
A Data Centric System Architecture
Model Development Process
Emphasizing Rapid Tempo and Quality
Chris Swickline
Heidi Jugovic
INCOSE International Symposium
Jun 25, 2022 - Jun 30, 2022

2SAIC PROPRIETARY INFORMATION I © SAIC. ALL RIGHTS RESERVED I

New Tools:

New Languages and Frameworks:

Barriers to Building a Well-Formed Architecture Model

2

• The digital transformation of systems
engineering depends upon the creation of
well-crafted, consistent, and complete
descriptive and executable system models.

• Skilled modelers are in short supply
• Growing new modelers requires coaching

and guidance
• Many ways to build a bad model
• Models are huge and complex to review

(manually) (10^5-10^6 elements)

A robust model development process is needed to
build useful models quickly and well.

3SAIC PROPRIETARY INFORMATION I © SAIC. ALL RIGHTS RESERVED I

The following research questions drove development:
• What system architecture products should be created within the SAM?

• How does one use SysML to create those systems architecture products?

• What order should those systems architecture products be developed, and more importantly what
are the dependencies across them?

• How does one enforce consistency across architecture products?

• How does one enforce consistency across the team to develop a coherent SAM?

• How does one prevent floundering and increase the tempo of development within the SAM?

• How does one structure the data such that the model is able to support analysis

Research Questions for a System Architecture Model (SAM)
Development Process

Existing processes for constructing a SAM continue to focus on
diagrams as opposed to data and do not meet our full set of needs

4SAIC PROPRIETARY INFORMATION I © SAIC. ALL RIGHTS RESERVED I

Theme Description
Data-Centricity The process/approach values data and the relationships between data above diagrams,

nomenclature, visualization etc. The purpose of building a descriptive model is to manage
the complexity of data which describes the system in a readable, analysable, and sustainable
way.

Defect Reduction A central goal of this process, and DE/MBSE at large, is to prevent defects introduced early
on in the systems engineering process from lingering and festering into serious issues
requiring costly corrections later in the systems lifecycle.

Architectural Consistency A major issue with Document Based Systems Engineering (DBSE) is the inability to keep
data from one view of the architecture consistent with others. This approach leverages the
use of an integrated SysML model to enforce consistency across various aspects of the
architecture.

Architectural Separation of
Concerns

The operational problem, engineering problem, and engineered solution are all aspects of
the system architecture, however should be clearly distinguishable and curated with
separately while maintaining realization based traceability.

Style Commonality The process/approach encourages common style methods are used by all contributing
developers, and leverages automated validation to facilitate scaling team size and reducing
the learning curve during on boarding.

Modeling Efficiency Quality and timeliness are often competing requirements in technical work. This
process/approach increases the tempo of development and provides a clear path to
completion through process definition, maturity alerts, and a modelled system example for
comparison.

Philosophical Themes of Our Approach

5SAIC PROPRIETARY INFORMATION I © SAIC. ALL RIGHTS RESERVED I

The following assumptions served as a basis for development:
• Top down architecture decomposition

• The system boundary is definable

• The process is limited to support for descriptive model development

• Multiple engineers will develop the SAM simultaneously in parallel

• The SAM is constructed iteratively and through refinement

• The team has familiarity with SysML and their modeling tool (Cameo, Rhapsody, etc.)

• The customer has provided some sort of top level requirements document and/or
other source content which provide pedigree

Development Process Assumptions

Tailoring to the process may be required if any of these assumptions
do not hold for a given program

6SAIC PROPRIETARY INFORMATION I © SAIC. ALL RIGHTS RESERVED I

Architectural Separation of Concerns

7SAIC PROPRIETARY INFORMATION I © SAIC. ALL RIGHTS RESERVED I

As soon as any IBD and
any behavioral diagram is
complete, you can begin
the unifying process step,
although it cannot be
complete until all the
relevant views for a given
level of the architecture
are also complete.

System Architecture Model (SAM) Development Process

Create Requirement Satisfaction Relationships C

Create or Import Test Cases C Create Requirements Verification Relationships C

Import Existing Requirements C

Set Up Package Structure C

Create Use Cases B

Create Source Artifacts C

Create Actors B

Establish Requirement Pedigree C

Establish Use Case Pedigree C

Create Logical Signals L

A

Create Logical
Sequence Diagrams L Create Logical Operations L

Create Logical Interface
Blocks L

Create Actor Realization
Relationships C

Create Logical
Activity Diagrams L

Create Logical
State Machines L Create Logical IBD L

Unify Logical Structure and Behavior L

Create Next Logical
Blocks and Parts L

A

Create Requirements
from Architecture C

Create Logical Realization Relationships C Unify Physical Structure and Behavior P

B

B

Create Next Level
Physical Blocks and Parts P

Associate Use Cases
with Actors B

Create Logical System Context Block L

Create Logical External Blocks L

Create Logical Context
Part Properties L

Create Logical System Block L

Create Physical System Context Block P

Create Physical External Blocks P

Create Physical Context
Part Properties P

Create Physical System Block P

Create Physical Signals P

Create Physical
Sequence Diagrams P

Create Physical State
Machines P

Define Logical Value
Properties and Constraints L

Create Physical
Activity Diagrams P Create Physical Operations P

Create Physical Interface
Blocks P

Create Physical IBD P

Define Physical Value
Properties and Constraints P

(Decomp needed)

[Else]

Architecture
requires more
decomposition?

[Else]

(Reqts exist)

Requirements
exist?

Requirements
are needed?

(Reqts needed)

[Else]

[Else]

(Decomp needed)Architecture
requires more
decomposition?

Cross-Architecture Element C

Behavioral Architecture B

Logical Architecture L

Physical Architecture P

Owning Architecture:

As soon as any IBD and
any behavioral diagram is
complete, you can begin
the unifying process step,
although it cannot be
complete until all the
relevant views for a given
level of the architecture
are also complete.

8SAIC PROPRIETARY INFORMATION I © SAIC. ALL RIGHTS RESERVED I

Enables automated or semi-automated analysis of the model data and the use of inference

Enables the use of tool-based internal model validation capability

Enables the automated analysis of the architecture for internal consistency: i.e. behavior vs
structure, logical vs physical, nested architecture flows vs end-to-end flows

Gets us in the green zone for real DE results

A Strictly Defined and Efficiently Enforced Model Style

9SAIC PROPRIETARY INFORMATION I © SAIC. ALL RIGHTS RESERVED I

Discriminates between need and solution
supporting trades and decision making

Enables federated approaches
• I.e. customer defines the logical architecture and

vendor provides the physical architecture

Supports the use of COTS/GOTS/NDA
solutions without corrupting the definition of
need

Enables parallel development of Logical and
Physical Architectures for legacy systems

Grill

Uncooked
Food

Fuel

Cooked
Food

Logical IBD

Propane
Grill

Uncooked
Food

Propane
Gas

Cooked
Food

Physical IBD Option 1

Uncooked
Food Charcoal

Grill

Charcoal

Cooked
Food

Physical IBD Option 2

Ashes

Architectural
Trade Study

Key Characteristic: Dotted-Line Relationships Between
Architectures

Provides a means to clearly and consistently
model separate operational concerns, needs

definition and solution definition

10SAIC PROPRIETARY INFORMATION I © SAIC. ALL RIGHTS RESERVED I

Realization relationships between behavioral,
logical, and physical architectures

Mapping interfaces implied by behavioral views
to interfaces defined in structural views
• Object flows on Activity Diagrams

• Messages on Sequence Diagrams

• Signal Event transition triggers on State Diagrams

Satisfying Requirements via the logical
architecture

Establishing Pedigree: formalizing sources of
model data

Leveraging extensive model syntax validation

Requirement
Type

Architecture
Element

Explanation

Functional Operation Operations are used within the SAM to
represent functions, or what the
system/component does.

Performance Value Property Value Properties define how well a
system/component does something (a
function). Value properties must also have
“Value Types” and “Units” assigned
accordingly.

NOTE: Because performance requirements
provide additional refinement of functional
requirements, SysML “Refine” relationships
between them are required.

Design
Constraint

Value Property Design constraints bound the architecture,
sometimes in non-quantifiable terms. Value
properties capture the system/component
attributes which document these bounds.

Interface

Item Flow The content of required interfaces are
captured as SysML “Item Flows” within the
structural portion of the architecture, which
convey the signals defining more specifically
what is passed over the interface.

Proxy Port For hardware oriented interface requirements
(i.e. cabling), SysML “Proxy Ports,” typed with
“Interface Blocks”, are used for satisfaction.

Unification Across Views and Internal Consistency

The process focuses on coherently
building the data to describe the system

11SAIC PROPRIETARY INFORMATION I © SAIC. ALL RIGHTS RESERVED I

SAIC Validation Tool: Non-proprietary, ITAR
approved, and releasable from SAIC:
https://www.saic.com/digital-engineering-
validation-tool

Traceability between the SAM process and the
style rules allows users to identify which style
rules are needed to support the portions of
the process which are relevant to that
program.

Customizable: Import the rules selectively to
create tailored, fit-for-purpose validations
suites

Availability and Tailoring

Usage

All of the systems engineering industry benefits from quickly constructed high
quality system models.

https://www.saic.com/digital-engineering-validation-tool

12SAIC PROPRIETARY INFORMATION I © SAIC. ALL RIGHTS RESERVED I

For More Information

MBSE Jobs: https://jobs.saic.com/pages/mbse

Digital Engineering: http://www.saic.com/digital-engineering

Contact Us: DigitalEngineering@saic.com

12

https://jobs.saic.com/pages/mbse
http://www.saic.com/digital-engineering
mailto:DigitalEngineering@saic.com

