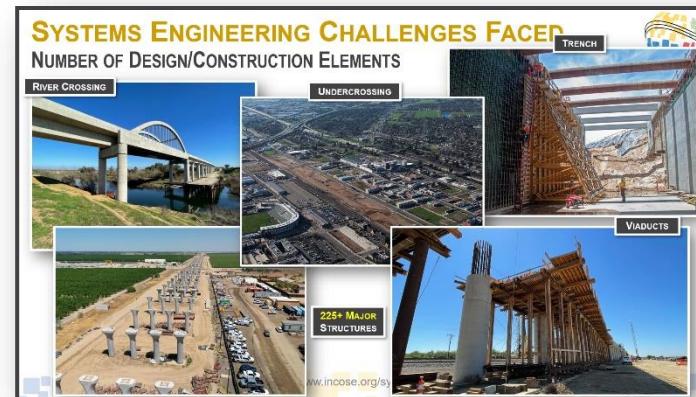


Submittals


SoSE ACTIVITIES PERFORMED

PERFORMANCE REQ. EXAMPLE: STEP 1 – CONTRACT REQUIREMENTS


ID	08/02/2021 Rev. 4.5 - BOD	_TCR
18	<h2>2 Basis of Design</h2>	▶ Heading
20	<h3>2.2 Design Criteria Elements</h3>	▶ Heading
23	<h4>2.2.3 Train Operation</h4>	▶ Heading
29	<h5>2.2.3.6 Operating and Design Speed</h5>	▶ Heading
30	The System design speed shall be 250 mph.	▶ TCR

SoSE ACTIVITIES PERFORMED



PERFORMANCE REQ. EXAMPLE: STEP 2 – TECHNICAL CONTRACT REQS.

SoSE ACTIVITIES PERFORMED

PERFORMANCE REQ. EXAMPLE: STEP 3 – TYPICAL (EW) REQUIREMENTS

HSR Earthworks (Type) Applicable (Subsets) TCRs

3 Design Criteria

3.2 Basis of Design

3.2.2 Design Criteria Elements

3.2.2.3 Train Operation

3.2.2.3.6 Operating and Design Speed

The System design speed shall be 250 mph.

3.29 Geotechnical

3.29.2 Design Criteria Elements

3.29.2.6 Earthworks

3.29.2.6.1 Earthwork Materials

3.29.2.6.1.3 HSR Prepared Subgrade

The required minimum thickness of the Prepared Subgrade is as follows:

- Ballasted track on embankment or in a cut: 14 inches.
- Slab track on embankment, where embankment height is equal to or greater than 6.5 feet (as measured from the top of the prepared subgrade at the side edge of the embankment to the existing ground surface): 6.5 feet.

5 Supplemental Contract Requirements

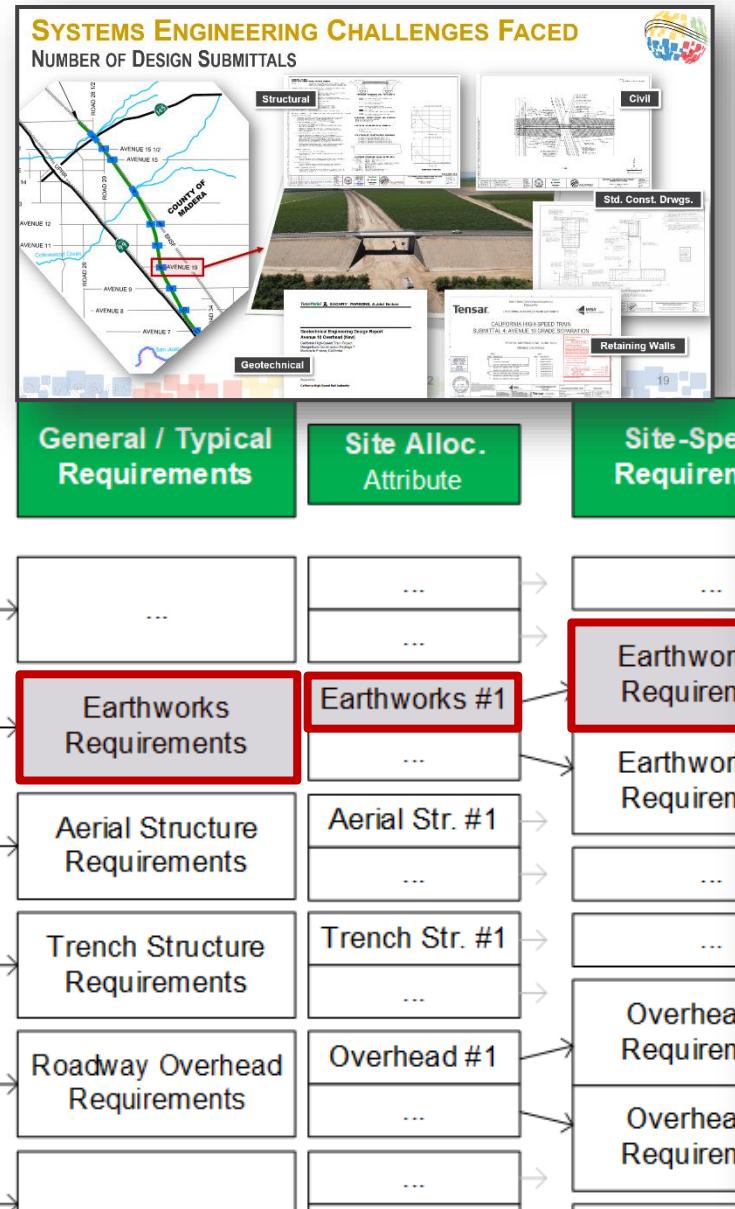
5.2 Engineering and Construction UPRR Agreement

5.2.3 Design and Construction

(d) Except as may be permitted in UPRR-approved Final Plans, at any location where the centerline of CHSRA tracks will be designed to be 102 feet or closer to UPRR's property, CHSRA must design, construct, and maintain intrusion barriers between the CHSRA tracks and UPRR's property. UPRR acknowledges that CHSRA will seek many such exceptions when it reasonably believes that approval of an exception would not have an adverse impact on safe or efficient operations.

Sites

Allocations to Individual Sites


EW-EMB-SITE01
EW-CUT-SITE02

EW-EMB-SITE01
EW-CUT-SITE02

EW-EMB-SITE01

SoSE ACTIVITIES PERFORMED

PERFORMANCE REQ. EXAMPLE: STEP 4 – SITE-SPECIFIC REQUIREMENTS

HSR Earthworks #1 (Site-Specific Applicable (Subsets) TCRs)

1 Design Criteria

1.2 Basis of Design

1.2.2 Design Criteria Elements

1.2.2.3 Train Operation

1.2.2.3.6 Operating and Design Speed

The System design speed shall be 250 mph.

Submittals

Allocations to Submittals

EW-DES-60%
EW-DES-90%
EW-DES-RFC
EW-DES-DCN

1.29 Geotechnical

1.29.2 Design Criteria Elements

1.29.2.6 Earthworks

1.29.2.6.1 Earthwork Materials

1.29.2.6.1.3 HSR Prepared Subgrade

The required minimum thickness of the Prepared Subgrade is as follows:

- Ballasted track on embankment or in a cut: 14 inches.
- Slab track on embankment, where embankment height is equal to or greater than 6.5 feet (as measured from the top of the prepared subgrade at the side edge of the embankment to the existing ground surface): 6.5 feet.

EW-DES-60%
EW-DES-90%
EW-DES-RFC
EW-DES-DCN

3 Supplemental Contract Requirements

3.2 Engineering and Construction UPRR Agreement

3.2.3 Design and Construction

(d) Except as may be permitted in UPRR-approved Final Plans, at any location where the centerline of CHSRA tracks will be designed to be 102 feet or closer to UPRR's property, CHSRA must design, construct, and maintain intrusion barriers between the CHSRA tracks and UPRR's property. UPRR acknowledges that CHSRA will seek many such exceptions when it reasonably believes that approval of an exception would not have an adverse impact on safe or efficient operations.

EW-DES-60%
EW-DES-90%
EW-DES-RFC
EW-DES-DCN

SoSE ACTIVITIES PERFORMED

PERFORMANCE REQ. EXAMPLE: STEP 5 – SUBMITTAL SPECIFIC REQS.

SYSTEMS ENGINEERING CHALLENGES FACED

ALLOCATED REQUIREMENTS & OBJECTIVE EVIDENCE

Submittal Log		Submittals		Verification	
17699	... ICR 227 Avenue 10 HST	INFO			
17621	... Avenue 10 CH Joint Seal	INFO			
17536	... Avenue 10 Pavement	INFO			
17463	... Avenue 10 OH Construction	SONO			
15564	... Elevation TH-091 (AT&T) - Structure	APPROVAL			
14858	... Avenue 10 OH MSE	APPROVAL			
14435	... Avenue 10 HST Box Culvert	APPROVAL			
11795	... Avenue 10 HST OH	SONO			
11774	... 50% Avenue 10 HST Box	SONO			
11368	... HFC Avenue 10 Overhead Design	APPROVAL			
10326	... Avenue 10 Grade	INFO			
10114	... Avenue 10 Overhead GEORI	SONO			
10699	... 90 Pine Court Avenue 10 OH	SONO			
10665	... Avenue 8, Avenue 5, and Avenue 10	3RD PARTY			

Submittal-Specific Requirements (RVTM)

Objective Evidence

HSR Earthworks Submittal (Requirements Verification Traceability Matrix)

1 Design Criteria

1.2 Basis of Design

1.2.2 Design Criteria Elements

1.2.2.3 Train Operation

1.2.2.3.6 Operating and Design Speed

The System design speed shall be 250 mph.

Submittal

Reference to Objective Evidence

14060 GDW01

TT-D0001	TRACK GUADEWAY - HORIZONTAL ALIG
TT-E6001	TRACK CHART - SHEET 1 OF 13
TT-E6002	TRACK CHART - SHEET 2 OF 13
TT-E6003	TRACK CHART - SHEET 3 OF 13
TT-E6004	TRACK CHART - SHEET 4 OF 13

1.29 Geotechnical

1.29.2 Design Criteria Elements

1.29.2.6 Earthworks

1.29.2.6.1 Earthwork Materials

1.29.2.6.1.3 HSR Prepared Subgrade

The required minimum thickness of the Prepared Subgrade is as follows:

- Ballasted track on embankment or in a cut: 14 inches.
- Slab track on embankment, where embankment height is equal to or greater than 6.5 feet (as measured from the top of the prepared subgrade at the side edge of the embankment to the existing ground surface): 6.5 feet.

14060 GDW01

TT-D3001	TYPICAL TRACK SECTION - SHEET 1 O
TT-D3002	TYPICAL TRACK SECTION - SHEET 2 O
TT-D3003	TYPICAL TRACK SECTION - SHEET 3 O
TT-D3004	TYPICAL TRACK SECTION - SHEET 4 O
TT-D3005	TYPICAL TRACK SECTION - SHEET 5 O
TT-D3006	TYPICAL TRACK SECTION - SHEET 6 O
TT-D3007	TYPICAL TRACK SECTION - SHEET 7 O
TT-D3008	TYPICAL TRACK SECTION - SHEET 8 O
TT-D3009	TYPICAL TRACK SECTION - SHEET 9 O
TT-D3010	TYPICAL TRACK SECTION - SHEET 10 O
TT-D3011	TYPICAL TRACK SECTION - SHEET 11 O
TT-D3012	TYPICAL TRACK SECTION - SHEET 12 O
TT-D3013	TYPICAL TRACK SECTION - SHEET 13 O
TT-D3014	TYPICAL TRACK SECTION - SHEET 14 O

SoSE ACTIVITIES PERFORMED

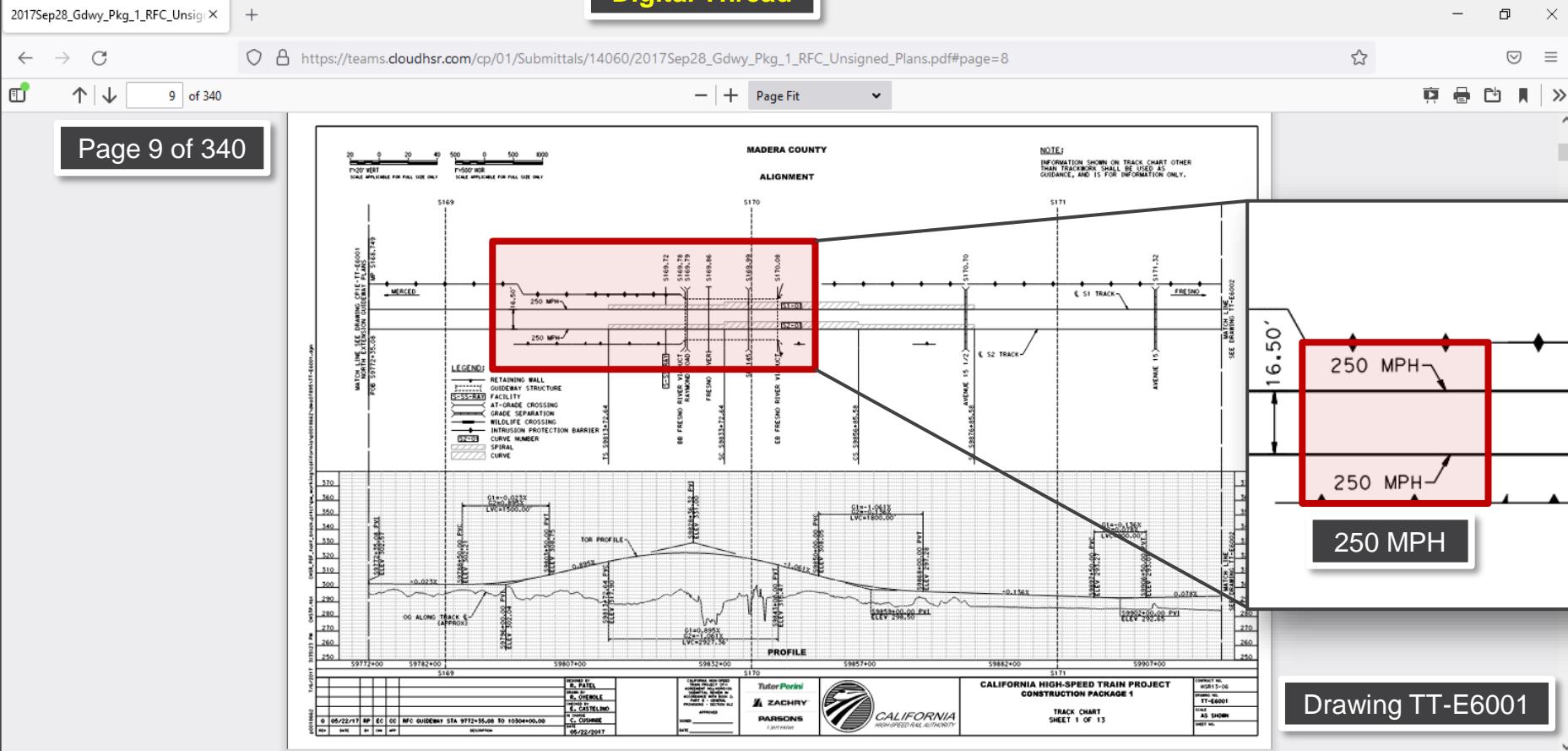
PERFORMANCE REQ. EXAMPLE: STEP 6 – SUBMITTAL LOG & REPOSITORY

	Subm-ID	Subm-Name	Drwg-ID	Drawing Name	Drwg-Rev
1 Design Criteria					
1.2 Basis of Design					
1.2.2 Design Criteria Elements					
1.2.2.3 Train Operation					
1.2.2.3.6 Operating and Design Speed					
The System design speed shall be 250 mph.					
Submittal					
Reference to Objective Evidence					
<div style="border: 2px solid red; padding: 5px;"> TT-D0001 TRACK GUIDEWAY - HORIZONTAL ALIGNMENT DATA TABLE TT-E6001 TRACK CHART - SHEET 1 OF 13 TT-E6002 TRACK CHART - SHEET 2 OF 13 TT-E6003 TRACK CHART - SHEET 3 OF 13 TT-E6004 TRACK CHART - SHEET 4 OF 13 </div>					

	Subm-ID	Sub Name (short)	Sub Name (Full)	
1 Submittal Log				
1.3 HSR Earthworks				
1.3.1 EW-EMB-SITE01				
RFC	14060	GDW01	Guideway Package 1, RFC	
1.4 HSR Aerial Structure				
1.4.1 AS-VD-SITE01				
RFC	11893	FRV, RFC	Fresno River Viaduct, RFC	
Drawings				
V&V Submittal				
Certification of Compliance				

CP2-3, CP4: Submittal Log

New CPx: Submittal Repository
(Example: Drawing List)


TT-D3013

SoSE ACTIVITIES PERFORMED

PERFORMANCE REQ. EXAMPLE: STEP 6 – OBJECTIVE EVIDENCE

Drawing #	Drawing Name	Rev	Page #
GE-D0001	COVER SHEET	0	1
...	...		
TT-D0001	TRACK GUIDEWAY - HORIZONTAL ALIGNMENT DATA TABLE	0	8
TT-E6001	TRACK CHART - SHEET 1 OF 13	0	9
TT-E6002	TRACK CHART - SHEET 2 OF 13	0	10
TT-E6003	TRACK CHART - SHEET 3 OF 13	0	11

Digital Thread

Verification and Validation Certification of Compliance

Submittal Identification	
Project Name:	California High Speed Rail Train Project, CP1
Project Number:	HSR13-06
Document Title:	Guideway Station 9772+35.08 to 10304+00.00 Ready for Construction
Date:	09/11/2017

Submittal Verification Status	
Prepared By:	
Verified By:	
Signed off by V & V Manager:	
Date:	

The TPZP V&V team has reviewed and assessed the contract documents including Attachment 8 for all Ready for Construction (RFC) submittals.

The TPZP V&V team confirms that, with the inclusion of the Ready for Construction Configuration, all comments resolved during the 50% Design Submittal review. Submittal reference SW04.11.03-034 have been satisfactorily resolved and verified by the Design Lead and are represented in the RFC Submittal herein. The submittal is complete, contains the required documents inclusive of manuals, reports, drawings, procedures, policies, permits, and agreements to demonstrate compliance of this RFC submittal with the Technical Contract Requirements.

TPZP therefore self-certifies the submittal for Guideway Station 9772+35.08 to 10304+00.00 Ready for Construction to be compliant with Contract Requirements and fitness for purpose.

Submittal Certification of Compliance (CoC)

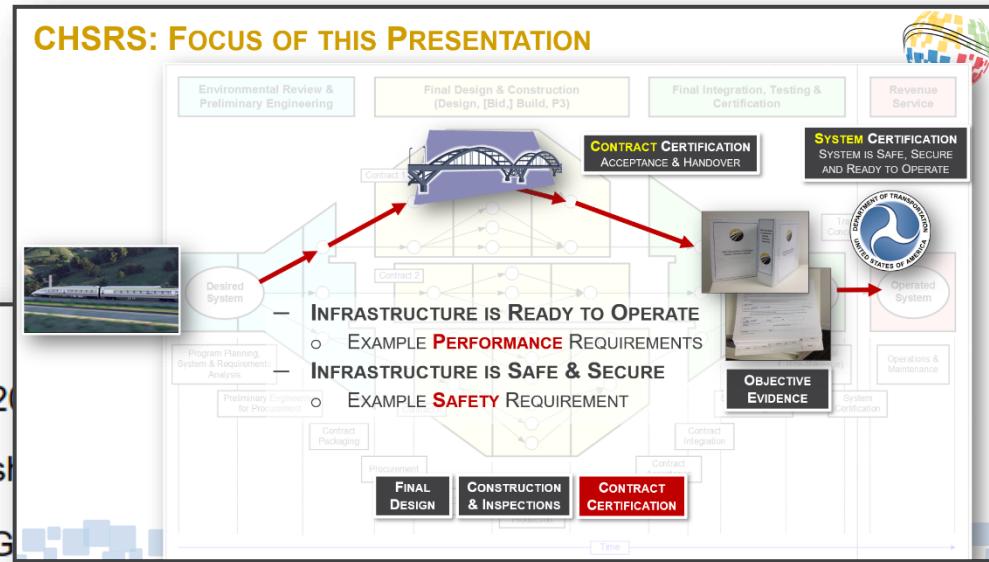
SoSE ACTIVITIES PERFORMED

VERIFICATION, VALIDATION & CERTIFICATION

27 **2.2.3.6 Operating and Design Speed**

28 The CHSR System operating speed shall be 220 mph.

29 In areas of shared-use track, operating speed shall be as follows:


- Peninsula Corridor from San Francisco to Gilroy: 110 mph
- Burbank to Anaheim project section in Phase 1 of the project: 125 mph
- Los Angeles to San Diego in Phase 2 of the project: 125 mph

30 The System design speed shall be 250 mph.

31 In areas of shared-use track, design speed shall be as follows:

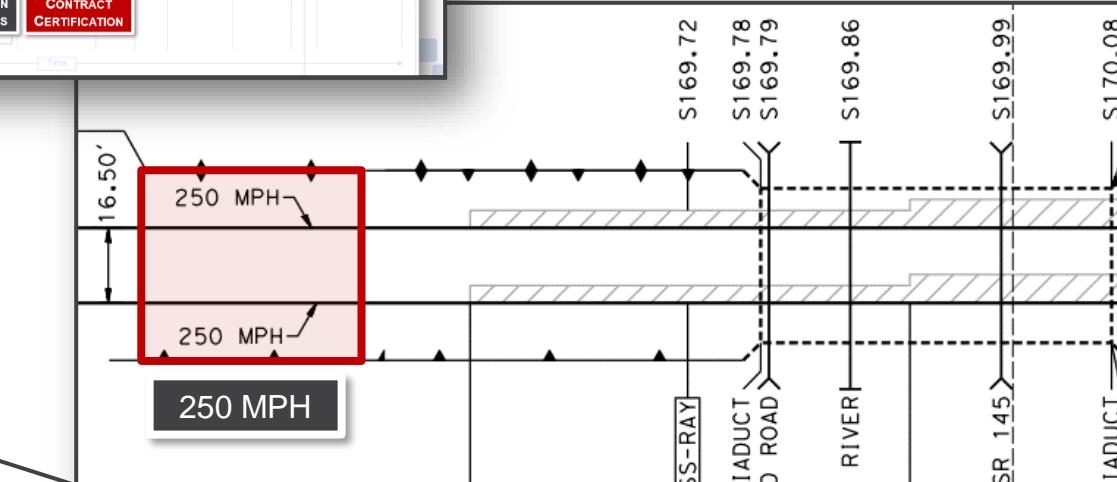
- Peninsula Corridor from San Francisco to Gilroy: 110 mph
- Burbank to Anaheim project section in Phase 1 of the project: 125 mph
- Los Angeles to San Diego in Phase 2 of the project: 125 mph

32 The CHSR System design shall incorporate the needs for a testing speed of at least 110 percent of the operating speed.

Verification and Validation Certification of Compliance

Submittal Identification	
Project Name:	California High Speed Rail Project, CP1
Project Number:	HSR13-06
Document Title:	Guideway Station 9772+35.08 to 10304+00.00 Ready for Construction
Date:	09/11/2017

Submittal Verification Status


Prepared By:	
Verified By:	
Signed off by V & V Manager:	
Date:	

The TPZP V&V team has reviewed and assessed the contract documents including Attachment 8 for all Ready for Construction (RFC) submittals.

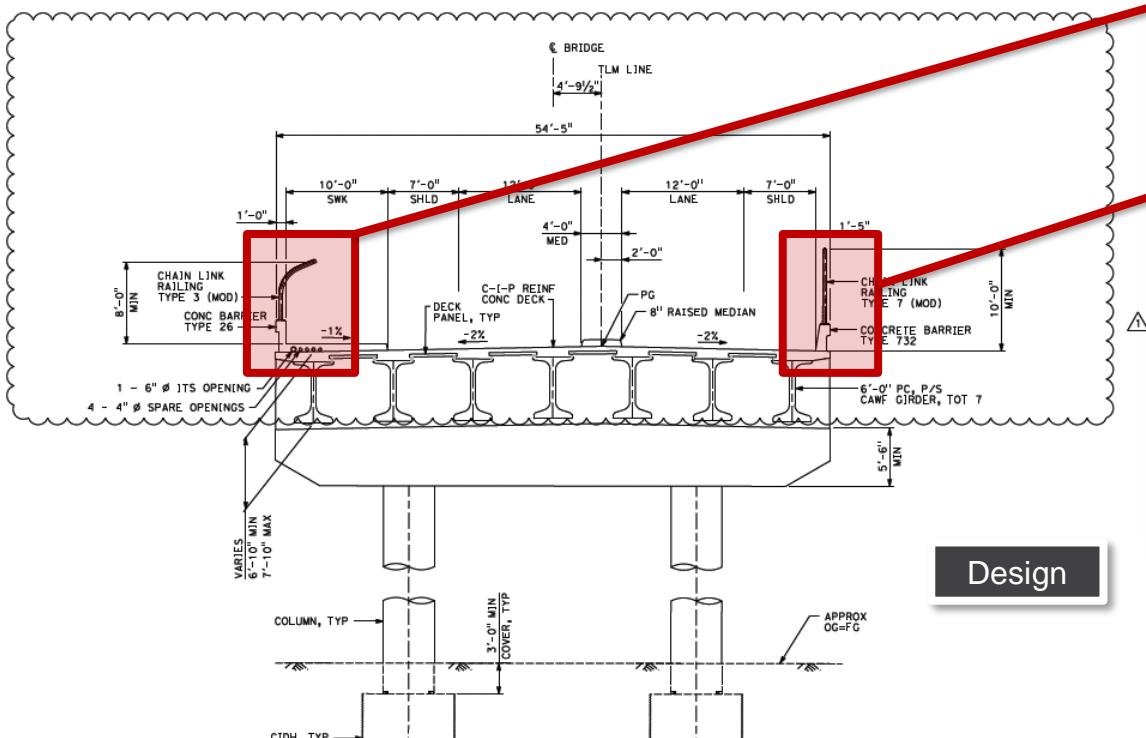
The TPZP V&V team confirms that, with the inclusion of the Ready for Construction Certification, all comments received during the 50% Design Submittal review, Submittal reference SW04.11.03-034 have been satisfactorily resolved and verified by the Design Lead and are represented in the RFC Submittal herein. The submittal is complete, contains the required documents inclusive of manuals, reports, drawings, procedures, policies, permits, and agreements to demonstrate compliance of this RFC submittal with the Technical Contract Requirements.

TPZP therefore self-certifies the submittal for Guideway Station 9772+35.08 to 10304+00.00 Ready for Construction to be compliant with Contract Requirements and fitness for purpose.

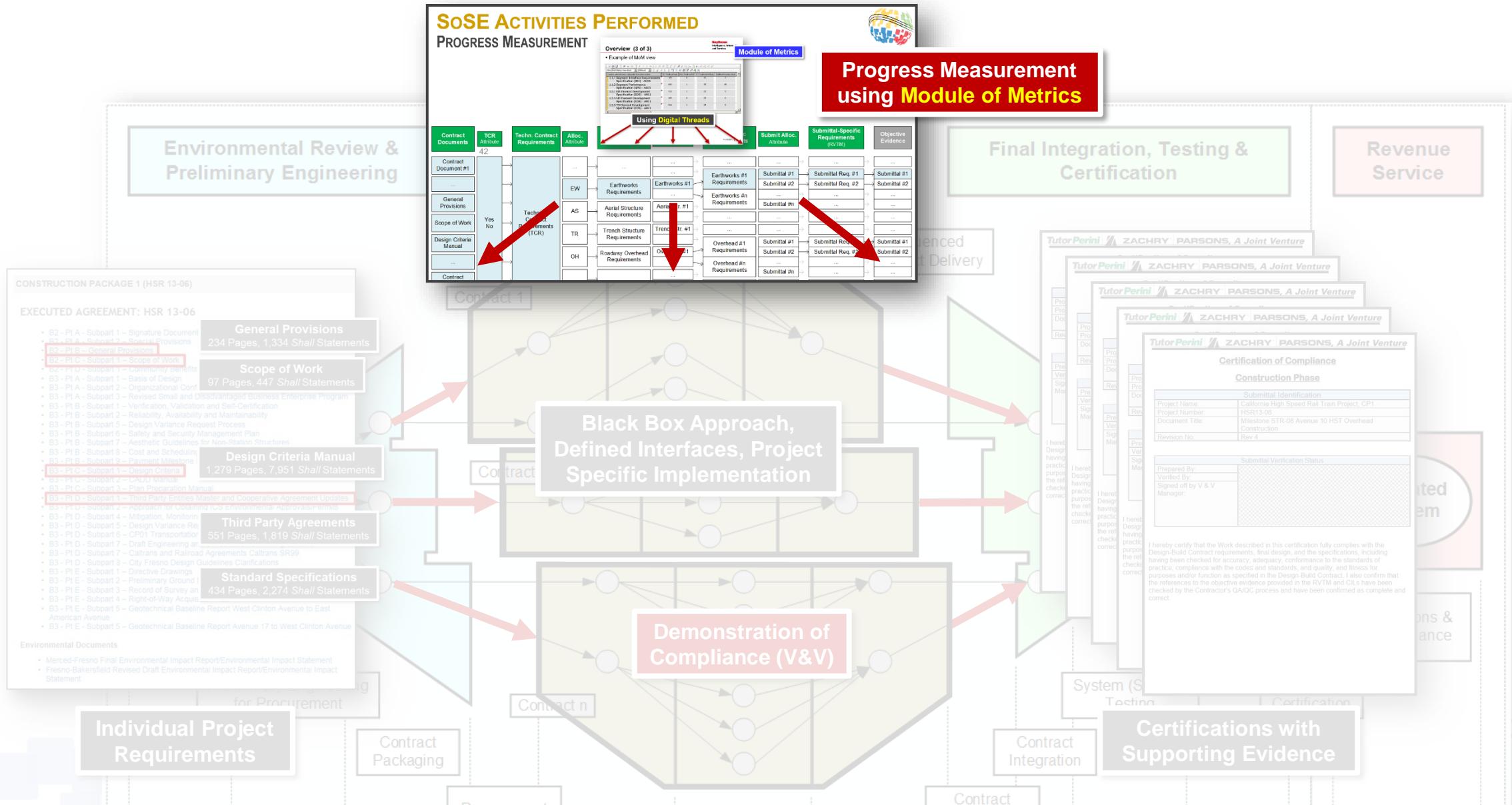
Submittal Certification of Compliance (CoC)

Trust but Verify
using **Digital Threads**

SoSE ACTIVITIES PERFORMED


SAFETY REQ. EXAMPLE (CRITICAL ITEM -> CERTIFIABLE ITEMS LIST [CIL])

ID	Hazards & Mitigations	CI
1	1 Infrastructure	No
2	1.1 R-O-W Generally	No
12	1.1.2 Collision	No
26	1.1.2.7 Object thrown from overpass	No
176	1.1.2.7.1 Mitigation #1 [1] TNE: Install intrusion prevention fencing at overpasses.	Yes


Risk of Thrown Objects

Install intrusion prevention fencing at overpasses.

SoSE ACTIVITIES PERFORMED

PROGRESS MEASUREMENT

SoSE ACTIVITIES PERFORMED

MODULE OF METRIC (MoM) – INSPIRATION

2013 IBM Webinar

Raytheon

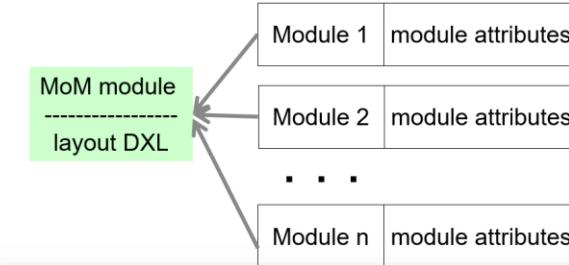
Customer Success Is Our Mission

AIR
LAND
SEA
SPACE
CYBER

DOORS® Module of Metrics (MoM) Approach

Jerry Huller
Senior Principal Systems Engineer
15 November 2013

Copyright © 2013 Raytheon Company. All rights reserved.
Customer Success Is Our Mission is a registered trademark of Raytheon Company.

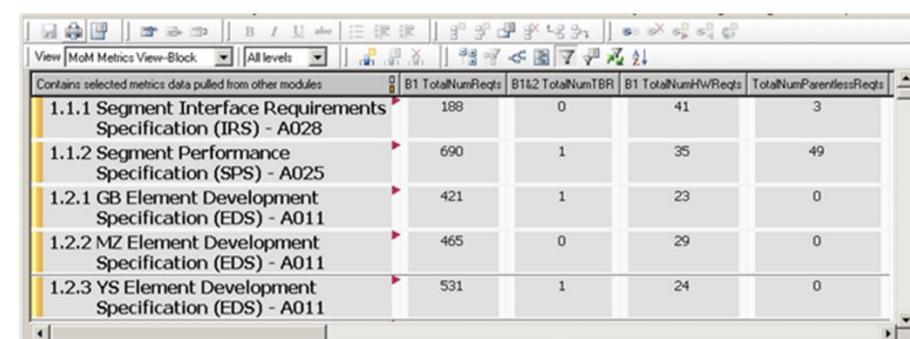

Overview (2 of 3)

- Basic concept:

- Create module level DXL attributes that can provide desired data, equivalent to running a simple or compound filter query in DOORS

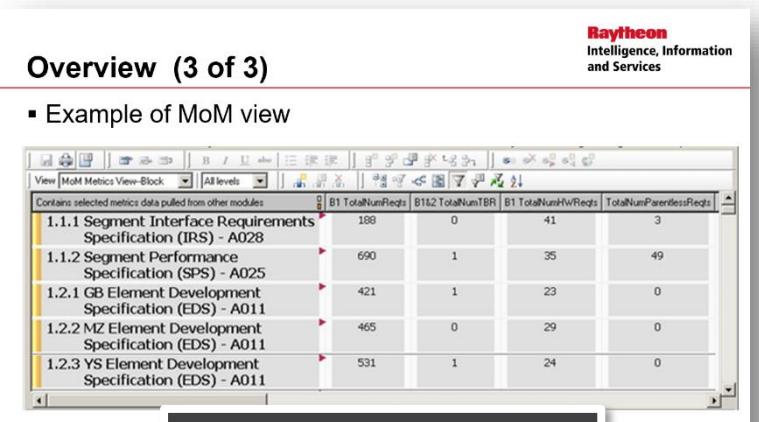
[Create once and copy to all requirement modules](#)

- Use layout DXL to “pull” the attribute values into a master module called the Module of Metrics (MoM), which is accessible at any time by any DOORS user



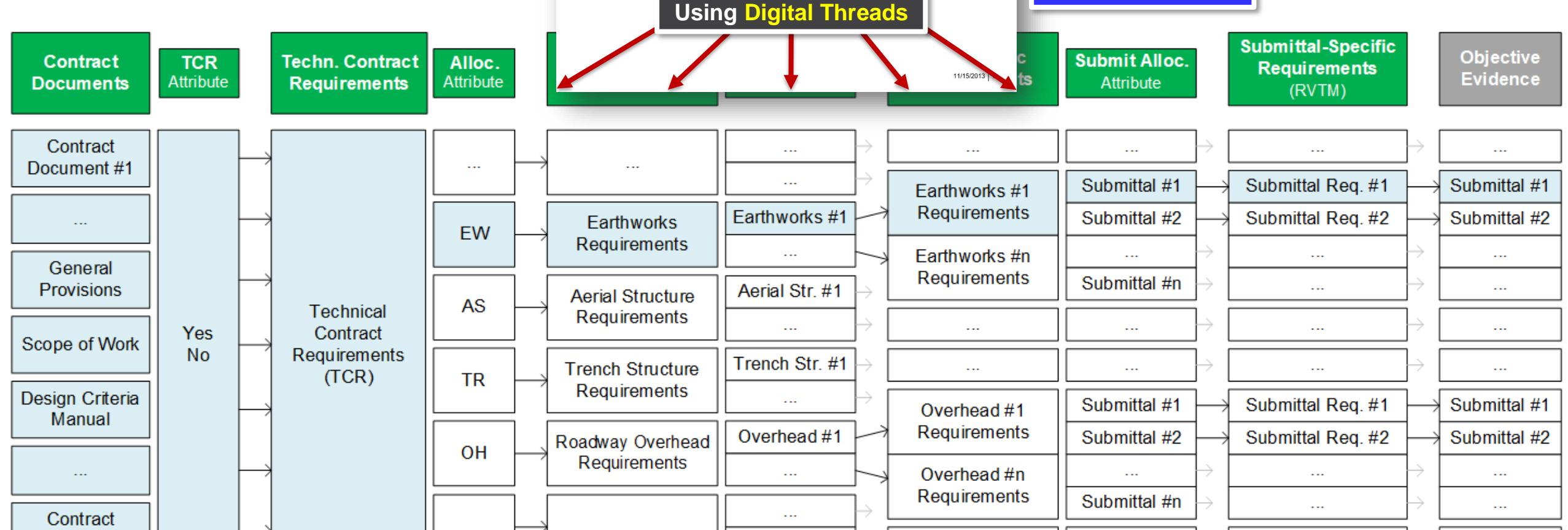
11/15/2013 | 5

Raytheon
Intelligence, Information
and Services



Overview (3 of 3)

- Example of MoM view



	B1 TotalNumReqs	B1&2 TotalNumTBR	B1 TotalNumHw/Reqs	TotalNumParentlessReqs
1.1.1 Segment Interface Requirements Specification (IRS) - A028	188	0	41	3
1.1.2 Segment Performance Specification (SPS) - A025	690	1	35	49
1.2.1 GB Element Development Specification (EDS) - A011	421	1	23	0
1.2.2 MZ Element Development Specification (EDS) - A011	465	0	29	0
1.2.3 YS Element Development Specification (EDS) - A011	531	1	24	0

SoSE ACTIVITIES PERFORMED HIGH-SPEED RAIL MoM

Module of Metrics

SoSE ACTIVITIES PERFORMED

DEFINING THE 100% CONTRACT CERTIFICATION SCOPE (BY QMDP)

California High-Speed Train Project CP1 Key Map

MAJOR STRUCTURES

READY FOR CONSTRUCTION SUBMITTAL
CALIFORNIA HIGH-SPEED TRAIN PROJECT
CONSTRUCTION PACKAGE 1
TRACK GUIDEWAY PACKAGE 1
STA 9772+35.08 to 10304+00.00

CONSTRUCTION PACKAGE 1 MAP

PROJECT LOCATION MAP

SYSTEMS ENGINEERING CHALLENGES FACED
CONSTRUCTION CERTIFICATION: QUALITY MILESTONE (DATA PACK, QMDP)

Submittal Log

Name	Title	Submittal Type
17699	FCN 227 Avenue 10 HST	INFO
17621	Avenue 10 OH Joint Seal	INFO
17536	Avenue 10 Pavement Remediation Plan	INFO
17469	Avenue 10 OH Construction SSCR	SONO
15564	Easement T1-091 (AT&T) – Avenue 10	APPROVAL
14656	Avenue 10 OH MSE Structure Pkg	APPROVAL
14435	Avenue 10 HST Box Culvert RFC	APPROVAL
11795	Avenue 10 HST Overhead SSCR	SONO
11774	60% Avenue 10 HST Box: SONO	APPROVAL
11368	RFC Avenue 10 Overhead APPROVAL	APPROVAL
10926	Avenue 10 Grade Separation Design	INFO
10814	Avenue 10 Overhead GEDR	SONO
10699	90 Perc Dsgn Avenue 10 OH	SONO
10065	Avenue 8, Avenue 9, and Avenue 10	3RDP001

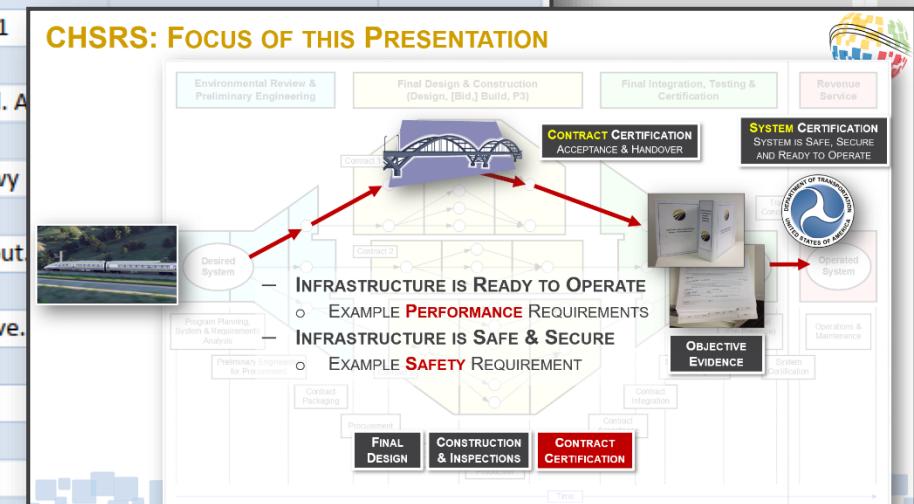
Various Submittals by QMDP

STR 24B E MUSCAT AVE HST - Gavin
STR25 CENTRAL AVENUE OH - Gavin
STR26 AMERICAN AVENUE OH - Gavin

STR01 AT&T - Juan
STR02 PG&E - Bianca
STR03 CITY OF FRESNO - Bennie
STR04 COUNTY OF FRESNO - Bennie
STR05 COUNTY OF MADERA - Bennie
STR06 UPRR - Addison
STR07 BNSF - Addison
STR08 CALTRANS - Bennie
STR09 MADERA IRRIGATION DISTRICT - Greg
STR10 FRESNO IRRIGATION DISTRICT - Greg
STR11 FMFCD - Greg
STR12 KINDER MORGAN - Addison
STR13 LEVE III - Addison
STR14 COMCAST - Addison
STR15 SPRINT - Addison
STR16 TW TELECOM - Addison
STR17 TIME WARNER - Addison
STR18 QWEST - Addison
STR19 CVIN - Addison
STR20 SEBASTIAN KERMAN TELECOM - Addison
STR21 MCI - Addison
STR22 SIERRA TELEPHONE - Addison

CP1: 70+ QMDPs (Quality Milestone Data Packs)

SoSE ACTIVITIES PERFORMED


CP4 EXAMPLE: BUILDING THE MoM

'Module of Metrics' current 1.2 in /CRB DOORS-DB 2021-01/00. Metrics (Formal module) - DOORS!

File Edit View Insert Link Analysis Table Tools Discussions User Change Management Help

SoSE ACTIVITIES PERFORMED

CP4 EXAMPLE: SUBMITTALS BY QMDP, MEASURING PROGRESS

SoSE ACTIVITIES PERFORMED

CP4 EXAMPLE: USING THE DIGITAL THREADS

Absolute	Object	_MoM_QMDP	Metrics
54	1		<h2>4 Site-Specific Requirements</h2>
989	2	QMDP 04	<h3>4.4 QMDP 04</h3>
1133	3	QMDP 04	<h4>4.4.1 High-Speed Rail</h4>
130	4	QMDP 04	<h5>4.4.1.1 HSR Aerial Structure</h5>
181	5	QMDP 04	<h6>4.4.1.1.1 Garces</h6>
798	6	QMDP 04	4.4.1.1.1.1 Design
247	7	QMDP 04	Type Selection Report (TSR)
248	7	QMDP 04	Geotechnical Engineering Design Report (GEDR)
628	8	QMDP 04	SS.AS.GARCES.GEDR.RVTM
627	8	QMDP 04	SS.AS.GARCES.GEDR.CIL
249	7	QMDP 04	60% Design
250	7	QMDP 04	90% Design
55	7	QMDP 04	Ready for Construction (RFC)
15	8	QMDP 04	SS.AS.GARCES.RFC.RVTM
14	8	QMDP 04	SS.AS.GARCES.RFC.CIL
807	8	QMDP 04	SS.AS.GARCES.RFC.COC
349	7	QMDP 04	Bearings: Design Calcs
88	8	QMDP 04	SS.AS.GARCES.BE.RVTM
809	8	QMDP 04	
799	6	QMDP 04	
129	7	QMDP 04	
59	8	QMDP 04	
58	8	QMDP 04	
320	7	QMDP 04	
321	7	QMDP 04	
808	8	QMDP 04	
3364	8	QMDP 04	
1128	3	QMDP 04	
1131	4	QMDP 04	
760	5	QMDP 04	

SoSE ACTIVITIES PERFORMED

CP4 EXAMPLE: REPORTING CERTIFICATES OF COMPLIANCE (CoC) PROGRESS

Metrics' current 1.2 in /CRB DOORS-DB 2021-01/00_Metrics (Formal module) - DOORS

File Insert Link Analysis Table Tools Discussions User Change Management Help

MoM View(s)

3 General & Typical Requirements

3.1 CP4 Wide (General)

3.1.1 High-Speed Rail

3.1.1.1 Baseline Reports

3.1.1.1.2 Final Design Report

3.1.1.1.2.2 Design

Final Design Report

CP4.BL.FDR.COC

3.1.1.4 RAM Reports

3.1.1.4.5 Final Maintenance Concept

3.1.1.4.5.2 Design

Final Maintenance Concept

CP4.RAM.FMC.COC

3.1.1.4.6 Maintenance Manual

3.1.1.4.6.2 Design

Maintenance Manual

CP4.RAM.MM.COC

3.1.1.4.7 Maintainability Demonstration Test Plan

3.1.1.4.7.2 Design

Maintainability Demonstration Test Plan and Procedure

CP4.RAM.MDTP.COC

3.1.1.4.8 Maintainability Demonstration Test Report (MDTR)

3.1.1.4.8.2 Design

Maintainability Demonstration Test Report

CP4.RAM.MDTR.COC

3.2 Typical Design Elements / Typical Detail

3.2.1 High-Speed Rail

3.2.1.1 Structural Elements

'Module of Metrics' current 1.2 in /CRB DOORS-DB 2021-01/00_Metrics (Formal module) - DOORS

File Edit View Insert Link Analysis Table Tools Discussions User Change Management Help

File Edit View Insert Link Analysis Table Tools Discussions User Change Management Help

View 07. MoM CERT: CONST (QM) All levels

_MoM_QMDP# Metrics

14 1 QMDP 01

986 2 QMDP 01

11 3 QMDP 01

4 Site-Specific Requirements

4.1 QMDP 01

4.1.1 High-Speed Rail

4.1.1.1 HSR At-Grade

4.1.1.1.1 North

4.1.1.1.2 Construction

Construction Stage 4: Access

SS.AG.NORTH.QMDP01.CS4.COC

MDP 02

2.1 High-Speed Rail

4.2.1.1 HSR At-Grade

4.2.1.1.1 North

4.2.1.1.2 Construction

Construction Stage 4: Access

SS.AG.NORTH.QMDP02.CS4.COC

MDP 03

3.1 High-Speed Rail

4.3.1.1 HSR At-Grade

4.3.1.1.1 North

4.3.1.1.2 Construction

Construction Stage 4: Access

SS.AG.NORTH.QMDP03.CS4.COC

4.4 QMDP 04

4.4.1 High-Speed Rail

4.4.1.1 HSR Aerial Structure

4.4.1.1.1 Garces

4.4.1.1.2 Construction

HSR

HSR

HSR

HSR

HSR & Third Party

HSR

HSR

HSR

HSR

HSR

HSR & Third Party

HSR

SoSE ACTIVITIES PERFORMED

CP4 EXAMPLE: SAFETY & SECURITY CERTIFICATION REPORTS (SSCR) PROGRESS

'Module of Metrics' current 1.2 in /CRB DOORS-DB 2021-01/00_Metrics (Formal module) - DOORS

File Edit View Insert Link Analysis Table Tools Discussions User Change Management Help

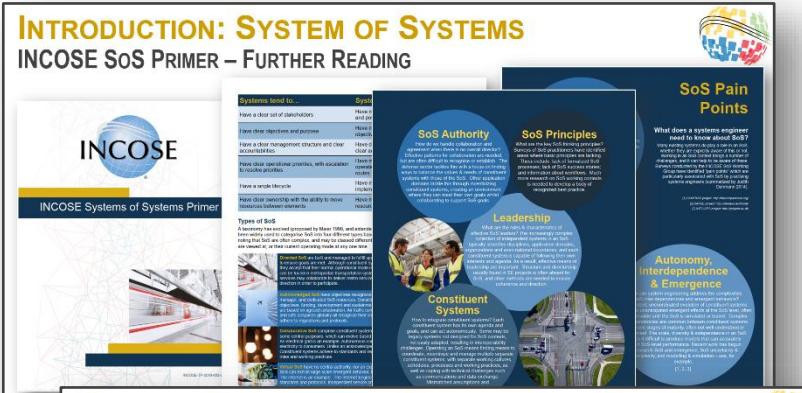
View 08. MoM S&S: CONST (SSC) All levels

Absolute	Object	MoM_QMDP#	Metrics	MoM_HSR_3RD	MoM_RDC	MoM_Cert	Submittal Date	SONO/APP Date	Linked Module		
54	1	4 Site-Specific Requirements									
986	2	QMDP 01	4.1 QMDP 01								
1153	3	QMDP 01	4.1.1 High-Speed Rail								
6	4	QMDP 01	4.1.1.1 HSR At-Grade								
46	5	QMDP 01	4.1.1.1.1 North								
797	6	QMDP 01	4.1.1.1.2 Construction								
315	7	QMDP 01	Construction Stage 4: Access SS.AG.NORTH.QMDP01.CS4.SSCR								
3358	8	QMDP 01									
989	2	QMDP 04	4.4 QMDP 04								
1133	3	QMDP 04	4.4.1 High-Speed Rail								
130	4	QMDP 04	4.4.1.1 HSR Aerial Structure								
181	5	QMDP 04	4.4.1.1.1 Garces								
799	6	QMDP 04	4.4.1.1.2 Construction								
321	7	QMDP 04	Construction Stage 3, 4, 5: Superstructure SS.AS.GARCES.QMDP04.CS3.SSCR								
3364	8	QMDP 04									
993	2	QMDP 07	4.7 QMDP 07								
1163	3	QMDP 07	4.7.1 High-Speed Rail								
1032	4	QMDP 07	4.7.1.1 HSR At-Grade								
1061	5	QMDP 07	4.7.1.1.1 North								
1063	6	QMDP 07	4.7.1.1.2 Construction								
1647	7	QMDP 07	Construction Stage 4: Access SS.AG.NORTH.QMDP07.CS4.SSCR								
3359	8	QMDP 07									
994	2	QMDP 09	4.9 QMDP 09								
1167	3	QMDP 09	4.9.1 High-Speed Rail								
990	4	QMDP 09	4.9.1.1 HSR Aerial Structure								
133	5	QMDP 09	4.9.1.1.1 Pond								
845	6	QMDP 09	4.9.1.1.2 Construction								

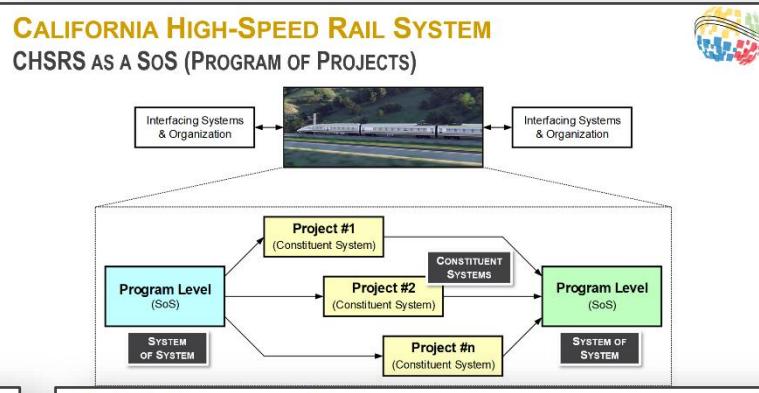
MoM View(s)

CHRS: CONTRACT VS. SYSTEM CERTIFICATION

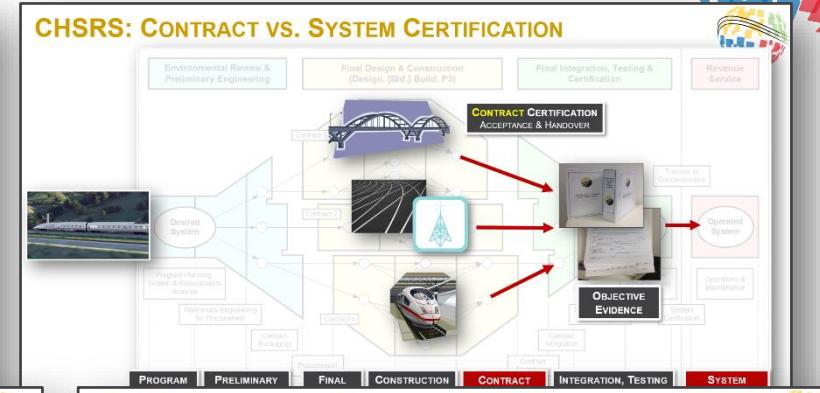
SYSTEM IS SAFE, SECURE AND READY TO OPERATE


- ❖ **Introduction**
 - Brief System of Systems (SoS) Overview
 - California High-Speed Rail System (CHSRS) Program
 - Use of Digital Threads in the CHSRS Program
- ❖ **SoSE Challenges Faced**
 - Systems Engineering Challenges
 - SoS Engineering Challenges
- ❖ **SoSE Activities Performed**
 - Certification Strategy
 - Step by Step Process Description
- ❖ **Summary, Achieved Outcomes & Conclusion**

SUMMARY


INTRODUCTION: SYSTEM OF SYSTEMS

INCOSE SoS PRIMER – FURTHER READING

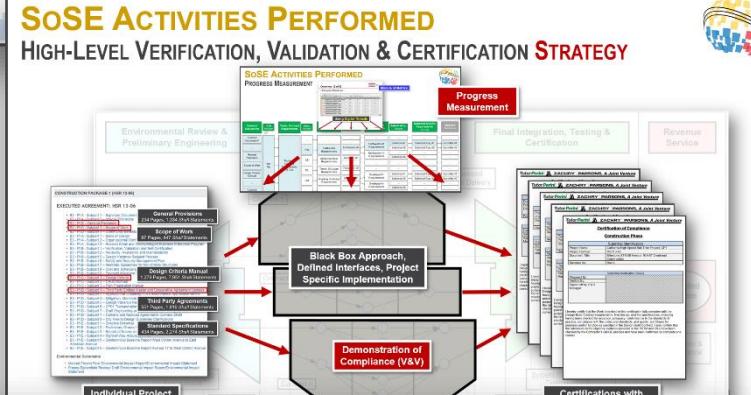


CALIFORNIA HIGH-SPEED RAIL SYSTEM

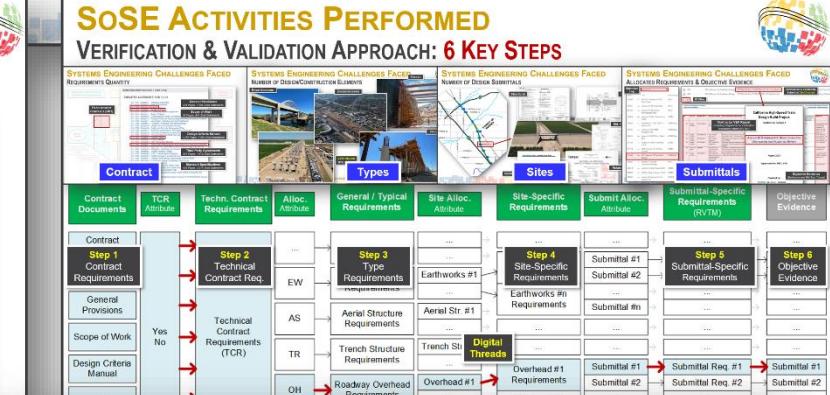
CHSRS AS A SoS (PROGRAM OF PROJECTS)



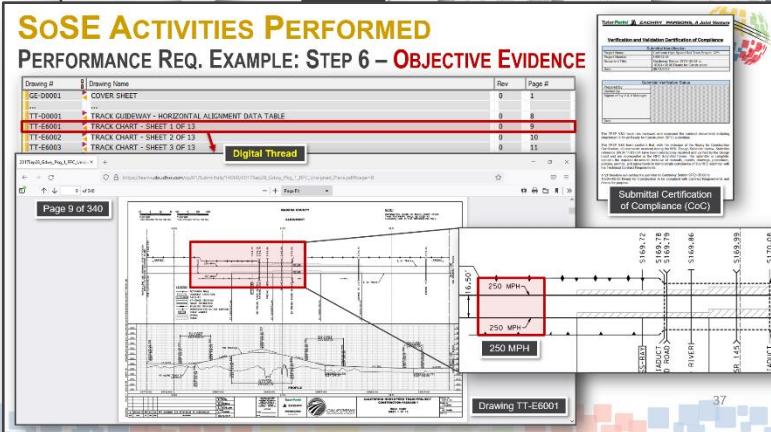
CHSRS: CONTRACT VS. SYSTEM CERTIFICATION


SYSTEMS ENGINEERING CHALLENGES FACED

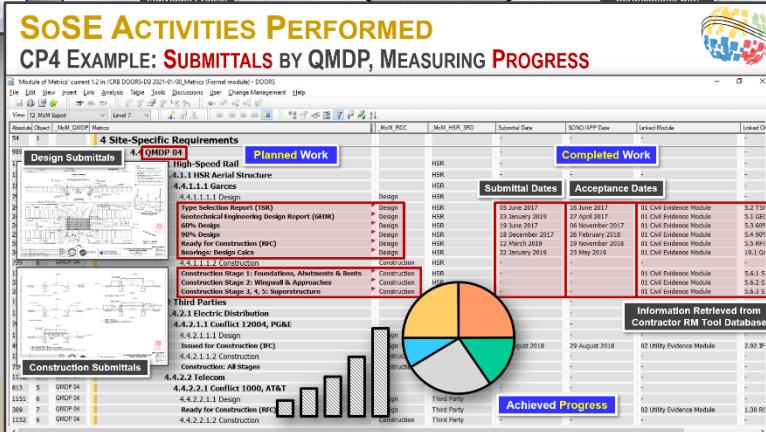
NUMBER OF DESIGN V&V REPORTS, SUBMITTAL CERTIFICATIONS


SoSE ACTIVITIES PERFORMED

HIGH-LEVEL VERIFICATION, VALIDATION & CERTIFICATION STRATEGY


SoSE ACTIVITIES PERFORMED

VERIFICATION & VALIDATION APPROACH: 6 KEY STEPS


SoSE ACTIVITIES PERFORMED

PERFORMANCE REQ. EXAMPLE: STEP 6 – OBJECTIVE EVIDENCE


SoSE ACTIVITIES PERFORMED

CP4 EXAMPLE: SUBMITTALS BY QMDP, MEASURING PROGRESS

SoSE ACTIVITIES PERFORMED

CP4 EXAMPLE: SAFETY & SECURITY CERTIFICATION REPORTS (SSCR) PROGRESS

ACHIEVED OUTCOMES & CONCLUSION

❖ Large System of Systems

- SoS Authority & Leadership: Program verification, validation & certification approach with tailored project type implementation (i.e., civil works, track and systems, trainsets, etc.)
- SoS Architecture: Program as SoS with projects as constituent systems
- SoS Autonomous Constituent Systems & Emergence: Projects as black box with defined interfaces: inputs (requirements) & outputs (construction certifications)

❖ Use of Digital Threads enables Convenient Access to:

- Technical contract requirements and critical items (i.e., RVTMs, CILs)
- Design & construction submittals and individual submittal files (drawings, calculations, etc.)
- Design & construction certifications (e.g., CoCs)
- Safety and security certifications (e.g., SSCRs)

❖ System Certification

- Trust but verify: Provision of certifications and supporting objective evidence

❖ Conclusion

- Verification, validation & certification provides high transparency and trust that the final California High-Speed Rail System will be **Safe, Secure, and Ready to Operate.**

32nd Annual **INCOSE**
international symposium

hybrid event

Detroit, MI, USA
June 25 - 30, 2022

www.incose.org/symp2022