& 32" Annual INCOSE
international symposium
hybrid event
v g2’

v Detroit, M, USA
%%/ June 25 - 30, 2022

Presenter, Eric B. Dano, Ph.D.
BAE Systems, Electronic Systems (ES)
eric.b.dano@baesystems.com

Not export controlled per ES-CEMA-021521-0057

Using Design Structure Matrices (DSMs)
to Derive System Architectures

www.incose.org/symp2022

What is a DSM ? gy

Design Structure Matrix (DSM) Definition (a.k.a. N2 Dependency Matrix, Dependency Structure
Matrix, etc.)

Tool used to optimize a grouping of Tasks (schedule or process applications), Components or functions (system
architecture applications) or Teams (organizational applications) based on defined dependencies between
elements to produce an optimal time sequence of activities or grouping of components for a given system
application.

DSM Types

Static [1] — “Represent system elements existing simultaneously, such as components of a product architecture
or groups in an organization. Usually solved using clustering algorithms.”

Time Based [1] — “The ordering of the elements in the system represent a flow through time, with upstream
activities preceding down stream activities. “Feed-forward” and “feed-back” are used to describe interfaces.

[1] T. Browing, 2001.

WWw.incose.org/symp2022 2

DSM Matrix Basics

The top row and left most column list the elements/tasks/teams
to be considered
— The diagonal is in black because no element is dependent on itself

— The element sequence currently goes from A to J but will be optimized
based on the dependencies defined by the Xs

Each Row shows the “Needs” (i.e. must occur after the element
In the current Row)

— EX1: Element C “Needs” only B. Since it is currently after B, it is fine

— EX2: Element D “Needs” E & H which both “Provide” to D. Therefore,
Element D must be moved later in the sequence (after E & H).

» Note that all X’s above the diagonal have this issue and will
need to be optimized

Each Column shows the “Provides” (i.e. must occur before the
element in each checked Row)

— EX3: Element E “Provides” to D & H. It will need to be moved to
before D

WWW.INncose.org/symp2022

F

G

X

Interaction/Interdependency Types

Example DSM Appearance

A| B
 Dependent -B—- A 8 needs A
— There is a dependence between the Dependent before it can
two elements/tasks -L.e. sequential B | X start
— They must be performed sequentially
- Al B
° Independent - — A A and B can be
— There is NO dependence between [started in
the two elements/tasks B parallel
— They may be performed in parallel e el
Al B A and B must
* |Interdependent — . A X | bedone
— Each element/task relies on out put B | x simultaneously
from the element/task

Interdependent
-i.e. coupled

— The two elements/tasks are coupled

www.incose.org/symp2022 4

e

s

Static DSM Example:
System Architecture of a
Software Defined Radio (SDR) Based System

WWw.incose.org/symp2022 °

s

Derive an Architecture in 5 Easy Steps | W&

)
4
5) Perform Physical
Architecture/Partition
functions to system
elements and perform
low level aggregation
of functionality

1) Define ConOps and 2) Perform Functional 3) Perform Logical 4) Perform Logical
required system Architecture/ Architecture/Allocate Architecture/High

capabilities Functional decomp- functions to format level Aggregation of
(operational, support, osition with defined based on required commonly allocated
etc.) interdependencies performance functionality

RF Inputs SDR RF Outputs
Digital Inputs Y Tuner Upconverter Y

Command Inputs. * Condition RF Inputs * Condition RF Outputs A SOftware Defl n ed
»| | * Down Convert Signals * Up Convert Signals Data Products . .
. * ADC/Packetize Signals * DAC/DUC Signals > Rad 10 WI I I b e usS ed
Time/Freq./Nav. .]
REferenceS > J Processors L I n th IS eX am p I e
Power/Mount/ * Detect Signals Health/ BIT
Coolin * Process Signals Status
g * Generate Waveforms >
* Modulate signals

Www.Incose.org/symp2022 6

1. Define ConOps and Required System Capabilities Wi

* The architecture process starts with the “hand-in” of the customer specified Concept of
Operations (ConOps), Key Performance Parameters (KPPs), Key System Attributes

(KSAs) and value statements.

» The application of option generation techniques is critical during the concept exploration phase and
should include holistic systems thinking to find highest level objectives, using analogies to create
options, dynamic system modeling and simulation [2], the use of heuristics [3] and proven design
patterns for software [4].

« The SDR based system ConQOp is to have the capabilities to receive signals, process

signals, transmit signals, store data and provide time/frequency/navigation.

« The ConOps must be further expanded to include supportability, human machine interface, cyber,
testability, safety, production, etc. to ensure the full set of ConOps are understood prior to
commencing functional decomposition of the system.

« System architect must ensure a multi-disciplinary solution is obtained [5].

ConOps definition is performed prior to populating the DSM

2. Perform System Functional Decomposition

« The level 0 functionality is defined as part of the functional architecture process

 Level O functions are then decomposed into Level 1 sub-functions which will be used in the architecture
derivation process [6], [7]

W

Receive Signals |

Transduce Signal Input

| Transmit Signals

Level O Functions

Provide Time/
Frequency/Navigation

Transduce Transmit Output

Level 1 Functions

Condition Signal Input

Condition Transmit Output

Select Signal Input

Select Transmit Output

Will vary by application. Nominal functionality includes:

Accept Universal Time

Distribute Universal Time

Down Convert Signal InputI

Analog Upconvert Output

Analog to Digital Convert
Input

Digital to Analog Convert
Output

Digital Down Convert Input

Digitally Upconvert Output

Append Receive Metadata
and Time Tag Samples

Trigger Transmit Signal

Append Transmit Metadata

Accept Epoch Time Ref.

Distribute Epoch Time Ref.

Accept Frequency Ref.

Generate Sampling Clocks

Distribute Sampling Clocks

and Time Tag Samples

Command/Status
System

Accept Tasking

Accept Data Requests

Perform Built in Test (BIT)|

Provide BIT Status

Provide Programming
Interface

Reprogram FPGA

Www.incose.org/symp2022

Apply Functional Breakdown to DSM Matri

* Level 1 functionality is
placed along the X and Y
axises

« Diagonal is blacked out

® Level 1 funCtlona“ty |S Pafgrgiﬂlg:$-;§(§|T)
usually sufficient to derive Provide Programming Interface
the system architecture Dis e Univarsa Time

Reprogram FPGA
and define system level Disioute Epoeh Time Refrnce

. Accept Frequency Reference
mOdUIarlty Gener ate Sampling Clocks
Distribute Sampling Clocks
Transduce Signal |nput
Condition Signal Input
Select Signal Input
Down Convert Signal Input
Analog to Digital Convert Input
Digital Down Convert Input
Append Metadata/Time Stamp

ProvideBIT Status
Provide Programming I nterface
Reprogram FPGA
Accept Univesal Time
Condition Signal Input
Select Signal Input
Down Convert Signal Input
Detect Signals
Identify Signals
Demodulate Signals
L ocate Signals
Generate Transmit Waveforms
Add Transmit Metadata/Time Stamp

Select Transmit Output

Generate Sampling Clocks

Distribute Universal Time
Distribute Sampling Clocks

Accept Tasking
Accept Data Requests
Perform Built-In-Test (BIT)
Accept Epoch Time Reference
Distribute Epoch Time Reference
Accept Frequency Reference
Transduce Signal Input
Analog to Digital Convert Input
Digital Down Convert Input
Append Metadata/Time Stamp
Trigger Transmit Signal
Digitally Upconvert Output
Digital to Analog Convert Output
Analog UpConvert Output
Condition Transmit Output
Transduce Transmit Output

Detect Signals
Functional Decomp Identify Signal M odulation
Demodulate Signals
Command/Status System L ocate Signals
. . Generate Transmit Waveforms
Provide Time/ Frequency Reference Rl e S e e
Receive Signals Trigger Transmit Output
Digitally Upconvert Output
Process/Generate Signals Digital to Analog Convert Output
vy s Analog UpConvert Output
Transmit Signals S e Ol

Condition Transmit Output
-Store Data Transduce Transmit Outiut

Www.Incose.org/symp2022 9

Define Functional Dependenc

X’s show interdependencies
between the derived Level 1
functions [8], [9].

This process is focused on
modularity (i.e. static DSM)
and is not adjusted for order
of events (i.e. Time-based
DSM)

EX1: See that metadata/
time stamping relies on:

EX2: See that metadata/

time stamping relies on:
— Tasking
— UTC time message distribution,
— Epoch Time (1PPS) distribution
— ADC/DAC clocks distribution

es 1o

Q
Q — =

~| |8 88qs ., e elgl |_1E] [L]e

g 2 g 222 < MMEEEEL =198 |-12|5]5|.]3|3

AEIMEI » £ 5 2 © 5 EEIMEEEL AREHEHEBEEERER

mm 3 | S | Bl 0 O B EEIEIEE n|s == 210|%18=16|0

HEMEER- 7 « ¢ ¢ 5 = HEREEHHEEE A SR EE

2|8 |5 | < o £ = £15/5 = et z S|z

?'I:.-ELL_%a%amo%%&-(%’%g’-‘:%ﬁgf’)?'ggﬁ

.2:|—£5g a3 |s|c|sC|EP|2|z2(6|8 |55 5 gl

= |8 |= S S -6 35 2lelElc|g 2 o HS‘_SS’U%._

Command |El2Z|2 |5 CEIEREEREAS 512 2125|518 53 8|52 F 5212 8|5 5

B“m'SL*BE'gOD 8|5 |—.*:wDCDI—88

<|BEE CHEEERREL: 252255012 8 1 8|8 855 1B lE 5|

AN © = = 5 o = IS} C“‘_' a B3 |(L 5

& Control <|g|* |2 <g§§§5§ HEE EEESEEIEE

al |8 gB<©0 algla|e gsl-|T|a|gl<| |O|=

\ & a <| |< Oz &
<

Accept Tasking
Accept Data Requests

Perform Built-In-Test (BIT)

ProvideBIT Status

Provide Programming I nterface

Reprogram FPGA
ep esa e
Distribute ersa
A ccep po
Did 0) e PO e Refere e
A ep equel
a p 0 @)
Distrib e oamp g 0
Transduce Signal Input

Condition Signal Input

Select Signal Input

Down Convert Signal Input

Analog to Digital Convert Input

_
Append Metadata/Time Stam)
gnals

Identify Signal M odulation

|
Demodulate Signals I

L ocate Signals

Generate Transmit Waveforms ||

Add Transmit M etadata/Time Stam

Trigger Transmit Output

Digitally Upconvert Output

Digital to Analog Convert Output

Analog UpConvert Output

Select Transmit Output

Condition Transmit Output

Transduce Transmit Output

WWW.INncose.org/symp2022

<<

XXX

< > > [[>< [[>< <[>l [[>< < [><

ey

3. Perform Allocation of Functionality W

« Allocation Heuristics (lessons learned) and required performance are used to

* Allocation is done to

properly allocate functions

Optimize perform ance Hardware (I_—I) ' FPC_SAS (F) GPUs (G) . C_SPPs/Sof.tware (S)
) Good for generic Highly reconfigurable parallel Excellent for processing Highly versatile; can
of the various S fixed capabilities architecture permits multiple intensive algorithms implement an almost
: operations to be performed (multi-parallel limitless number of
-
fU nctions ;grr;r:r%r; gggn simultaneously processing) applications
. R
 Most functions can be interfaces exists Embedded multipliers and memory Baselined to floating Embedded math logic makes
performed using multiple E Relatively low cost enable instantiation of extremely point operations for efficient use of
: fast filters and synthesizers rocessing resources
allocations N y Fast memory access P :
. G Programmable data paths allow for)) Excellent for decision
* Allocations mOStly - processing a wide variety of data Esgrlgdzogg:gmal GPU making and branching
. . . types . . .
driven by requwed. H w Well suited for information
Low latency operations management and control
¢ Latency W Fixed capabilities, Relatively inefficient for branching High power draw May be comparatively slow
e Throuahput £ can’t be or decision-making operations) L at simple fixed-point math
_ _ gnp reconfigured (these consume large numbers of High heat dissipation operations, due to inherently
* Fidelity A Requires additional gates) Some must be paired with | Serial processing nature
e Cost K components for Large and fast devices are an interface GPP Only able to perform a low
Leverage N ?xtended expensive Limited vendors nunl1ber of tasks per clock
¢ requencies cycle
E 1 High-precision math operations may y
c Relatively large consume many resources Higher latency operations
Size, Weight, and
S Power (SWaP)

WWW.INncose.org/symp2022

11

Allocated Functionality

Allocation Key:

F — Firmware 1

H — Hardware

S — Software

A — Application
Specific Integrated
Circuit (ASIC)

G - Graphical
Processing Unit
(GPU)

O - Other

Accept Tasking

Accept Data Requests
Perform Built-In-Test (BIT)

Provide BIT Status
Provide Programming I nterface

Reprogram FPGA
Accept Univesal Time
Distribute Universal Time
Accept Epoch Time Reference
Distribute Epoch Time Reference

Accept Tasking N

Accept Frequency Reference

Generate Sampling Clocks

Distribute Sampling Clocks

Transduce Signal Input
Condition Signal Input

Select Signal Input
Down Convert Signal Input

Analog to Digital Convert Input

Digital Down Convert Input
Append Metadata/Time Stamp

Detect Signals

Identify Signals
Demodulate Signals

L ocate Signals
Generate Transmit Waveforms
Add Transmit Metadata/Time Stamp

Trigger Transmit Signal

Digitally Upconvert Output
Digital to Analog Convert Output

Analog UpConvert Output

Select Transmit Output

Condition Transmit Output
Transduce Transmit Output

Accept Data Requests

Perform Built-In-Test (BIT)

Provide BIT Status

Provide Programming I nterface

X

Reprogram FPGA

‘,><

Accept Univesal Time

<

Distribute Universal Time

Accept Epoch Time Reference

4
7 <

Distribute Epoch Time Reference

Accept Frequency Reference

Generate Sampling Clocks

Distribute Sampling Clocks

Transduce Signal Input

Condition Signal Input

Select Signal Input

Down Convert Signal Input

Analog to Digital Convert Input

Digital Down Convert Input

> ‘,

Append Metadata/Time Stamp

XXX

Detect Signals

Identify Signal M odulation

p 4

Demodulate Signals

L ocate Signals

Generate Transmit Waveforms

Add Transmit Metadata/Time Stamp

Trigger Transmit Output

Digitally Upconvert Output

<X

Digital to Analog Convert Output

Analog UpConvert Output

Select Transmit Output

Condition Transmit Output

Transduce Transmit Outiut

DXPZ| PP XXX XXX X

WWW.INncose.org/symp2022

12

4. Perform Aggregation of F

Aggregation is done to
optimize the grouping of
the allocated functions
to aid modularity
definition in the system
and provide [10]:

High Cohesiveness -

Large similarity in well-

defined functions

performed within a

module

— Enables Commonality and
Reuse

Low Coupling - Module

functionality does not

constrain functionality in

any other module

— Reduces complexity, eases

testability, catalyst for rapid
capability insertion, etc.

Accept Tasking

wwww

DAC Clock:

Distribute DAC Clocks

ADC Clock
Transduce RF Inpu

Provide BIT Status
Provide Programming Interface
Generate WF (Tx)

2|5
5

=
HE
|2
318
Q1<
<5

Perform BIT
Accept UTC Time
Distribute UTC Time Ref.
Accept 1PPS Ref.
Distribute 1PPS Ref.
Accept Freq Ref.
Condition RF Input
Select RF Input

5
a
=
w
o
T
s
=
S
o
s
8

Accept Tasking
Accept Data Requests
Generate ADC Clock

-
=
g
=
o
e
=
£
S
s
8
=
=)

5[5
s(&(2
2l6|e
OLLLI.
u_n:n:

c|s
EIE
2|5(8

Digital Down Convert (DDC) ADC Output]

Time Tag Samples (Rx)
Append Metadata (Rx)

Detect Signals (Rx)

Identify Signals (Rx)

Play Audio (Rx)
Locate Signals (Rx)
Digitally Upconvert (DUC) DAC Input

Time Tag Samples (Tx)

Append Metadata (Tx)

Queue Waveform
Trigger RF Output

unctionality

Reprogram FPGA

Accept Data Requests

Functional Decomp

Perform BIT

Provide BIT Status

Command/Status System
Provide Time/ Frequency Reference

Receive Signals

Provide Programming Interface
Accept UTC time
Distribute UTC Time Ref.

Generate WF (Tx)

Accept 1PPS Ref.
Distribute 1PPS Ref.
Accept FreqRef.
Generate ADC Clocks
Distribute ADC Clocks
Generate DAC Clocks
Distribute DAC Clocks
Transduce RF Input

Process/Generate Signals

Tx fns

-Store Data

l X I Identified dependencies between the Functions

Condition RF Input

Select RF Input

Down Conwert RF Input

A/D Conwert IF Input

D/A Conwert Output

Up Convert Output

Select RF Output

Condition RF Output

XX XXX XXX

Transduce RF Output

Digital Down Convert (DDC) ADC Output

x
x

Time Tag Samples (Rx)

Append Metadata (RX)

Detect Signals (Rx)

Identify Signal Mods (Rx)

Play Audio (Rx)

Locate Signals (Rx)

Digitally Upconvert (DUC) DAC Input

XXX [X|X|[Xx
x

Time Tag Samples (Tx)

Append Metadata (Tx)

x

Queue Waweform

Trigger RF Output

Reprogram FPGA

WWW.INncose.org/symp2022

Functional Allocation (Based On Performance)
H Hardware

Firmware
Software

ASIC
GPU
Other

13

g

\

-

1
ws

Software Defined Radio (SDR) Based System
Case 1. Large Platform
Case 2: Small Platform

=

Www.Incose.org/symp2022 A

SDR Characteristics for Functional DSM

Methodology Use Cases

Case 1 — Large Platform

Case 2 — Small UAV Platform

e High precision - Geolocation

e Multiple Receive Array(s)

e Multiple Receive Channels

e Multiple Receive Bands

e N-Channel Direction Finding

e Multiple Transmit Channels

e Multiple Transmit Bands

e Multiple Transmit Array(s)

e Large Radiated Power — Stand-Off
e Significant signal distribution

Lower Precision — Situational Awareness
Two Receive Antennas

Two Receive Channels

One Receive Band

2 Channel Direction Finding

One Transmit Channel

One Transmit Band

One TX antenna

Low Radiated Power — Stand-In

Direct Signal Cabling

Up to this point both platforms have the same architecture

15

ey

5. Perform Partitioning of Functionality W

 Partitioning groups aggregated functions into a specific system element(s) and
ultimately defines the modularity of a system [11], [12]
« The thinking behind this step is often missed!!!

 Partitioning is determined based on:
* Heuristics
« CONOPs
« Make/buy decisions
« Top Level Requirements
« State of COTS technologies/State of internal technologies/Leverage
» Alignment with Open Standards
» Architecture Trades/Analysis
* Modular Open System Approach (MOSA) [13]

The System Architect works with SMEs to ensure an optimal system concept is defined

Www.Incose.org/symp2022 16

Partitioned Functionality — Case 1 Larg

Case 1 — Large SDR

system

High Rx Sensitivity

Rx Arrays

Multiple Receive Channels
Multiple Receive Bands
N-Channel DF

Multiple Transmit Channels
Multiple Transmit Bands
TxX Arrays

Large Tx ERP

Significant RF distribution,
compensation, calibration
RF power detection, etc.

j=1
) =
R g, BEIME elsl |LIEL] |.ls
SIS R (5(2(3(5 s|28-18|5|5|.]18|2
Partitioning Key: ﬁemgaa.d%:??ﬁ [0} gg?%?%a%‘%
AEEERE- 5 2 < ¢ o SHEEREEEB B S =] - |k
= x o clc|c =B 2|3 = e ~|0|=|e a
Software Config. Item -@E'T“-E§§—-°’°Ega.émagﬁgﬂﬁ%?ﬁtﬁﬁ T
c|—|E > EFE = 5| 5|’ |7 |0 |6 D7 o | o >lo|2
MEEEEz £ - < & ‘05'055“30‘6‘7’ 2218|855 SB|g|& §
. e S © s 2 5 5 HEGEEEEE R EEEEEEEEE
. Hardware Config. Item 0133 | & s g 5 =i 23 (8|8[=|~|2|sg|a|S|E g
g. Hm._o:;ggo wwsoo;: Olc|olF|s(8 o
<§gsiﬁs ooDEogg_.mgg,_><m§.g= g
s) SEE S = = 2 5t 2 HEHEEEEE Al |=|2|3|s|e|S|8|5|B o
Firmware Config. ltem <|g =l < © 8‘_.9%5175 38’.65 mgp.aﬁgggg
Ml 285290 SEIA SN EE =
et < 2 < Ol|lo =
o a < 3 a
<
Accept Tasking
Accept Data Requests X A a e so are
Perform Built-In-Test (BIT) X oNna o oned to GPP
Provide BIT Status X| X
Provide Programming Interface | X ! N N N N N " |
Accept Univesal Time Time/Frequeny Reference functionality i
Digtribute Universal Time X partitioned to hardware CCAs _
Accept Epoch Time Reference T
Distribute Epoch Time Reference LD N N ' U D N N ' . '
Accept Frequency Reference Transduce Signal Input functionality
Generate Sampling Clocks partitioned to hardware Receive arrays
Distribute Sampling Clocks
Transduce Signal Input | J |

Condition Signal Input
Select Signal Input
Down Convert Signal Input
Analog to Digital Convert Input
Digital Down Convert Input
Append M etadata/Time Stamp
Detect Signals
Identify Signal M odulation
Demodulate Signals
L ocate Signals
Generate Transmit Waveforms

Receive signal downconvert and digitize
functionality are partitioned to discrete
hardaware Tuner CCAs. Internal FPGA
All Signal Processing and Waveform assets will host time stamping, etc.
Generation software CSCls

XXX

Transmit signal conditioning

Add Transmit Metadata/Time Stamp functionality partitioned to GPPs & distribution
Trigger Transmit Output - R I = B . Py : : i
Digitally Upconvert Outpul Transmit signal dlglta-| upc_onvert and_ (?Ilgltal to [functionality partitioned to
Digital to Analog Convert Output analog convert functionality are partitioned to L discrete hardware
Analog UpConvert Output : >
Select T ransmitt Output discrete Upconverter CCAs. Internal FPGA

Condition Transmit Output assets will host time triggering, etc.
Il 1 Il 1 Il 1 Il 1 1 Il
Transduce signal output functionality

Transduce Transmit Output
") I
Reprogram FPGA X partitioned to hardware transmit arrays N

CCA = Circuit Card Assembly
CSCI - Computer Software Configuration Item

DXP| XD IS IS XX XXX >

Storage functionality partitioned to
GPP = General Purpose Processors hardware mass storage device
COTS = Commercial Off-The-Shelf

WWW.INncose.org/symp2022

Modularity at
the Box and
Card Level

Use of
several open
standards

17

Case 1 Large SDR System (Cont.)

Tx Antennas/Arrays

Bands1to N
HPA
Modules

1

Rx Antennas/Arrays

TX Switch
Matrix

Block Up
Converter

Bands1toN

>

i

LNA

RX Switch
Matrix

Block Down
Converter

Modules

1

Fp----—--—"="="="=-"====== 1 |
1

1

1

1

X/T I

1-4 Channel Rx/Tx 1
GPP |

1 1 |
1 1 |
I : 1toX I
. CPU CCAs 1
1 1 |
I _ ___—_—_—__ 1 |

1to M CCAs per LRU. 1toLLRUs

W

SYS63ISSIGINT Sensor
Eclipse SIGINT Products

The SYS6315isa4U, 19-inch rack mount ultra-
wideband Signals Intelligence (SIGINT) sensor.

Part of a family of software-defined radios, the SYS6315
provides 15 OpenVPX slots for Radio Frequency (RF)
receivers and processing card:

rack mount, air-cooled chassi
cage allows f
the chassis from th
includes 14 RF char
bandwidth, three:
graphic processing units. Allcards are conduction cooled.

+ Modular, open system architecture complies with VITA-46, -48,
-49.and-67 standards, enabling interoperability among platforms
andsystems

* 14independent 80 MHz RF channels for.

- 1t operation for staring or q 1120
MHz of instantaneous bandwidth

- Grouped for upto eight phase coherent RF channels to support
direction finding

. terswith third orem™
7 processors and high-speed PCle connections

+ Optional two graphic processing units providing 640 cores of
NVIDIA® Maxwel™ graphics processing power

* Hostsasoftware baseline buift on open architecture principles

that supports emerging standards such as REDHAWK, TOA, OMS,

505, JICD 4.2, and VITA-43

www.baesystems.com

Architecture is scalable and can GROW to include the required number of Rx and Tx LRUs

WWW.INncose.org/symp2022

18

\

Partitioned Funct. — Case 2 Small (UAV) SDR SyStelll
. %‘ =
Q 9 g S 4 5.l 3
o 1S . = 28899 s|2l5lg| |9|-|5|Elz|_|5|3
Partitioning Key: ﬁéw?g @ g%§§§ HEEE .ég%‘@%i%%(
SEEIELE - = EEEEEE : < 2 8 2 5 BHEE AR MEE e EEE
DSoftwareConfig.ltem _g'-ﬁEC'%ggaﬁE E’EE'_QE:EEEQEIE&
KIS ¢ 2 BRI E - oo L e
< |m = £ [bl 8
.HardwareConfig.Item *ég%%g%‘Em%S:g §-a=%§§§§§g%;pa
deEHE: < BEEEEEE - E e e e R A
O o K= - T L = =
[Firmware Config. Item <§§E§ a H%'g.?ﬁ@ Cégg %.?gs%”ggﬂm
I = o (=[O g._osﬂ E S h,_mﬁ:;%o%
& [3E & SE<°o og'ﬁ;ﬁ ElT[elB[E] [OfF
p B 5
Case 2 — Small UAV 8|
Accept Tasking
SDR System Zoombaanenets I : on:
Perform Built-In-Test (BIT) X oF oned to GPP
Provide BIT Status X X .
° 11\ /1 Provide Programming Interface | X i i f |
Less sensitivity P ransduce Signal Input functionality I Modularity at
. Distribute Universal Time X partltloned to 2 discrete receive antennas | .
« One Receive Channel e s T the Brick
L ocate Signals X St = (dolntel ke Jne P
° Generate Transmit Waveforms [X a oF oned to dire abling
One Rx Antenna crate Transnil Wavclo
. Condition Signal Input X X L
* One Transmit Channel bt S gt X

* One TX antenna
« Less ERP
« Direct RF Cabling

Accept Epoch Time Reference
Distribute Epoch Time Reference
Accept Frequency Reference
Generate Sampling Clocks
Distribute Sampling Clocks

Down Convert Signal Input

COTS Transceiver CCA was
found to have required
functionality hosted:

3 - Time/Frequency ref. functionality
) via direct 1/0 to the CCA
] - 2 channel receive tuning & X

Analog to Digital Convert Input

)] digitization with FPGA processing

Digital Down Convert Input

bl - 2 channel transmit upconversion &

Append M etadata/Time Stamp

Y conversion with FPGA processing

Detect Signals

Add Transmit M etadata/Time Stamp

- Hosts all FW Processing: e.g. Detect

Trigger Transmit Output

y Signal, Time stam data, etc.

Digitally Upconvert Output

N - Local storage for data capture and

Digital to Analog Convert Output

)| waveform generation

Analog UpConvert Output

- Interface to GPP for SW processing

Select Transmit Output

Condition Transmit Output

Transduce Transmit Output

Reprogram FPGA

CCA = Circuit Card Assembly

Use of some

open

standards

Transduce signal output functionality

CSCI - Computer Software Configuration Item .)
allocated to discrete transmit antenna

GPP = General Purpose Processors
COTS = Commercial Off-The-Shelf

Www.Incose.org/symp2022 19

Case 2 Small UAV SDR (Cont.)

1-4 Channel Rx/Tx

Rx-TX CCA

e
L,

GPP

Architecture is scalable and can SHRINK to a low SWaP Transceiver with all Functionality

20

DSM Conclusions W
« A D5-step architecture development approach was shown using functional (static) DSMs

« The resulting architecture was optimized for modularity with high cohesion and low coupling between

partitioned functionality

« The functional DSM approach had the advantage of:

« Reinforcing key steps in the architectural process

« Easily determining the complex interdependencies between functions

« Performing iterative allocation, aggregation and partitioning (optimizes system modularity)

« The ability to easily develop and assess alternative architectures/scale during partitioning

« The DSM derived architecture outputs (configuration items and interfaces) can be analyzed using the
MOSA Key Open Sub-System (KOSS) tool (see paper) [14]

« Led to further definition of the modularity required to reduce system cost and facilitate capability insertion over
the system lifecycle (iterate with DSM archiitecture.

« Shows alignment with the 5 MOSA Principles

Static DSMs provide a non-model based approach for performing/teaching system architecture

21

& P Annual INCOSE
international symposium

.

!'I RN ’ .

L .v./ Detroit, MI, USA
-4 June 25 - 30, 2022

www.incose.org/symp2022

References (1 of 2) ﬁ%
W' W/
[1] Browning, T 2001, ‘Applying the design structure matrix to system decomposition and integration problems: a

review and new directions’, IEEE Transactions on Engineering Management, Vol. 48, No. 3., pp. 292-306.

[2] Madni, AM 2014, ‘Generating novel options during system architecting: psychological principles, systems
thinking, and computer-based aiding’, Systems Engineering, vol. 17, no. 1, pp. 1-9.

[3] Maier, M & Rechtin, E 2009, The art of systems architecting, 3' ed., CRC Press, New York, NY.

[4] Taylor, R, Medvidovic, N & Dashofy, E 2010, Software architecture - foundations, theory and practice, John
Wiley and Sons Inc., Hoboken, NJ.

[5] Madni, AM 2018, Transdisciplinary Systems Engineering, Springer International Publishing, New York, NY.

[6] Coulston, C & Ford, R 2004 “Teaching functional decomposition for the design of electrical and computer
systems’, Proceedings of 34th ASEE/IEEE Frontiers in Education Conference, pp. F4G-6 — FA4G-11.

[7] Kockler, F, Withers, T, Poodiack, J & Gierman, M 1990, Systems Engineering Management Guide, AD-A223-
168, Defense Systems Management College, Ft. Belvoir, VA.

www.incose.org/symp2022

References (2 of 2) %

[8] Arnold, R & Wade, J 2015, ‘A definition of systems thinking: a systems approach’, Proceedings of the 2015
Conference on Systems Engineering Research, vol. 44, pp. 669-678.

[9] Monat, J & Gannon, T 2017, Systems volume 8: using systems thinking to solve real-world problems, Lawson
H, Wade, J & Hofkirchner, W (eds.), College publications, U.K.

[10] Azani, C & Khorramshahgol, R 2006, ‘Modular open systems approach: an effective business strategy for
building affordable and adaptable architectures’, Journal of Management Systems, Vol. 18, No. 1, pp. 66-76.

[11] Holtta, K, Suh, E & de Weck, O 2005, ‘Tradeoff between modularity and performance for engineered systems
and products’, Proceedings of the International Conference on Engineering Design (ICED), pp. 1-13.

[12] Yassine, A 2004, ‘An Introduction to modeling and analyzing complex product development processes using
the design structure matrix (DSM) method’, Quaderni di Management (Italian Management Review), No.9.

[13] Gillis, M 1999, ‘Open systems joint task force gets the word out’, PM Magazine, July-August, pp. 44-47.

[14] Naval Open Architecture Enterprise Team, 2009, Key Open Sub-System (KOSS) Tool: KOSS Description
and Application, Public Release SPR-09-674, NAVAIR, Patuxent River, MD.

www.incose.org/symp2022

