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Agenda

m Wholam and what | do at NASA JPL

m Early formulation at JPL and the motivation behind building models accessible via
the web

m Analogic and parametric models in early-project cost estimation

m The Analogy Software Cost Tool (ASCoT)
- Parametric models
- Analogic models
— Tool development and deployment

m The Online NASA Space Estimation Tools (ONSET)
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Early formulation at JPL, and the motivation
behind building models accessible via the web

m Aspiring Principal Investigators with a glint in their eye come to JPL with ideas and want
expert opinion on feasibility.

— These ideas have varying maturity.

- They’ll come back to JPL multiple times to get more refined cost estimates as the
concept matures.

m More NASA proposal calls = more concept design and trade studies at early stages.
Models must be:

— Easily run by system engineers who are not domain experts

— Transparent in data and algorithm

- Easily accessible

— Easily updated and distributed
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Analogic and Parametric models in
early project cost estimation

m As the costing community in industry continues to refine parametric models,
academia is focused on better understanding expert judgement and analogy.

m Early in the project lifecycle, inputs to parametric models are often loosely
constrained, and thus parametric model output is of little use.

m [tis instead useful to understand some measure of similarity to previous missions,
and to form early cost estimates as analogies to these missions.

m As the concept matures, parametric models become more useful.

m Eventually, grassroots estimates outperform parametric models.



The Analogy Software Cost Tool (ASCoT)
Overview

The data:
* N =54 previously flown missions
e Sources
 NASA CADRe
 JPL SMART repo
#% ASCoT e project documentation
Analogic e direct intervie\_/vs |
lahl Clustering * Independent, industry-wide dataset
Models 2es * Variables
- « Destination
/7 CER * Redundancy

Parametric

Model c e Software inheritance
odels ocomo

e Mission type

* Mission size

*  Number of instruments
Number of deployables
* Flight Software Cost ($)
« Spacecraft Bus Cost ($)
« Effort (WM)
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COCOMO-I

m COCOMO (Constructive Cost Model) is a well-known parametric software cost model
with 22 input parameters including

- Precedentedness (a measure of novelty of the mission)

- Team Cohesion (a measure of consistency of stakeholder objectives and
cultures)

- Required Software Reliability (a measure of the effect of software failure)
- Programmer Capability (A measure the abilities of project programmers)
— and others

m Model form: Effort= (A4 -M)-SB (Effort in work-months)
- A:a measure of the baseline organizational and technological costs
- M: a measure of the environmental factors
- S: number of EQSLOC (logical equivalent source lines of code)
- B:a measure of the economies or diseconomies of scale
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The ASCoT Bayesian CER
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Bayesian CER
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Skew normal error term performs better than normal error (log-skew-normal vs log-normal)
Captures low outliers without pulling median prediction down

Reasonable uncertainty bounds on the native scale due to negative skew
Simple regression performs better than models including other software cost drivers such
as number of instruments, destination, or redundancy (TL;DR: avoids overfitting)
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ASCoT Analogic Models

m kNN model /&~ ASCoT
— Finds the three missions most similar to your input il ot
all ustering
- Estimate is a weighted average of these nearest neighbors .
[ ]
m Cluster model /7 CER

- Finds the mission cluster most suited to your input

Cocomo

- Estimate is a weighted average of missions in your cluster

m Both models utilize nonlinear principal components analysis (NLPCA)
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NLPCA motivation

m How do we determine proximity of data when the data is numeric?
- Use a distance formula (Pythagorean or other)
-  Example
m Mission 1: (4 instruments, 5 deployables)

m Mission 2: (2 instruments, 1 deployable)
m Distance: d = \/(4 —2)2+(-1)2=+20

m How do we determine proximity of data when the data is NOT numeric?
-  Example
m Mission 1: (Mars-bound, dual-string cold backup)
m Mission 2: (Saturn-bound, dual-string warm backup)

m Distance:d =777
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NLPCA motivation

m We have to find a way to numericize the data.
- Previous ASCoT versions chose “intuitive” transformations.
— i.e. Single-string = 1, Dual-string (cold) = 2, Dual-string (warm) = 4.

— This encapsulates the industry knowledge that the difference between a dual-
string (warm) system and a dual-string (cold) system is greater than the
difference between a dual-string (cold) system and a single-string system.

m NLPCA lets the data speak for itself - optimal transformations are learned using
machine learning... in particular auto-associative neural networks
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NLPCA - ANNs

Auto-associative neural network

encoder
P decoder

) dimensional

Input bottleneck output

vector high-dimensional layer high-dimensional layer
mapping layer de-mapping layer

ANN parameters are The goal is for the low-

o . : The result is that a non-
optimized such that the dimensional bottleneck layer

numeric input layer can be
projected onto a numeric,
low-dimensional space.

difference between the to adequately retain the
output layer and the input information contained in the
layer is minimized. input layer.




KNN Algorithm
Overview

m Once we have our missions in a
low-dimensional numeric space,
we can calculate the distance from
each mission to any model input
easily (in a well-defined manner)

m [f we choose k=2, we only use the
closest two missions to generate
an estimate.
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KNN Model Example Output

0.7 1

Model Input:
 Medium Inheritance
* Small Mission Size
e Earth orbiter

e Single-string
 Two instruments

e Zero deployables

Uncertainty in
the NLPCA

0.6

leads to
uncertainty in
the KNN result.

0.5 A 0.6 1

0.4
0.4
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Cumulative Effort Distribution
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three nearest neighbors

0.0
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Glory
DS1
SDO
MPF
Mars |
Odyssey
LRO
MRO +

0CO-1
WISE
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GPM Core
Dawn
Timed
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SMAP
OSIRIS-REX
Deep
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NLPCA-based Clusters

Effort Model Clusters

1. Very Large, Old, 2. Rovers 3. Landers 4. Large, Complex, 5. Large, Complex, Earth-Inner 6. Smaller, Higher 7. Large, Earth
Outer Planetary Inner-Outer Planetary Planetary Inheritance Observatories and
Constellations
Cassini MER Insight Dawn Deep Impact DS1 GRO
Galileo MPF Phoenix GRAIL Genesis GLORY HST
MSL JUNO GPM Core NuStar MMS
Kepler LRO 0CO-1 SDO
LADEE Mars Observer WISE Spitzer
MAVEN Mars Odyssey
Messenger OSIRIS-REX
MRO SMAP
New Horizons Stardust
Parker Solar Probe STEREO
TIMED

Van Allen Probe

SLOC Model Clusters

1. Very Large, 2. Rovers 3. Landers 4. Large, Complex, 5. Large, Moderately 6. Smaller or 7. Small-Medium, Single- 8. Large, Earth
Old, Outer Inner-Outer Planetary Complex, Dual String Simple, Earth -  String Inner-Planetary or Observatories and
Planetary (Cold) Asteroid/ Dual String (Cold) Constellations
Comet Asteroid/Comet
Cassini MER Insight JUNO Deep Impact DS1 Contour GLAST
Galileo MPF Phoenix Mars Observer Genesis EO1 Dawn GRO
MSL MAVEN GOES-R GLORY GRAIL HST
Messenger LDCM GPM Core LADEE MMS
MRO Mars Odyssey IRIS LCROSS SDO
New Horizons NPP NuStar LRO Spitzer
Parker Solar Probe OSIRIS-REX 0CO-1 STEREO
Stardust SMAP
Van Allen Probe TIMED

WISE
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Clustering Algorithm Overview
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Probabilistic Linkage Matrices
Calculated using the k-Means algorithm in NLPCA space
Cassini, Galileo, and Rovers and Landers are removed.
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Clustering Algorithm

. O O
Overview O

O O

m  Once we have our missions O
in a low-dimensional B O
numeric space, we can k= |Gl
calculate the distance from
each mission to the

“center” of any cluster
m Oncein a cluster with k
missions, use the kNN

weighted average formula
for the estimate.

Cost(P)
Lpec, d (P, Your Project)
1
Lpec, d (P, Your Project)

Cost(Your Project) =
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Clustering Model Example Output
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ASCoT as a web tool hosted on the Online
NASA Space Estimation Tools (ONSET)

m ASCoT as a web tool is
- a set of four independent Dash (Python) applications, which each access...

- the ASCoT master database

m ONSET is a web framework
- Secure, Django framework, currently hosts two tools (built in Dash):

m ASCoT, and
m COMPACT (the CubeSat Or Microsat Probabilistic and Analogies Cost Tool)

Hosted independently behind the JPL firewall and by NASA HQ on ONCE (One
NASA Cost Engineering)

Surprisingly simple (but with a learning curve) to build another tool from the
ground up and include it in the ASCoT framework
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Stuff | didn’t talk about today

m Previous version of ASCoT reported point estimates (instead of probability
distributions)

— This is an example of an extended effort at JPL to improve Uncertainty
Quantification (UQ)

m Future of ASCoT includes parametric and analogic cost models of Instrument Flight
Software (not just full flight software)

m |[f you're part of the NASA community and have a systems model you’d like to share
as a web tool, let’s talk!
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Closing Out

m COCOMO, CER, kNN, and Clustering models all produce probabilistic output

m CER tool reports uncertainty in model parameters
- Full posterior distribution available for download as a CSV from the web tool

m kNN and Clustering models utilize NLPCA and accounts for uncertainty in neural
network fit

m If you don’t have access to ONCE, you can request access by navigating to:

m Questions? Comments? Suggestions? Shoot me an email.
- Samuel.R.Fleischer@jpl.nasa.gov

©2022. All rights reserved. Government sponsorship acknowledged. The cost information contained in this document is of a budgetary and
planning nature and is intended for informational purposes only. It does not constitute a commitment on the part of JPL and/or Caltech.
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