
www.incose.org/symp2022

Using Design Structure Matrices (DSMs)

to Derive System Architectures

Presenter, Eric B. Dano, Ph.D.

BAE Systems, Electronic Systems (ES)

eric.b.dano@baesystems.com

Not export controlled per ES-CEMA-021521-0057

What is a DSM ?

Design Structure Matrix (DSM) Definition (a.k.a. N2 Dependency Matrix, Dependency Structure

Matrix, etc.)

Tool used to optimize a grouping of Tasks (schedule or process applications), Components or functions (system

architecture applications) or Teams (organizational applications) based on defined dependencies between

elements to produce an optimal time sequence of activities or grouping of components for a given system

application.

DSM Types

Static [1] – “Represent system elements existing simultaneously, such as components of a product architecture

or groups in an organization. Usually solved using clustering algorithms.”

Time Based [1] – “The ordering of the elements in the system represent a flow through time, with upstream

activities preceding down stream activities. “Feed-forward” and “feed-back” are used to describe interfaces.

[1] T. Browing, 2001.

2www.incose.org/symp2022

3

• The top row and left most column list the elements/tasks/teams
to be considered

– The diagonal is in black because no element is dependent on itself

– The element sequence currently goes from A to J but will be optimized
based on the dependencies defined by the Xs

• Each Row shows the “Needs” (i.e. must occur after the element
in the current Row)

– EX1: Element C “Needs” only B. Since it is currently after B, it is fine

– EX2: Element D “Needs” E & H which both “Provide” to D. Therefore,

Element D must be moved later in the sequence (after E & H).

» Note that all X’s above the diagonal have this issue and will
need to be optimized

• Each Column shows the “Provides” (i.e. must occur before the
element in each checked Row)

– EX3: Element E “Provides” to D & H. It will need to be moved to
before D

DSM Matrix Basics

Example DSM

A B C D E F G H I J

A X

B X

C X

D X X

E X X

F

G X

H X X

I X

J X X

www.incose.org/symp2022

4

• Dependent
– There is a dependence between the

two elements/tasks

– They must be performed sequentially

• Independent
– There is NO dependence between

the two elements/tasks

– They may be performed in parallel

• Interdependent
– Each element/task relies on out put

from the element/task

– The two elements/tasks are coupled

Interaction/Interdependency Types
Example DSM Appearance

A B

A

B X

B needs A

before it can

start

A B

A

B

A and B can be

started in

parallel

A B

A X

B X

A and B must

be done

simultaneously

www.incose.org/symp2022

5

Static DSM Example:

System Architecture of a

Software Defined Radio (SDR) Based System

www.incose.org/symp2022 5

6

Derive an Architecture in 5 Easy Steps !

A Software Defined

Radio will be used

in this example

www.incose.org/symp2022

1) Define ConOps and

required system

capabilities

(operational, support,

etc.)

2) Perform Functional

Architecture/

Functional decomp-

osition with defined

interdependencies

3) Perform Logical

Architecture/Allocate

functions to format

based on required

performance

4) Perform Logical

Architecture/High

level Aggregation of

commonly allocated

functionality

5) Perform Physical

Architecture/Partition

functions to system

elements and perform

low level aggregation

of functionality

RF Inputs

Digital Inputs

Command Inputs

Time/Freq./Nav.
References

Power/Mount/

Cooling

RF Outputs

Data Products

Health/ BIT

Status

SDR

• Condition RF Inputs
• Down Convert Signals
• ADC/Packetize Signals

• Condition RF Outputs
• Up Convert Signals
• DAC/DUC Signals

Tuner Upconverter

• Detect Signals
• Process Signals
• Generate Waveforms
• Modulate signals

Processors

7

1. Define ConOps and Required System Capabilities

• The architecture process starts with the “hand-in” of the customer specified Concept of

Operations (ConOps), Key Performance Parameters (KPPs), Key System Attributes

(KSAs) and value statements.
• The application of option generation techniques is critical during the concept exploration phase and

should include holistic systems thinking to find highest level objectives, using analogies to create

options, dynamic system modeling and simulation [2], the use of heuristics [3] and proven design

patterns for software [4].

• The SDR based system ConOp is to have the capabilities to receive signals, process

signals, transmit signals, store data and provide time/frequency/navigation.
• The ConOps must be further expanded to include supportability, human machine interface, cyber,

testability, safety, production, etc. to ensure the full set of ConOps are understood prior to

commencing functional decomposition of the system.

• System architect must ensure a multi-disciplinary solution is obtained [5].

ConOps definition is performed prior to populating the DSM

8

• The level 0 functionality is defined as part of the functional architecture process

• Level 0 functions are then decomposed into Level 1 sub-functions which will be used in the architecture

derivation process [6], [7]

2. Perform System Functional Decomposition

www.incose.org/symp2022

Receive Signals Store DataTransmit Signals

Digital Down Convert Input

Analog to Digital Convert

Input

Digitally Upconvert Output

Detect Signals

Generate Transmit

Waveforms

Perform Built in Test (BIT)

Level 1 Functions

Append Receive Metadata

and Time Tag Samples

Digital to Analog Convert

Output

Will vary by application. Nominal functionality includes:

Store Raw Signal Data Accept Epoch Time Ref.

Trigger Transmit Signal
Distribute Sampling Clocks

Accept Frequency Ref.

Accept Data Requests

Provide Programming

Interface

Reprogram FPGA

Condition Signal Input Condition Transmit Output

Provide Time/
Frequency/Navigation

Command/Status
System

Transduce Signal Input

Select Signal Input

Down Convert Signal Input

Transduce Transmit Output

Select Transmit Output

Analog Upconvert Output
Distribute Epoch Time Ref.

Generate Sampling Clocks

Store Transmit Waveforms

Process Signals

Identify Signal

Demodulate Signals

Locate Signals

Provide BIT Status

Accept TaskingAccept Universal Time

Distribute Universal Time

Append Transmit Metadata

and Time Tag Samples

Level 0 Functions

9

• Level 1 functionality is
placed along the X and Y
axises

• Diagonal is blacked out

• Level 1 functionality is
usually sufficient to derive
the system architecture
and define system level
modularity

Apply Functional Breakdown to DSM Matrix

Functional Decomp

Command/Status System

Provide Time/ Frequency Reference

Receive Signals

Process/Generate Signals

Transmit Signals

Store Data

www.incose.org/symp2022

A
cc

ep
t

T
a
sk

in
g

A
cc

ep
t

D
a
ta

 R
eq

u
es

ts

P
er

fo
rm

 B
u

il
t-

In
-T

es
t

(B
IT

)

P
ro

v
id

e
B

IT
 S

ta
tu

s

P
ro

v
id

e
P

ro
g
ra

m
m

in
g
 I

n
te

rf
a
ce

R
ep

ro
g
ra

m
 F

P
G

A

A
cc

ep
t

U
n

iv
es

a
l
T

im
e

D
is

tr
ib

u
te

 U
n

iv
er

sa
l
T

im
e

A
cc

ep
t

E
p

o
ch

 T
im

e
R

ef
er

en
ce

D
is

tr
ib

u
te

 E
p

o
ch

 T
im

e
R

ef
er

en
ce

A
cc

ep
t

F
re

q
u

en
cy

 R
ef

er
en

ce

G
en

er
a
te

 S
a
m

p
li
n

g
 C

lo
ck

s

D
is

tr
ib

u
te

 S
a
m

p
li
n

g
 C

lo
ck

s

T
ra

n
sd

u
ce

 S
ig

n
a
l
In

p
u

t

C
o
n

d
it

io
n

 S
ig

n
a
l
In

p
u

t

S
el

ec
t

S
ig

n
a
l
In

p
u

t

D
o
w

n
 C

o
n

v
er

t
S

ig
n

a
l
In

p
u

t

A
n

a
lo

g
 t

o
 D

ig
it

a
l
C

o
n

v
er

t
In

p
u

t

D
ig

it
a
l
D

o
w

n
 C

o
n

v
er

t
In

p
u

t

A
p

p
en

d
 M

et
a
d

a
ta

/T
im

e
S

ta
m

p

D
et

ec
t

S
ig

n
a
ls

Id
en

ti
fy

 S
ig

n
a
ls

D
em

o
d

u
la

te
 S

ig
n

a
ls

L
o
ca

te
 S

ig
n

a
ls

G
en

er
a
te

 T
ra

n
sm

it
 W

a
v
ef

o
rm

s

A
d

d
 T

ra
n

sm
it

 M
et

a
d

a
ta

/T
im

e
S

ta
m

p

T
ri

g
g
er

 T
ra

n
sm

it
 S

ig
n

a
l

D
ig

it
a
ll
y
 U

p
co

n
v
er

t
 O

u
tp

u
t

D
ig

it
a
l
to

 A
n

a
lo

g
 C

o
n

v
er

t
O

u
tp

u
t

A
n

a
lo

g
 U

p
C

o
n

v
er

t
O

u
tp

u
t

S
el

ec
t

T
ra

n
sm

it
 O

u
tp

u
t

C
o
n

d
it

io
n

 T
ra

n
sm

it
 O

u
tp

u
t

T
ra

n
sd

u
ce

 T
ra

n
sm

it
 O

u
tp

u
t

S
to

re
 P

re
-D

 D
a
ta

S
to

re
 T

ra
n

sm
it

 W
a
v
ef

o
rm

s

Accept Tasking

Accept Data Requests

Perform Built-In-Test (BIT)

Provide BIT Status

Provide Programming Interface

Reprogram FPGA

Accept Univesal Time

Distribute Universal Time

Accept Epoch Time Reference

Distribute Epoch Time Reference

Accept Frequency Reference

Generate Sampling Clocks

Distribute Sampling Clocks

Transduce Signal Input

Condition Signal Input

Select Signal Input

Down Convert Signal Input

Analog to Digital Convert Input

Digital Down Convert Input

Append Metadata/Time Stamp

Detect Signals

Identify Signal Modulation

Demodulate Signals

Locate Signals

Generate Transmit Waveforms

Add Transmit Metadata/Time Stamp

Trigger Transmit Output

Digitally Upconvert Output

Digital to Analog Convert Output

Analog UpConvert Output

Select Transmit Output

Condition Transmit Output

Transduce Transmit Output

Store Pre-D Data

Store Transmit Waveforms

10

• X’s show interdependencies

between the derived Level 1

functions [8], [9].

• This process is focused on

modularity (i.e. static DSM)

and is not adjusted for order

of events (i.e. Time-based

DSM)

• EX1: See that metadata/

time stamping relies on:

• EX2: See that metadata/

time stamping relies on:
– Tasking

– UTC time message distribution,

– Epoch Time (1PPS) distribution

– ADC/DAC clocks distribution

Define Functional Dependencies to Matrix

www.incose.org/symp2022

A
cc

ep
t

T
a
sk

in
g

A
cc

ep
t

D
a
ta

 R
eq

u
es

ts

P
er

fo
rm

 B
u

il
t-

In
-T

es
t

(B
IT

)

P
ro

v
id

e
B

IT
 S

ta
tu

s

P
ro

v
id

e
P

ro
g
ra

m
m

in
g
 I

n
te

rf
a
ce

R
ep

ro
g
ra

m
 F

P
G

A

A
cc

ep
t

U
n

iv
es

a
l
T

im
e

D
is

tr
ib

u
te

 U
n

iv
er

sa
l
T

im
e

A
cc

ep
t

E
p

o
ch

 T
im

e
R

ef
er

en
ce

D
is

tr
ib

u
te

 E
p

o
ch

 T
im

e
R

ef
er

en
ce

A
cc

ep
t

F
re

q
u

en
cy

 R
ef

er
en

ce

G
en

er
a
te

 S
a
m

p
li
n

g
 C

lo
ck

s

D
is

tr
ib

u
te

 S
a
m

p
li
n

g
 C

lo
ck

s

T
ra

n
sd

u
ce

 S
ig

n
a
l
In

p
u

t

C
o
n

d
it

io
n

 S
ig

n
a
l
In

p
u

t

S
el

ec
t

S
ig

n
a
l
In

p
u

t

D
o
w

n
 C

o
n

v
er

t
S

ig
n

a
l
In

p
u

t

A
n

a
lo

g
 t

o
 D

ig
it

a
l
C

o
n

v
er

t
In

p
u

t

D
ig

it
a
l
D

o
w

n
 C

o
n

v
er

t
In

p
u

t

A
p

p
en

d
 M

et
a
d

a
ta

/T
im

e
S

ta
m

p

D
et

ec
t

S
ig

n
a
ls

Id
en

ti
fy

 S
ig

n
a
ls

D
em

o
d

u
la

te
 S

ig
n

a
ls

L
o
ca

te
 S

ig
n

a
ls

G
en

er
a
te

 T
ra

n
sm

it
 W

a
v
ef

o
rm

s

A
d

d
 T

ra
n

sm
it

 M
et

a
d

a
ta

/T
im

e
S

ta
m

p

T
ri

g
g
er

 T
ra

n
sm

it
 S

ig
n

a
l

D
ig

it
a
ll
y
 U

p
co

n
v
er

t
 O

u
tp

u
t

D
ig

it
a
l
to

 A
n

a
lo

g
 C

o
n

v
er

t
O

u
tp

u
t

A
n

a
lo

g
 U

p
C

o
n

v
er

t
O

u
tp

u
t

S
el

ec
t

T
ra

n
sm

it
 O

u
tp

u
t

C
o
n

d
it

io
n

 T
ra

n
sm

it
 O

u
tp

u
t

T
ra

n
sd

u
ce

 T
ra

n
sm

it
 O

u
tp

u
t

S
to

re
 R

a
w

 S
ig

n
a
l
D

a
ta

S
to

re
 T

ra
n

sm
it

 W
a
v
ef

o
rm

s

Accept Tasking

Accept Data Requests X
Perform Built-In-Test (BIT) X

Provide BIT Status X X
Provide Programming Interface X

Reprogram FPGA X
Accept Univesal Time

Distribute Universal Time X
Accept Epoch Time Reference

Distribute Epoch Time Reference X
Accept Frequency Reference

Generate Sampling Clocks X X
Distribute Sampling Clocks X

Transduce Signal Input

Condition Signal Input X X
Select Signal Input X X

Down Convert Signal Input X X
Analog to Digital Convert Input X X X

Digital Down Convert Input X X X
Append Metadata/Time Stamp X X X X X

Detect Signals X X X
Identify Signal Modulation X X

Demodulate Signals X X
Locate Signals X X

Generate Transmit Waveforms X X
Add Transmit Metadata/Time Stamp X X X X X

Trigger Transmit Output X X X X X
Digitally Upconvert Output X X X

Digital to Analog Convert Output X X
Analog UpConvert Output X X

Select Transmit Output X X X
Condition Transmit Output X X
Transduce Transmit Output X

Store Raw Signal Data X X X
Store Transmit Waveforms X

Command

& Control

11

3. Perform Allocation of Functionality
• Allocation Heuristics (lessons learned) and required performance are used to

properly allocate functions• Allocation is done to

optimize performance

of the various

functions

• Most functions can be

performed using multiple

allocations

• Allocations mostly

driven by required:

• Latency

• Throughput

• Fidelity

• Cost

• Leverage

www.incose.org/symp2022

Hardware (H) FPGAs (F) GPUs (G) GPPs/Software (S)

S

T

R

E

N

G

T

H

• Good for generic

fixed capabilities

• Common open

standards and

interfaces exists

• Relatively low cost

• Highly reconfigurable parallel

architecture permits multiple

operations to be performed

simultaneously

• Embedded multipliers and memory

enable instantiation of extremely

fast filters and synthesizers

• Programmable data paths allow for

processing a wide variety of data

types

• Low latency operations

• Excellent for processing

intensive algorithms

(multi-parallel

processing)

• Baselined to floating

point operations

• Fast memory access

• Rapid commercial GPU

upgrade cycle

• Highly versatile; can

implement an almost

limitless number of

applications

• Embedded math logic makes

for efficient use of

processing resources

• Excellent for decision

making and branching

• Well suited for information

management and control

W

E

A

K

N

E

S

S

• Fixed capabilities,

can’t be

reconfigured

• Requires additional

components for

extended

frequencies

• Relatively large

Size, Weight, and

Power (SWaP)

• Relatively inefficient for branching

or decision-making operations

(these consume large numbers of

gates)

• Large and fast devices are

expensive

• High-precision math operations may

consume many resources

• High power draw

• High heat dissipation

• Some must be paired with

an interface GPP

• Limited vendors

• May be comparatively slow

at simple fixed-point math

operations, due to inherently

serial processing nature

• Only able to perform a low

number of tasks per clock

cycle

• Higher latency operations

12

Allocated Functionality

Allocation Key:

• F – Firmware

• H – Hardware

• S – Software

• A – Application

Specific Integrated

Circuit (ASIC)

• G - Graphical

Processing Unit

(GPU)

• O - Other

www.incose.org/symp2022

A
cc

ep
t

T
a
sk

in
g

A
cc

ep
t

D
a
ta

 R
eq

u
es

ts

P
er

fo
rm

 B
u

il
t-

In
-T

es
t

(B
IT

)

P
ro

v
id

e
B

IT
 S

ta
tu

s

P
ro

v
id

e
P

ro
g
ra

m
m

in
g
 I

n
te

rf
a
ce

R
ep

ro
g
ra

m
 F

P
G

A

A
cc

ep
t

U
n

iv
es

a
l
T

im
e

D
is

tr
ib

u
te

 U
n

iv
er

sa
l
T

im
e

A
cc

ep
t

E
p

o
ch

 T
im

e
R

ef
er

en
ce

D
is

tr
ib

u
te

 E
p

o
ch

 T
im

e
R

ef
er

en
ce

A
cc

ep
t

F
re

q
u

en
cy

 R
ef

er
en

ce

G
en

er
a
te

 S
a
m

p
li
n

g
 C

lo
ck

s

D
is

tr
ib

u
te

 S
a
m

p
li
n

g
 C

lo
ck

s

T
ra

n
sd

u
ce

 S
ig

n
a
l
In

p
u

t

C
o
n

d
it

io
n

 S
ig

n
a
l
In

p
u

t

S
el

ec
t

S
ig

n
a
l
In

p
u

t

D
o
w

n
 C

o
n

v
er

t
S

ig
n

a
l
In

p
u

t

A
n

a
lo

g
 t

o
 D

ig
it

a
l
C

o
n

v
er

t
In

p
u

t

D
ig

it
a
l
D

o
w

n
 C

o
n

v
er

t
In

p
u

t

A
p

p
en

d
 M

et
a
d

a
ta

/T
im

e
S

ta
m

p

D
et

ec
t

S
ig

n
a
ls

Id
en

ti
fy

 S
ig

n
a
ls

D
em

o
d

u
la

te
 S

ig
n

a
ls

L
o
ca

te
 S

ig
n

a
ls

G
en

er
a
te

 T
ra

n
sm

it
 W

a
v
ef

o
rm

s

A
d

d
 T

ra
n

sm
it

 M
et

a
d

a
ta

/T
im

e
S

ta
m

p

T
ri

g
g
er

 T
ra

n
sm

it
 S

ig
n

a
l

D
ig

it
a
ll
y
 U

p
co

n
v
er

t
 O

u
tp

u
t

D
ig

it
a
l
to

 A
n

a
lo

g
 C

o
n

v
er

t
O

u
tp

u
t

A
n

a
lo

g
 U

p
C

o
n

v
er

t
O

u
tp

u
t

S
el

ec
t

T
ra

n
sm

it
 O

u
tp

u
t

C
o
n

d
it

io
n

 T
ra

n
sm

it
 O

u
tp

u
t

T
ra

n
sd

u
ce

 T
ra

n
sm

it
 O

u
tp

u
t

S
to

re
 R

a
w

 S
ig

n
a
l
D

a
ta

S
to

re
 T

ra
n

sm
it

 W
a
v
ef

o
rm

s

Accept Tasking S
Accept Data Requests X S

Perform Built-In-Test (BIT) X S
Provide BIT Status X X S

Provide Programming Interface X S
Reprogram FPGA X F

Accept Univesal Time S
Distribute Universal Time X S

Accept Epoch Time Reference H
Distribute Epoch Time Reference X H

Accept Frequency Reference H
Generate Sampling Clocks X X H
Distribute Sampling Clocks X H

Transduce Signal Input H
Condition Signal Input X X H

Select Signal Input X X H
Down Convert Signal Input X X H

Analog to Digital Convert Input X X X H
Digital Down Convert Input X X X F

Append Metadata/Time Stamp X X X X X F
Detect Signals X X X F

Identify Signal Modulation X X S
Demodulate Signals X X S

Locate Signals X X S
Generate Transmit Waveforms X S X

Add Transmit Metadata/Time Stamp X X X X X F
Trigger Transmit Output X X X X X F

Digitally Upconvert Output X X X F
Digital to Analog Convert Output X X H

Analog UpConvert Output X X H
Select Transmit Output X X X H

Condition Transmit Output X X H
Transduce Transmit Output X H

Store Raw Signal Data X X X H
Store Transmit Waveforms X H

13

4. Perform Aggregation of Functionality

• Aggregation is done to
optimize the grouping of
the allocated functions
to aid modularity
definition in the system
and provide [10]:

• High Cohesiveness -
Large similarity in well-
defined functions
performed within a
module

– Enables Commonality and
Reuse

• Low Coupling - Module
functionality does not
constrain functionality in
any other module

– Reduces complexity, eases
testability, catalyst for rapid
capability insertion, etc.

A
c
c
e
p

t
T

a
sk

in
g

A
c
c
e
p

t
D

a
ta

 R
e
q

u
e
st

s

P
e
r
fo

r
m

 B
IT

P
r
o

v
id

e
 B

IT
 S

ta
tu

s

P
r
o

v
id

e
 P

r
o

g
r
a

m
m

in
g

 I
n

te
r
fa

c
e

A
c
c
e
p

t
U

T
C

 T
im

e

D
is

tr
ib

u
te

 U
T

C
 T

im
e
 R

e
f.

G
e
n

e
r
a

te
 W

F
 (

T
x

)

S
tr

e
a

m
 D

a
ta

A
c
c
e
p

t
1

P
P

S
 R

e
f.

D
is

tr
ib

u
te

 1
P

P
S

 R
e
f.

A
c
c
e
p

t
F

r
e
q

 R
e
f.

G
e
n

e
r
a

te
 A

D
C

 C
lo

c
k

s

D
is

tr
ib

u
te

 A
D

C
 C

lo
c
k

s

G
e
n

e
r
a

te
 D

A
C

 C
lo

c
k

s

D
is

tr
ib

u
te

 D
A

C
 C

lo
c
k

s

T
r
a

n
sd

u
c
e
 R

F
 I

n
p

u
t

C
o

n
d

it
io

n
 R

F
 I

n
p

u
t

S
e
le

c
t

R
F

 I
n

p
u

t

D
o

w
n

 C
o

n
v

e
r
t

R
F

 I
n

p
u

t

A
/D

 C
o

n
v

e
r
t

In
p

u
t

D
/A

 C
o

n
v

e
r
t

O
u

tp
u

t

U
p

 C
o

n
v

e
r
t

IF
 O

u
tp

u
t

S
e
le

c
t

R
F

 O
u

tp
u

t

C
o

n
d

it
io

n
 R

F
 O

u
tp

u
t

T
r
a

n
sd

u
c
e
 R

F
 O

u
tp

u
t

S
to

r
e
 T

x
 W

a
v

e
fo

r
m

s

P
la

y
 W

F
 f

m
 m

e
m

o
r
y

 (
T

x
)

S
to

r
e
 P

r
e
-D

 D
a

ta

D
ig

it
a

l
D

o
w

n
 C

o
n

v
e
r
t

(D
D

C
)

A
D

C
 O

u
tp

u
t

T
im

e
 T

a
g

 S
a

m
p

le
s

(R
x

)

A
p

p
e
n

d
 M

e
ta

d
a

ta
 (

R
x

)

D
e
te

c
t

S
ig

n
a

ls
 (

R
x

)

Id
e
n

ti
fy

 S
ig

n
a

ls
 (

R
x

)

P
la

y
 A

u
d

io
 (

R
x

)

L
o

c
a

te
 S

ig
n

a
ls

 (
R

x
)

D
ig

it
a

ll
y

 U
p

c
o

n
v

e
r
t

 (
D

U
C

)
D

A
C

 I
n

p
u

t

T
im

e
 T

a
g

 S
a

m
p

le
s

(T
x

)

A
p

p
e
n

d
 M

e
ta

d
a

ta
 (

T
x

)

Q
u

e
u

e
 W

a
v

e
fo

r
m

T
r
ig

g
e
r
 R

F
 O

u
tp

u
t

R
e
p

r
o

g
r
a

m
 F

P
G

A

Accept Tasking S Functional Decomp

Accept Data Requests X S Command/Status System

Perform BIT X S Provide Time/ Frequency Reference

Provide BIT Status X S Receive Signals

Provide Programming Interface X S Process/Generate Signals

Accept UTC time S Tx fns

Distribute UTC Time Ref. X S Store Data

Generate WF (Tx) X S

Stream Data S X X Identified dependencies between the Functions

Accept 1PPS Ref. H

Distribute 1PPS Ref. X H Functional Allocation (Based On Performance)

Accept Freq Ref. H H Hardware

Generate ADC Clocks X H F Firmware

Distribute ADC Clocks X H S Software

Generate DAC Clocks X H A ASIC

Distribute DAC Clocks X H G GPU

Transduce RF Input H O Other

Condition RF Input X X H

Select RF Input X X H

Down Convert RF Input X X H

A/D Convert IF Input X X H

D/A Convert Output X H X

Up Convert Output X X H

Select RF Output X X H

Condition RF Output X X H

Transduce RF Output X H

Store Tx Waveforms H

Play WF from Memory (Tx) X X H

Store Pre-D Data X X H

Digital Down Convert (DDC) ADC Output X X F

Time Tag Samples (Rx) X X X X F

Append Metadata (Rx) X X F

Detect Signals (Rx) X X F

Identify Signal Mods (Rx) X X X X F

Play Audio (Rx) X X X X F

Locate Signals (Rx) X X F

Digitally Upconvert (DUC) DAC Input X F X

Time Tag Samples (Tx) X X X X X F

Append Metadata (Tx) X X F

Queue Waveform X F

Trigger RF Output X X F

Reprogram FPGA X F

SW

HW

FW

www.incose.org/symp2022

1

4

Software Defined Radio (SDR) Based System

Case 1: Large Platform

Case 2: Small Platform

www.incose.org/symp2022
1

4

15

Case 1 – Large Platform Case 2 – Small UAV Platform
• High precision - Geolocation

• Multiple Receive Array(s)

• Multiple Receive Channels

• Multiple Receive Bands

• N-Channel Direction Finding

• Multiple Transmit Channels

• Multiple Transmit Bands

• Multiple Transmit Array(s)

• Large Radiated Power – Stand-Off

• Significant signal distribution

• Lower Precision – Situational Awareness

• Two Receive Antennas

• Two Receive Channels

• One Receive Band

• 2 Channel Direction Finding

• One Transmit Channel

• One Transmit Band

• One TX antenna

• Low Radiated Power – Stand-In

• Direct Signal Cabling

SDR Characteristics for Functional DSM

Methodology Use Cases

Up to this point both platforms have the same architecture

16

5. Perform Partitioning of Functionality
• Partitioning groups aggregated functions into a specific system element(s) and

ultimately defines the modularity of a system [11], [12]

• The thinking behind this step is often missed!!!

• Partitioning is determined based on:

• Heuristics

• CONOPs

• Make/buy decisions

• Top Level Requirements

• State of COTS technologies/State of internal technologies/Leverage

• Alignment with Open Standards

• Architecture Trades/Analysis

• Modular Open System Approach (MOSA) [13]

The System Architect works with SMEs to ensure an optimal system concept is defined

www.incose.org/symp2022

17

Partitioned Functionality – Case 1 Large SDR System

• Case 1 – Large SDR

system

• High Rx Sensitivity

• Rx Arrays

• Multiple Receive Channels

• Multiple Receive Bands

• N-Channel DF

• Multiple Transmit Channels

• Multiple Transmit Bands

• Tx Arrays

• Large Tx ERP

• Significant RF distribution,

compensation, calibration
RF power detection, etc.

www.incose.org/symp2022

A
cc

ep
t

T
a
sk

in
g

A
cc

ep
t

D
a
ta

 R
eq

u
es

ts

P
er

fo
rm

 B
u

il
t-

In
-T

es
t

(B
IT

)

P
ro

v
id

e
B

IT
 S

ta
tu

s

P
ro

v
id

e
P

ro
g
ra

m
m

in
g
 I

n
te

rf
a
ce

A
cc

ep
t

U
n

iv
es

a
l
T

im
e

D
is

tr
ib

u
te

 U
n

iv
er

sa
l
T

im
e

A
cc

ep
t

E
p

o
ch

 T
im

e
R

ef
er

en
ce

D
is

tr
ib

u
te

 E
p

o
ch

 T
im

e
R

ef
er

en
ce

A
cc

ep
t

F
re

q
u

en
cy

 R
ef

er
en

ce

G
en

er
a
te

 S
a
m

p
li
n

g
 C

lo
ck

s

D
is

tr
ib

u
te

 S
a
m

p
li
n

g
 C

lo
ck

s

T
ra

n
sd

u
ce

 S
ig

n
a
l
In

p
u

t

C
o
n

d
it

io
n

 S
ig

n
a
l
In

p
u

t

S
el

ec
t

S
ig

n
a
l
In

p
u

t

D
o
w

n
 C

o
n

v
er

t
S

ig
n

a
l
In

p
u

t

A
n

a
lo

g
 t

o
 D

ig
it

a
l
C

o
n

v
er

t
In

p
u

t

D
ig

it
a
l
D

o
w

n
 C

o
n

v
er

t
In

p
u

t

A
p

p
en

d
 M

et
a
d

a
ta

/T
im

e
S

ta
m

p

D
et

ec
t

S
ig

n
a
ls

Id
en

ti
fy

 S
ig

n
a
ls

D
em

o
d

u
la

te
 S

ig
n

a
ls

L
o
ca

te
 S

ig
n

a
ls

G
en

er
a
te

 T
ra

n
sm

it
 W

a
v
ef

o
rm

s

A
d

d
 T

ra
n

sm
it

 M
et

a
d

a
ta

/T
im

e
S

ta
m

p

T
ri

g
g
er

 T
ra

n
sm

it
 S

ig
n

a
l

D
ig

it
a
ll
y
 U

p
co

n
v
er

t
 O

u
tp

u
t

D
ig

it
a
l
to

 A
n

a
lo

g
 C

o
n

v
er

t
O

u
tp

u
t

A
n

a
lo

g
 U

p
C

o
n

v
er

t
O

u
tp

u
t

S
el

ec
t

T
ra

n
sm

it
 O

u
tp

u
t

C
o
n

d
it

io
n

 T
ra

n
sm

it
 O

u
tp

u
t

T
ra

n
sd

u
ce

 T
ra

n
sm

it
 O

u
tp

u
t

S
to

re
 R

a
w

 S
ig

n
a
l
D

a
ta

S
to

re
 T

ra
n

sm
it

 W
a
v
ef

o
rm

s

R
ep

ro
g
ra

m
 F

P
G

A

Accept Tasking S
Accept Data Requests X S

Perform Built-In-Test (BIT) X S
Provide BIT Status X X S

Provide Programming Interface X S
Accept Univesal Time S

Distribute Universal Time X S
Accept Epoch Time Reference H

Distribute Epoch Time Reference X H
Accept Frequency Reference H
Generate Sampling Clocks X X H
Distribute Sampling Clocks X H

Transduce Signal Input H
Condition Signal Input X X H

Select Signal Input X X H
Down Convert Signal Input X X H

Analog to Digital Convert Input X X X H
Digital Down Convert Input X X X F

Append Metadata/Time Stamp X X X X X F
Detect Signals X X X F

Identify Signal Modulation X X S
Demodulate Signals X X S

Locate Signals X X S
Generate Transmit Waveforms X S X

Add Transmit Metadata/Time Stamp X X X X X F
Trigger Transmit Output X X X X X F

Digitally Upconvert Output X X X F
Digital to Analog Convert Output X X H

Analog UpConvert Output X X H
Select Transmit Output X X X H

Condition Transmit Output X X H
Transduce Transmit Output X H

Store Raw Signal Data X X X H
Store Transmit Waveforms X H

Reprogram FPGA X F

CCA = Circuit Card Assembly

CSCI - Computer Software Configuration Item

GPP = General Purpose Processors

COTS = Commercial Off-The-Shelf

Partitioning Key:

Software Config. Item

Hardware Config. Item

Firmware Config. Item

All infrastructure software CSCIs
functionality partitioned to GPPs

Time/Frequeny Reference functionality
partitioned to hardware CCAs

Transduce Signal Input functionality
partitioned to hardware Receive arrays

Receive signal condition & distribute
functionality partitioned to discrete hardware

Receive signal downconvert and digitize
functionality are partitioned to discrete
hardaware Tuner CCAs. Internal FPGA

assets will host time stamping, etc.All Signal Processing and Waveform
Generation software CSCIs

functionality partitioned to GPPs

Transmit signal digital upconvert and digital to
analog convert functionality are partitioned to

discrete Upconverter CCAs. Internal FPGA

assets will host time triggering, etc.

Transmit signal conditioning
& distribution

functionality partitioned to

discrete hardware

Transduce signal output functionality
partitioned to hardware transmit arrays

Storage functionality partitioned to
hardware mass storage device

Modularity at
the Box and
Card Level

Use of
several open

standards

18

Case 1 Large SDR System (Cont.)

1 to X

CPU

CCAs

Architecture is scalable and can GROW to include the required number of Rx and Tx LRUs

www.incose.org/symp2022

19

Partitioned Funct. – Case 2 Small (UAV) SDR System

• Case 2 – Small UAV

SDR System

• Less sensitivity

• One Receive Channel

• One Rx Antenna

• One Transmit Channel

• One TX antenna

• Less ERP

• Direct RF Cabling

www.incose.org/symp2022

A
cc

ep
t

T
a
sk

in
g

A
cc

ep
t

D
a
ta

 R
eq

u
es

ts

P
er

fo
rm

 B
u

il
t-

In
-T

es
t

(B
IT

)

P
ro

v
id

e
B

IT
 S

ta
tu

s

P
ro

v
id

e
P

ro
g
ra

m
m

in
g
 I

n
te

rf
a
ce

A
cc

ep
t

U
n

iv
es

a
l
T

im
e

D
is

tr
ib

u
te

 U
n

iv
er

sa
l
T

im
e

Id
en

ti
fy

 S
ig

n
a
ls

D
em

o
d

u
la

te
 S

ig
n

a
ls

L
o
ca

te
 S

ig
n

a
ls

G
en

er
a
te

 T
ra

n
sm

it
 W

a
v
ef

o
rm

s

T
ra

n
sd

u
ce

 S
ig

n
a
l
In

p
u

t

C
o
n

d
it

io
n

 S
ig

n
a
l
In

p
u

t

S
el

ec
t

S
ig

n
a
l
In

p
u

t

A
cc

ep
t

E
p

o
ch

 T
im

e
R

ef
er

en
ce

D
is

tr
ib

u
te

 E
p

o
ch

 T
im

e
R

ef
er

en
ce

A
cc

ep
t

F
re

q
u

en
cy

 R
ef

er
en

ce

G
en

er
a
te

 S
a
m

p
li
n

g
 C

lo
ck

s

D
is

tr
ib

u
te

 S
a
m

p
li
n

g
 C

lo
ck

s

S
to

re
 R

a
w

 S
ig

n
a
l
D

a
ta

S
to

re
 T

ra
n

sm
it

 W
a
v
ef

o
rm

s

D
o
w

n
 C

o
n

v
er

t
S

ig
n

a
l
In

p
u

t

A
n

a
lo

g
 t

o
 D

ig
it

a
l
C

o
n

v
er

t
In

p
u

t

D
ig

it
a
l
D

o
w

n
 C

o
n

v
er

t
In

p
u

t

A
p

p
en

d
 M

et
a
d

a
ta

/T
im

e
S

ta
m

p

D
et

ec
t

S
ig

n
a
ls

A
d

d
 T

ra
n

sm
it

 M
et

a
d

a
ta

/T
im

e
S

ta
m

p

T
ri

g
g
er

 T
ra

n
sm

it
 S

ig
n

a
l

D
ig

it
a
ll
y
 U

p
co

n
v
er

t
 O

u
tp

u
t

D
ig

it
a
l
to

 A
n

a
lo

g
 C

o
n

v
er

t
O

u
tp

u
t

A
n

a
lo

g
 U

p
C

o
n

v
er

t
O

u
tp

u
t

S
el

ec
t

T
ra

n
sm

it
 O

u
tp

u
t

C
o
n

d
it

io
n

 T
ra

n
sm

it
 O

u
tp

u
t

T
ra

n
sd

u
ce

 T
ra

n
sm

it
 O

u
tp

u
t

R
ep

ro
g
ra

m
 F

P
G

A

Accept Tasking S
Accept Data Requests X S

Perform Built-In-Test (BIT) X S
Provide BIT Status X X S

Provide Programming Interface X S
Accept Univesal Time S

Distribute Universal Time X S
Identify Signal Modulation X S X

Demodulate Signals X X S
Locate Signals X S X

Generate Transmit Waveforms X S X
Transduce Signal Input H
Condition Signal Input X X H

Select Signal Input X X H
Accept Epoch Time Reference H

Distribute Epoch Time Reference X H
Accept Frequency Reference H
Generate Sampling Clocks X X H
Distribute Sampling Clocks X H

Store Raw Signal Data X H X X
Store Transmit Waveforms X H
Down Convert Signal Input X X H

Analog to Digital Convert Input X X X H
Digital Down Convert Input X X X F

Append Metadata/Time Stamp X X X X X F
Detect Signals X X X F

Add Transmit Metadata/Time Stamp X X X X X F
Trigger Transmit Output X X X X X F

Digitally Upconvert Output X X X F
Digital to Analog Convert Output X X H

Analog UpConvert Output X X H
Select Transmit Output X X X H

Condition Transmit Output X X H
Transduce Transmit Output X H

Reprogram FPGA X F

CCA = Circuit Card Assembly

CSCI - Computer Software Configuration Item

GPP = General Purpose Processors

COTS = Commercial Off-The-Shelf

Partitioning Key:

Software Config. Item

Hardware Config. Item

Firmware Config. Item

All SW functionality
partitioned to GPP(s)

Transduce Signal Input functionality
partitioned to 2 discrete receive antennas

Select & condition signal input
functionality partitioned to direct cabling

Transduce signal output functionality
allocated to discrete transmit antenna

Select & condition Signal output
functionality partitioned to direct cabling

COTS Transceiver CCA was
found to have required

functionality hosted:

- Time/Frequency ref. functionality

via direct I/O to the CCA

- 2 channel receive tuning &
digitization with FPGA processing

- 2 channel transmit upconversion &
conversion with FPGA processing

- Hosts all FW Processing: e.g. Detect
Signal, Time stam data, etc.

- Local storage for data capture and
waveform generation

- Interface to GPP for SW processing

Modularity at

the Brick

Use of some

open

standards

20

Case 2 Small UAV SDR (Cont.)

Architecture is scalable and can SHRINK to a low SWaP Transceiver with all Functionality

21

• A 5-step architecture development approach was shown using functional (static) DSMs

• The resulting architecture was optimized for modularity with high cohesion and low coupling between

partitioned functionality

• The functional DSM approach had the advantage of:

• Reinforcing key steps in the architectural process

• Easily determining the complex interdependencies between functions

• Performing iterative allocation, aggregation and partitioning (optimizes system modularity)

• The ability to easily develop and assess alternative architectures/scale during partitioning

• The DSM derived architecture outputs (configuration items and interfaces) can be analyzed using the

MOSA Key Open Sub-System (KOSS) tool (see paper) [14]

• Led to further definition of the modularity required to reduce system cost and facilitate capability insertion over

the system lifecycle (iterate with DSM archiitecture.

• Shows alignment with the 5 MOSA Principles

DSM Conclusions

Static DSMs provide a non-model based approach for performing/teaching system architecture

www.incose.org/symp2022

[1] Browning, T 2001, ‘Applying the design structure matrix to system decomposition and integration problems: a

review and new directions’, IEEE Transactions on Engineering Management, Vol. 48, No. 3., pp. 292–306.

[2] Madni, AM 2014, ‘Generating novel options during system architecting: psychological principles, systems

thinking, and computer-based aiding’, Systems Engineering, vol. 17, no. 1, pp. 1-9.

[3] Maier, M & Rechtin, E 2009, The art of systems architecting, 3rd ed., CRC Press, New York, NY.

[4] Taylor, R, Medvidovic, N & Dashofy, E 2010, Software architecture - foundations, theory and practice, John

Wiley and Sons Inc., Hoboken, NJ.

[5] Madni, AM 2018, Transdisciplinary Systems Engineering, Springer International Publishing, New York, NY.

[6] Coulston, C & Ford, R 2004 ‘Teaching functional decomposition for the design of electrical and computer

systems’, Proceedings of 34th ASEE/IEEE Frontiers in Education Conference, pp. F4G-6 – F4G-11.

[7] Kockler, F, Withers, T, Poodiack, J & Gierman, M 1990, Systems Engineering Management Guide, AD-A223-

168, Defense Systems Management College, Ft. Belvoir, VA.

References (1 of 2)

www.incose.org/symp2022

[8] Arnold, R & Wade, J 2015, ‘A definition of systems thinking: a systems approach’, Proceedings of the 2015

Conference on Systems Engineering Research, vol. 44, pp. 669-678.

[9] Monat, J & Gannon, T 2017, Systems volume 8: using systems thinking to solve real-world problems, Lawson

H, Wade, J & Hofkirchner, W (eds.), College publications, U.K.

[10] Azani, C & Khorramshahgol, R 2006, ‘Modular open systems approach: an effective business strategy for

building affordable and adaptable architectures’, Journal of Management Systems, Vol. 18, No. 1, pp. 66–76.

[11] Holtta, K, Suh, E & de Weck, O 2005, ‘Tradeoff between modularity and performance for engineered systems

and products’, Proceedings of the International Conference on Engineering Design (ICED), pp. 1-13.

[12] Yassine, A 2004, ‘An Introduction to modeling and analyzing complex product development processes using

the design structure matrix (DSM) method’, Quaderni di Management (Italian Management Review), No.9.

[13] Gillis, M 1999, ‘Open systems joint task force gets the word out’, PM Magazine, July-August, pp. 44-47.

[14] Naval Open Architecture Enterprise Team, 2009, Key Open Sub-System (KOSS) Tool: KOSS Description

and Application, Public Release SPR-09-674, NAVAIR, Patuxent River, MD.

References (2 of 2)

www.incose.org/symp2022

