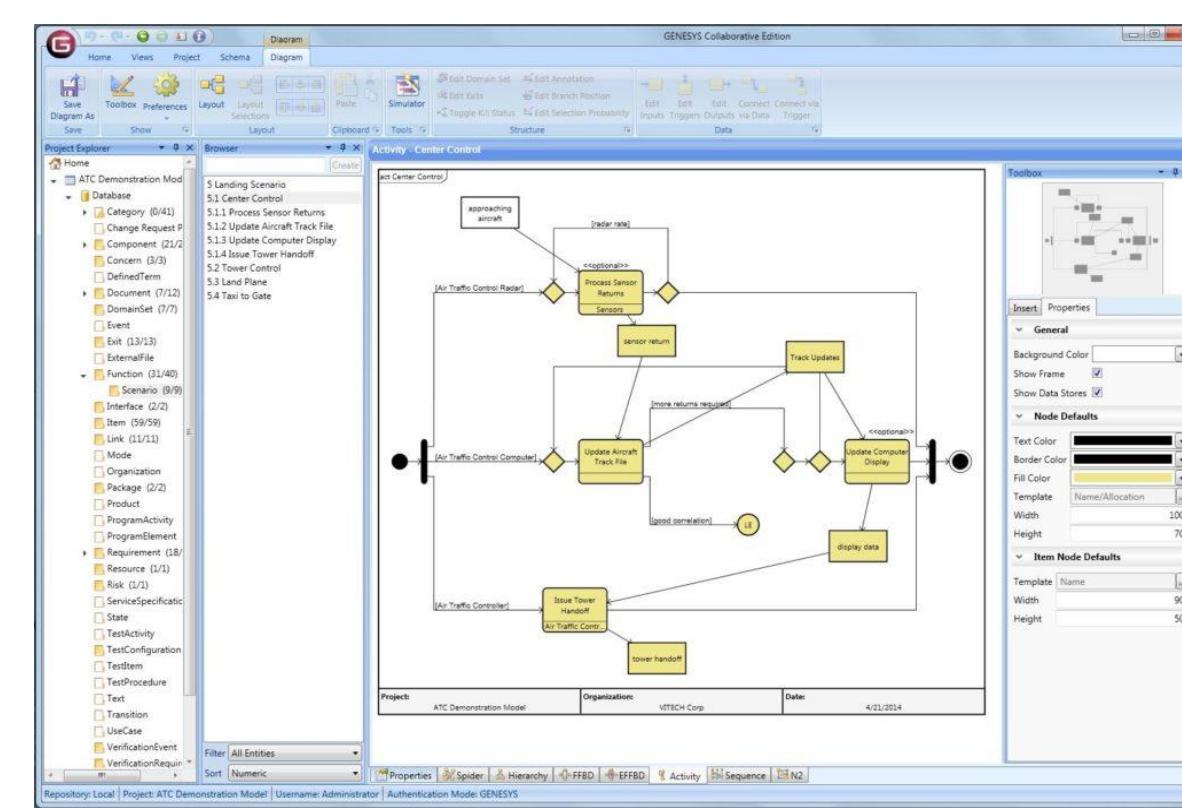


Prioritization of Best Practices in the Implementation of Model-Based Systems Engineering

Cacia Ploeg, Kimberly Lai, Alison Olechowski
Zebra Technologies, University of Toronto

32nd Annual INCOSE international symposium

hybrid event

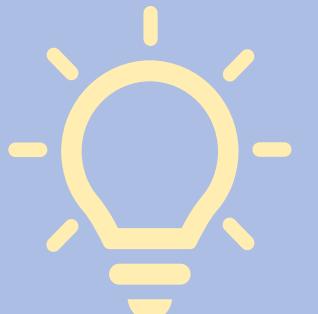

Detroit, MI, USA

June 25 - 30, 2022

BACKGROUND

Model-Based Systems Engineering (MBSE) is the formalized application of modeling to support systems engineering activities. [1]

MBSE provides benefits such as:



- Finding inconsistencies earlier in development
- Traceability and impact analysis in changes to the design
- Improved design representation. [2]

Studies have attempted to address implementation challenges, but recommendations are inconsistent and conflicting. [2-6]

Hypothesis

Recommendations/Best Practices (BPs) for successful MBSE implementation vary on a case-by-case basis, impacted by factors such as company size, location and industry.

LITERATURE REVIEW RESULTS

Common Challenges

Management support, understanding of value, organizational culture, lack of acceptance, low availability of skills, steep learning curve [7]

Best Practices (BPs) from Literature	References				
	Amorim et al. [3]	Chami et al. [4]	Hallqvist & Larsson [5]	Kim, Wagner & Jimenez [6]	McDermott et al. [2]
1. Set Appropriate Pace	X		X		
2. Include Stakeholders	X	X	X		X
3. Train all Staff	X	X			X
4. Have a Known End Goal		X	X		
5. Use Documentation	X		X		
6. Communication Plan	X	X	X		X
7. Develop Ontologies		X		X	X
8. Define Process to use MBSE		X		X	X
9. Make MBSE Tool Accessible to all Engineers	X				
10. Make Advantages of MBSE Clear	X				

Data collection method, industry, company size and company location for the data provided by these papers were analyzed against the conflicting BPs. No correlation was found.

CONCLUSION

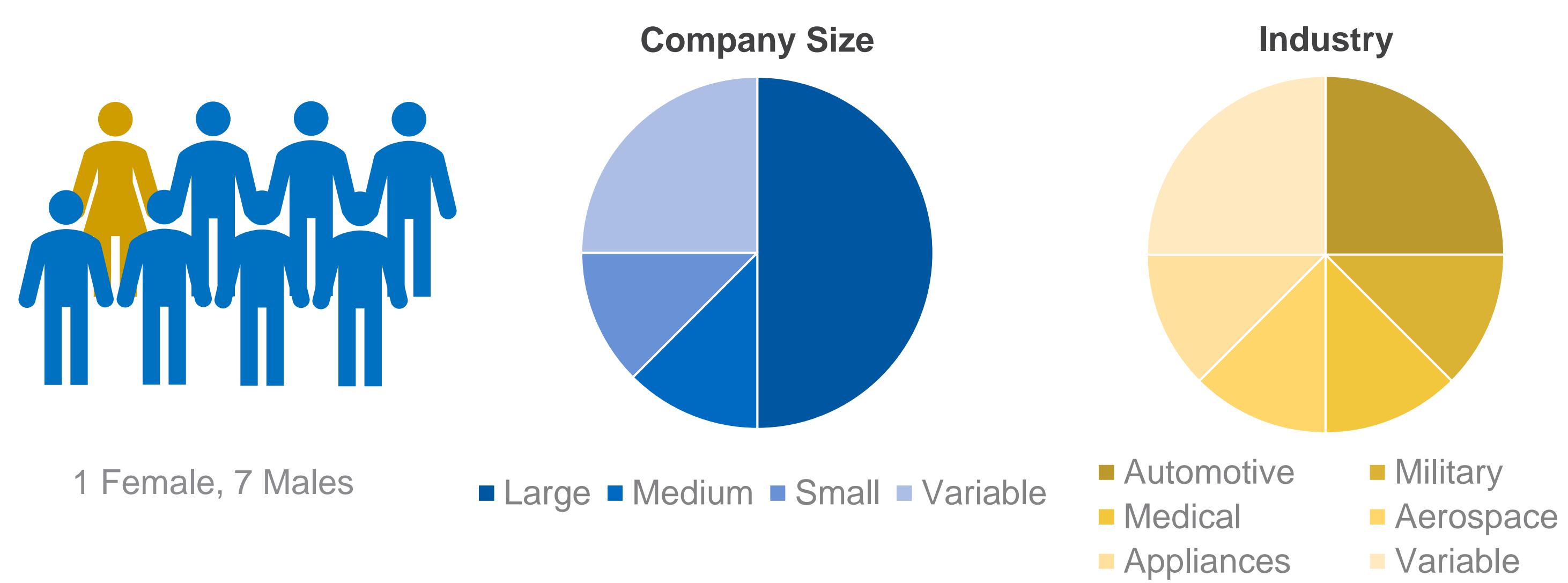
This work questions and examines inconsistencies in existing literature regarding MBSE implementation to provide a validated and more comprehensive set of best practices.

Recommendation

Companies should perform an internal assessment prior to implementing MBSE to **prioritize best practices** based on their unique circumstances.

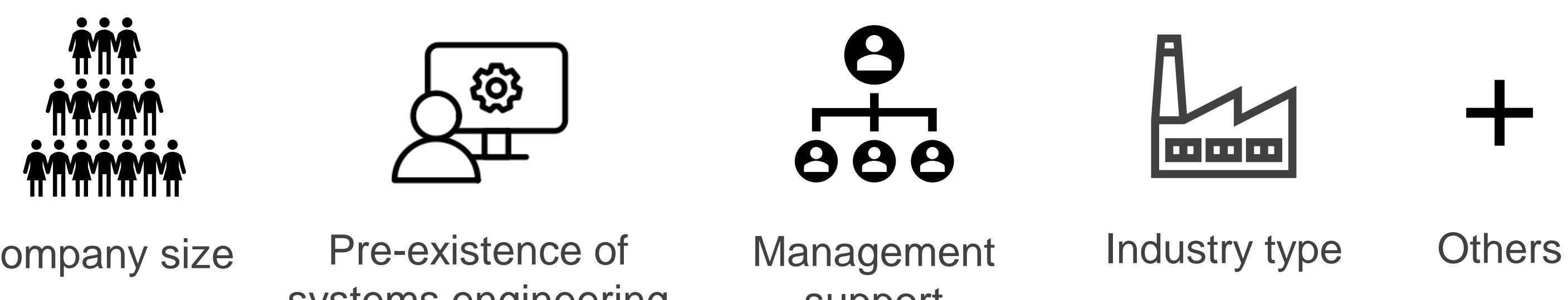
The three BPs identified as most important can be used as a starting point.

RESEARCH METHOD


LITERATURE REVIEW

Compared existing literature and compiled a list of challenges and best practices. These findings prompted further exploration using interviews.

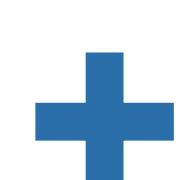
INTERVIEWS


Eight semi-structured interviews were conducted with engineers & consultants experienced in implementing MBSE.

Topics of interest: Company structure, current status of SE, MBSE implementation experience & MBSE obstacles and challenges

INTERVIEW FINDINGS

Each organization faces different challenges depending on their circumstances such as:



Recurrent Biggest Challenge: Understanding of value

The list of BPs was validated and augmented following the interviews.

Validated List of BPs	
1.	Set Appropriate Pace
2.	Include Stakeholders
3.	Provide <i>Tiered</i> Staff Training
4.	Have a Known End Goal
5.	Use Documentation
6.	Communication Plan
7.	Develop Ontologies
8.	Define Process to use MBSE
9.	<i>Tiered</i> Tool Accessibility
10.	Make Advantages of MBSE Clear
11.	Metrics to Track Progress
12.	Low-Risk Initial Project
13.	Delayed / Careful Tool Selection

★ Most important best practices commonly identified by interviewees

Some BPs may be more important depending on an organization's unique challenges and circumstances, but **all best practices remain relevant** to some degree.

CONTACTS / REFERENCES

Cacia Ploeg
Systems Engineer
cacia.ploeg@zebra.com

Kimberly Lai
Master's Student
kimberly.lai@mail.utoronto.ca

Alison Olechowski
Assistant Professor
olechowski@mie.utoronto.ca

[1] A. L. Ramos, J. V. Ferreira, and J. Barceló, "Model-based systems engineering: An emerging approach for modern systems," *IEEE Trans. Syst. Man Cybern. Part C Appl. Rev.*, vol. 42, no. 1, pp. 101–111, 2012

[2] T. A. McDermott, N. Hutchison, M. Clifford, E. Van Aken, A. Salado, and K. Henderson, "Benchmarking the Benefits and Current Maturity of Model-Based Systems Engineering across the Enterprise - Results of the MBSE Maturity Survey," *Syst. Engineering Res. Cent. (SERC), Stevens Inst. Technol.*, p. 124, 2020.

[3] T. Amorim, A. Vogelsang, F. Pudlitz, P. Gersing, and J. Philipp, "Strategies and Best Practices for Model-Based Systems Engineering Adoption in Embedded Systems Industry," *Proc.-2019 IEEE/ACM 41st Int. Conf. Softw. Eng. Softw. Eng. Pract. ICSE/EP 2019*, pp.203–212, 2019

[4] M. Chami, A. Aleksandraviciene, A. Morkevicius, and J.-M. Bruel, "Towards Solving MBSE Adoption Challenges: The D3 MBSE Adoption Toolbox," *INCOSE Int. Symp.*, vol. 28, no. 1, pp. 1463–1477, 2018

[5] J. Hallqvist and J. Larsson, "Introducing MBSE By using Systems Engineering Principles," *INCOSE Int. Symp.*, vol.26, no.1, pp.512–525,2016

[6] S. Kim, D. Wagner, and A. Jimenez, "Challenges in Applying Model-Based Systems Engineering: Human-Centred Design Perspectives," 2019 INCOSE Hum. Syst. Integr. Conf., 2019.

[7] T. Hult and I. Stenius, "State-of-practice survey of model-based systems engineering," *Syst. Eng.*, vol. 22, no. 2, pp. 134–145, 2019