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Background and Motivation

FL 660
- Aircraft flying at high altitude with long endurance are an interesting alternatve
to convectional satellite systems T —
* These so-called High Altitude Platforms are especially attractive because:
» They can be manufactured, launched and operated for reasonable low cost
» They can serve for many different applications, such as earth observation
and communication hubs
FL 106 - o

* DLR researches in the areas of technologies as well as applications of very long e
endurance high altitude platforms. Recently a research demonstrator is being
built to conduct scientific experiments
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Example Missions

e  Glacier monitoring

° Vessel emissions

e Floods

e FEarthquakes

e Mediterranean Sea
monitoring

e Bering Strait

e Surveillance for peace
keeping missions

e Animal tracking
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DLR's High Altitude

* DLR is on the way to establish a full scale
research platform for high altitude aircraft

* The aim is to gain knowledge about the
operation conditions and the design of
such aircraft

» The platform shall also be used to
demonstrate innovative payload systems-
and missions



DLR.de + Chart5 INCOSE IS 2022 > Systems Engineering Challenge of a Solar Powered High Altitude Aircraft > A. Bierig

Considering the Environment
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Basic Operating Principle

Tlpl‘Op

85 un

ndsg Nmot




DLR.de + Chart7 INCOSE IS 2022 > Systems Engineering Challenge of a Solar Powered High Altitude Aircraft > A. Bierig

Solar radiation on the aircraft

Earth Surface
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Solar Radiation on the Aircraft
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Available solar energy per day

Specific normal solar radiation energy per m? per day
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Example of a Constraint Diagram for a High Altitude Platform
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HAP basic design parameters
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Capability for Persistent Flight at 18000 m (59055 ft)
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Systems Engineering Challenges

» Developing an aircraft capable of sustained flight in the stratosphere poses some significant challenges

« An aircraft with large dimensions and extremely low weight needs to be realized
* In order to achieve an extremely low weight, a high degree of integration must be achieved

« Traditional load requirements from aircraft construction cannot be used, as this leads to impermissibly
high weights. Furthermore, operational limits must be specified to not exceed the load capabilities

* Interdisciplinary thinking is essential in all design decisions

 The different experiences of the members of the young team in the field of aircraft construction and
integration must be taken into account

i DLR
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Complexity of the Design Process

« Special engineering
disciplines tend to see the
overall design through the
lens of their discipline

* This problem even increases,
when a highly integrated
design is necessary

 To cope with this problem, a
holistic understanding of the
effects of design decisions
must be fostered in the team

i DLR
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Involved Organizations

* Bremerhaven

* DLR is organized into different scientific institutes Oldenburg 1,.

| Geesthacht

pn
m.f'
=
{

__ Neustrelitz

» To get all necessary expertise involved in the project,

scientists from 14 institutes make up the project ;e '
)  Cochstedt
. . . . : LSL-Q\BQEM
* 6 institutes from Braunschweig o s

* 4 institutes from Oberpfaffenhofen (Munich)

* 1 institute each from Berlin, Cofttbus and
Oldenburg
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Systems Engineering Model
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Initial mass budgets

Aircraft Design Process R S
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tl:onceptual design Initial
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. . ) ) % Initial atid i
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: 4 . - A — Geometry and
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working configuration = TRy S ——— Results L.
Configuration ¥ T Needs for modification
* The design process is the same for the R Detailled sizing of
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Only the design depth in the steps 1 I
A\
changes . . :
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loads analysis . analysis
Analysis and design refinement e i
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battery Unit 1: Battery Unit [1] | gatery Unit Interface 1

Stiffness and Mass Models for Aeroelastic Design

ery Unit 3 : Battery Unit[1] L,
th

G amEo

SysML model:

CAD model: Script based
- Structural geometry synchronization of - System positions and
- Structural masses system positions masses

- ~Allocated masses for
mass budget and
estimated masses for

System mass calculations

model

- System geometry

Structural geometry is
transformed into a FE
model for structural
stiffnesses and masses

Aeroelastic model:
- Detailed load analysis

including elastic deformation,
gusts and maneuvers
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bdd [Package] Architecture [ Architecture LO-L1] )

Central SysML Model

Air Segment for analysis (mass,

«AbstractAnalysisContainer» | | The Air Segment is on|yj

connections) and defines

Modelled contents: _ - _ —

‘ Aircraft I Payload ‘ Ground Segment | Ground Support Equipment I | Simulation System I
» System Breakdown | |

: P : e | [ R S
* Requirements and Verification Planning s g h e | | oy ooy
L2 flights.
* Device Positions and Masses T AN T
. ‘ Flight Test Instrumentation l J Modular Aerial Camera System I
o Connectlons and In te’fa CeS - > = L2 Systems of Payload shown as example.
| High Altitude Platform Synthetic Aperture Radar I

Bus Data Management = | go-=c----s=c--c-msco—c-—————c—-—c—c—-ccco——oo——m= ==

No L3 Systems shown to limit complexity of diagrl%l

Reasons for using a model instead of documents:

» Single source of truth for better design consistence
« Significant workload reduction by automated reports and model exchanges

» Partly automated design iterations allow low design margin policy

i DLR
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Requirements Modelling
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engineering offers: p——
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. . . . [Class]
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+ast modiﬁgd : date = now()
+MoC : Mo
Sy Stem el emen t +rationale : String
+release State : Status = in Arbeit
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H H +verificationProcedure : String [1]
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«stereotype» || «stereotype» ‘ «stereotype» «stereotype» «stereotype»
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«enumeration» «enumeration» «enumeration»
Status Requirements Tag MoC
. . in Arbeit Flight Performance o attributes
h ) o . " %
« MBSE tool enables validation of e | B O} ' #funclionEnabingocg
. geldscht Geometry Sompl ia;ge St_atsment/Deﬁnition «stereotype»
. rawing/Description M
Re q ul re m e n tS - e . | Calculation/Analysis [Sota(::]
System Safety Analysis
. agn Laboratory Test
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In collaboration with QO S €.

DLR Innovative Informatik
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Cabling model

* Motivation:

» Cables are close to 10% of the
aircrafts mass

 Ultra-light structure is very
sensitive to mass distribution

- detailed cable model necessary

» Positions and connections already in
SysML

* Developed Python tools allows to
model cabling automatically

 Important result: precise and
automatically generated cable mass
distribution

14000

Connection ID/= 95 T

—10000

- structure
—— bus wire

Name: Strobe : Avionic Power 14; : Strobe Lights Power

Devices:
aircraft.drive train rh.power distribution unit [A]
at Pos(2998.0/ 0.0/ 20.0)
aircraft.platform communication system.position lights.rh light [B]
at Pos(4630.0/ 5240.0/ 245.0)
aircraft.platform communication system.position lights.lh light [C]
at Pos(4630.0/ -5240.0/ 245.0)

Line List:
Pos(2998.0/ 0.0/ 20.0) - Pos(2998.0/ 0.0/ 0.0)
Pos(2998.0/ 0.0/ 0.0) - Pos(2300.0/ 0.0/ 0.0}
Pos(2300.0/ 0.0/ 0.0) - Pos(2300.0/ 0.0/ 105.0)
Pos(2300.0/ 0.0/ 105.0) - Pos(4841.0/ 0.0/ 105.0)
Pos(4841.0/ 0.0/ 105.0) - Pos(4841.0/ 0.0/ 301.0)
Pos(4841.0/ 0.0/ 301.0) - Pos(4841.0/ 5240.027/ 298.35)
Pos(4841.0/ 5240.027/ 298.35) - Pos(4630.0/ 5240.0/ 245.0)
Pos(4841.0/ 0.0/ 301.0) - Pos(4841.0/ -5240.027/ 298.35)
Pos(4841.0/ -5240.027/ 298.35) - Pos(4630.0/ -5240.0/ 245.0)

Length: 14.475335629868406 [m]
Total Length: 14.776 [m]

Cable Type: power cable 83
With mass per length: 0.00313 [kg/m]

Weight: 0.04530780052148811 [kg]
Total Weight: 0.047 [kg]

Valid: True
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Remarks on the Model Based Approach

» The model based approach has proven very effective in the project
 Single source for design information
» Ensuring information consistency
» Generation of documents from the model

* Modelling experts are needed to set up and maintain the model

« There should be one person or a little team with a strong modelling background, who is responsible for
the model structure and performs main modelling activities

« Each member of the design team must have access to model, to get valid design relevant information

A central model repository, e.g. Cameo Team Work Cloud, helps to manage the evolution of the model and
enables concurrent modelling activities

i DLR
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Outlook & Final Remarks

» The project is heading to the Critical Design Review, which is scheduled for spring 2023

» The first version of the aircraft will have only 10 m? (app. 30% of the wing area) of solar cells due to high cost
» We aim to perform the first flight at low altitude in summer 2024

» Short endurance high altitude flights will be conducted, starting in 2025

» Based on the experience from the high altitude flights, the aircraft will be modified for long endurance flights
and further flight testing
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Thank you for your attention!

Andreas Bierig, CSEP, PMP
Andreas.Bierig@dIr.de
+49 531 295 2304
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