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Motivation: %

Improve System Performance, Delivery New Capabilities, Faster

DoD Digital Engineering Strategy [1]

Published June 2018
Modernize design, development, operation and sustainment
Transform acquisition and implementation

Improve speed for critical capability delivery to the
warfighter
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Problem Description 7

Aerospace and defense projects are some of the most complex engineered
systems
— Expensive and long duration design and development
— Multidisciplinary Design Analysis and Optimization (MDAQ) does not capture all
emergent behaviors
« Design models do not capture the impact of:
— Modes of communication in design, development and operation
— Effects of different communication types
— Correlation of these to solution performance
— Other coupling and relationships of design

« Interoperability challenged by desire for retaining intellectual property

« Insufficient knowledge of what data to connect and what decisions to
automate
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Digital Engineering Impact on System @
Performance |

» Digital Engineering changes organization, processes
and interactions in development

« Lack of theory to suggest how this will change solution
performance

* We need a way to study complex communications,
organization, processes and collaboration in these
types of projects to assess the impact on system
design performance and cycle time in digital
engineering environments
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Addressing the Knowledge Gap o

vy
 How can we study how changes in engineering decision-making

associated with Digital Engineering impact system performance
and cycle time?

— Without spending the time and money to develop detailed design models
and perform human subject testing

— In a controlled, repeatable experiment that can provide statistically
meaningful data for analysis

« Agent-based simulation with surrogate models could be a timely
method for studying how changes in engineering decision-making

associated with Digital Engineering impact system performance
and cycle time

* This approach has been applied in other domains and could be a
method for conducting research on the changes that Digital

Engineering will have on engineering design decision-making
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Current Practice: Complex System Design @
and Analysis L

* Multidimensional and Multidisciplinary problem ===, |
spaces [2]; Example: Mars Rover A |
— Trade space development and subjective sl |
evaluation —
— Priorities of budget, schedule, performance e~ Fosmali
parameters Oom oo
— Quantification of utility/performance parameters: 53135333"@;
U(xq,%,%3)= @x+hx,+cxs —oem Een G —
U(x4,%p)=ax2+bx,? e R 2

« Limitations of these techniques

— Dependent model variables limit coupled or
emergent behavior analysis

— Does not account for impacts of team or contract
organization, task structure, data accessibility,
subject matter expert availability [3]

— Decision making authority dependent <
— Time to create versus decision need date T e

total rover mass kg
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Using a Mathematical Analog to Study DE Influences@,.\w
on Solution Performance and Cycle Time

 Mathematical models as a surrogate for detailed design models
— An enabler to study impact of DE on system performance
— Have been used to analyze adaptive evolution in immune response [4] [8] and
organizational performance [5]
 Mathematical models exist to evaluate the approach
— NK model and variants — Rugged Fitness Landscapes

— Can be tuned to align to the model space it is intended to represent
* Asystem has N variables, each variable can take on A possible values
+ The model assigns a “fitness contribution” to each variable (w;)

+ K defines the number of coupled variables influencing (w;)
— K= 0: contributions are independent of all other variables
— K= N-1: contributions are entirely dependent on the values of all other variables

* The total fitness (W) of a system is an average of the fitness contributions of each variable

N
1
W = Nz Wi
=1
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Specific Research Objective

Define the surrogate model to study complex decision-making in a
Digital Engineering environment to determine the impact on solution
performance

Utilize the NK model as a surrogate for the trade space to be explored,
mapping model elements to the real-world elements

Define agents and their state variables to represent design engineers
Describe a metric for evaluating the feasibility of the surrogate model

Compare the suggested evaluation metric utilizing an existing trade space
generated from detailed design models [6]

Assess the results and implications of the approach

Describe the future work that will be incorporated in the research
proposal
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Align the Detailed Design Model to the NK Model

N represents the Design Variables
— Design Variables can have different options (values of “A”)
— These contribute different value (w,) to the system performance (W)
— In the Mars Rover detailed design model, N =7

: z

Solar Radioisotope Thermoelectric
Generator (RTG)

Direct to Earth (DTE) DTE plus Low Orbit Relay

« K represents interrelatedness

— Vary K through the simulation to evaluate what value of K best aligns with the Mars
Rover detailed design model landscape for walking the landscape
www.incose.org/symp2022



Defining the Agent

An agent represents the Design Engineer

— Walking the landscape to find a higher performing
solution

— Evaluation of other design points represents an
analysis cycle

« Effort spent analyzing the design and the options

— lterations of the evaluations represent design cycles

« Time spent to identify and evaluate other design points and
move to a new point

Define agent behavior as in social science
simulations
— Agent represents a single design engineer

— Agent makes a “Greedy” choice

* Always selects the best performance of the comparison (or self |
if already at the local max)

An agent’s state is defined by two variables:
— The current design point
— The iteration (design cycle) of the landscape walk
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Deﬂnlng the Simulation @
Start from a random point on the NK landscape

* Fixed number of iterations to improve performance

» Repeat simulation for fixed number of trials at each value of K

« Perform the same simulation on the Mars Rover design landscape

) | Selecta T} ; .
._ Initialize Trade Initialize Random | [ Identify the ] Evaluate
_:'I Space j —3{ Demgner State Starting Design | - = Variant Options - — = Variant Options
= Paint in the | toEvaluate | Performance
Trade Space | - : =
I
| | S
I " Increme nt
| Number of
. - . Evaluations
# lterations < Max | Set Current Performed
| Design to —
|

i (=]
Option |
& | | %5

“ariant Perf = Current Perf
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Aveﬂr}gge Starting fitness percentiles for N = 7 for varying K, 500 trials

Aviau%age Ending fitness percentiles for N = 7 for varying K, 500 trials

Average Evaluations for N = 7 for varying K, 500 trials
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Results — NK vs. Mars Rover Walks Wy

Boxplot for steps for varying K and Rover data, 500 tnals Boxplot for evaluations for varying K and Rover data, 500 trials
204 — o [+] o == A= = —
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* Average steps for Mars rover walk: 3.148, 95% CI £0.088
* Average evaluations for Mars rover walk: 25.676, 95% CI £0.410

* Average steps for K =0 walk: 3.224, 95% CI £0.084
* Average evaluations for K = 0 walk: 25.956, 95% CIl £0.376
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Discussion of Results ¥
Steps and Evaluations very similar between Mars Rover walk and K = 0
landscape walk

— Suggests landscape could be considered uncorrelated

— Could be indicative of the detailed design model development approach

— Indicative of model and practice biases: go work in silos, bring it together and
find the optimal solution

K = 0 represents a smooth landscape
— Only one global maximum

— Walks were able to reach global maximum in the trials, but needed maximum
cycles to do so

Other K values still reached high performance in their walks
— Within 6% of the landscape optimum

— With a fraction of the steps and evaluations compared to K = 0 or Mars Rover
walks
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Conclusions LI

« Agent-based simulation of walking an NK landscape with K =0 can
represent walking a detailed design model landscape

— Demonstrated tuneability between an NK model and Mars Rover detailed
design model landscape walks

— Valid for both evaluation metrics: number of cycles and number of
evaluations

 NK Landscape could be utilized to study design engineer behaviors
In development

— Evaluate changes in agents that reduce number of cycles (time) and
evaluations (effort)

« Translate agent behaviors to changes in engineering process and
practice

— To realize reductions in time and effort in development while maintaining or
improving system performance
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Future Work

« Expand the agent definition to better represent engineers as well as
other members of design teams in a multi-agent simulation
— For individual agents look at:

* Impact of increased data on decisions

* Influence of background and training on decision making and risk
tolerance/avoidance

— For groups of agents look at:
» Impact of individuals on the collective decision
» Impacts of data availability and periodicity on decisions and iterations

« Expand the surrogate model for the approach
— Explore variable heterogeneity impact on the trade space
— Explore landscape dynamics on the evaluation metrics

— Explore how Digital Engineering changes the landscape and impacts
behavior
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Dedication

Charles Andrew Sharo

August 18, 1948 — April 18, 2019

Andrew Scott Chiesi
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How do we study decision-making and ChOlce@\
In SOCIal SyStemS Prisoner’s dilemma }

vs. stag hunt
» Look at studies of social systems and the social

Prisoner’ dilemma Stag hunt

S C i e n Ce S Cooperate Defect Cooperate Defect
- References: 14, 15, 16, 17, 18, 19, 20 Cooperate | Win—win VIU&“ Cnopelate‘ﬁbg_j,wm-lcse
» Decision-making for rational choice and expected SR G B B E CED
prOfIt Players canlgain by Players lose by
_ CO-eVOI utIOI"I defecting unilaterally defecting unilaterally
— Development of social structure
. . . The Stag Hunt Game
— How cooperation evolved and is practiced Sisy: Ponpemations bins: Diefisct
— How competition contributes to these decisions HUNTER1
— What is collaboration and what are the dynamics of | HARE |
collaboration
« Considerable on-going research in these areas for P 33 02
engineering z
— In SSE as well as other SERC universities and * 46 13
beyond ' '
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What is the influence of background on

decision-making?

How experience and training impacts decisions

More data may not mean a better answer

— Potential for data overload leading to lower
performance

More background and history may give a better
solution
— But may be hampered by data that is not understood

— Data that may not be relevant may cloud decisions
and solutions

— How calibrated are the designers to knowing what
they do and don’t know

How do we address these topics and how they
change with digital engineering
— References: 21, 22
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How do data rights and standards impact @
Digital Engineering |

Digital engineering and data connections rely
on open standards and tool interoperability

— References: 23, 24, 25, 26
Company Intellectual Property (IP) impacts
how well this can be applied

— Engineering company’s IP

— Contract data rights for customers

— Tool vendor IP — limits connectivity
What are the limits of data usage that change
behaviors

— Data spill concerns and that impact on designin a
digital engineering environment
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