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Agenda

■ Who I am and what I do at NASA JPL

■ Early formulation at JPL and the motivation behind building models accessible via 
the web

■ Analogic and parametric models in early-project cost estimation

■ The Analogy Software Cost Tool (ASCoT)
– Parametric models
– Analogic models
– Tool development and deployment

■ The Online NASA Space Estimation Tools (ONSET)



Early formulation at JPL, and the motivation 
behind building models accessible via the web

■ Aspiring Principal Investigators with a glint in their eye come to JPL with ideas and want 
expert opinion on feasibility.

– These ideas have varying maturity.
– They’ll come back to JPL multiple times to get more refined cost estimates as the 

concept matures.

■ More NASA proposal calls = more concept design and trade studies at early stages.  
Models must be:

– Easily run by system engineers who are not domain experts
– Transparent in data and algorithm
– Easily accessible
– Easily updated and distributed



Analogic and Parametric models in 
early project cost estimation
■ As the costing community in industry continues to refine parametric models, 

academia is focused on better understanding expert judgement and analogy.

■ Early in the project lifecycle, inputs to parametric models are often loosely 
constrained, and thus parametric model output is of little use.

■ It is instead useful to understand some measure of similarity to previous missions, 
and to form early cost estimates as analogies to these missions.

■ As the concept matures, parametric models become more useful.

■ Eventually, grassroots estimates outperform parametric models.



The Analogy Software Cost Tool (ASCoT) 
Overview

Analogic 
Models

Parametric 
Models

The data:
• N = 54 previously flown missions
• Sources

• NASA CADRe
• JPL SMART repo
• project documentation
• direct interviews
• Independent, industry-wide dataset

• Variables
• Destination
• Redundancy
• Software inheritance
• Mission type
• Mission size
• Number of instruments
• Number of deployables
• Flight Software Cost ($)
• Spacecraft Bus Cost ($)
• Effort (WM)



COCOMO-II
■ COCOMO (Constructive Cost Model) is a well-known parametric software cost model 

with 22 input parameters including
– Precedentedness (a measure of novelty of the mission)
– Team Cohesion (a measure of consistency of stakeholder objectives and 

cultures)
– Required Software Reliability (a measure of the effect of software failure)
– Programmer Capability (A measure the abilities of project programmers)
– and others

■ Model form: Effort = 𝐴 ⋅ 𝑀 ⋅ 𝑆! (Effort in work-months)
– 𝐴: a measure of the baseline organizational and technological costs
– 𝑀: a measure of the environmental factors
– 𝑆: number of EqSLOC (logical equivalent source lines of code)
– 𝐵: a measure of the economies or diseconomies of scale



The ASCoT Bayesian CER

Priors
𝛼~𝑁 0,4
𝜎~𝑡(3,0,2.5)
𝛽!~𝑡(3,2.5,2.5)
𝛽"~𝑈(−∞,∞)

log Software Cost = 𝛽! + 𝛽" log Spacecraft Cost + 𝜖
𝜖 ~ SkewNormal(0, 𝜎, 𝛼)

credibility 
intervals



Bayesian CER

log Software Cost = 𝛽! + 𝛽" log Spacecraft Cost + 𝜖
𝜖 ~ SkewNormal(0, 𝜎, 𝛼)

Priors
𝛼~𝑁 0,4
𝜎~𝑡(3,0,2.5)
𝛽!~𝑡(3,2.5,2.5)
𝛽"~𝑈(−∞,∞)



The ASCoT Bayesian CER
credibility 
intervals

• Skew normal error term performs better than normal error (log-skew-normal vs log-normal)
• Captures low outliers without pulling median prediction down
• Reasonable uncertainty bounds on the native scale due to negative skew

• Simple regression performs better than models including other software cost drivers such 
as number of instruments, destination, or redundancy (TL;DR: avoids overfitting)



ASCoT Analogic Models

■ kNN model
– Finds the three missions most similar to your input
– Estimate is a weighted average of these nearest neighbors

■ Cluster model
– Finds the mission cluster most suited to your input
– Estimate is a weighted average of missions in your cluster

■ Both models utilize nonlinear principal components analysis (NLPCA)



NLPCA motivation

■ How do we determine proximity of data when the data is numeric?
– Use a distance formula (Pythagorean or other)
– Example
■ Mission 1: (4 instruments, 5 deployables)
■ Mission 2: (2 instruments, 1 deployable)

■ Distance: 𝑑 = 4 − 2 # + 5 − 1 # = 20

■ How do we determine proximity of data when the data is NOT numeric?
– Example
■ Mission 1: (Mars-bound, dual-string cold backup)
■ Mission 2: (Saturn-bound, dual-string warm backup)
■ Distance: 𝑑 = ? ? ?



NLPCA motivation

■ We have to find a way to numericize the data.
– Previous ASCoT versions chose “intuitive” transformations.
– i.e. Single-string = 1, Dual-string (cold) = 2, Dual-string (warm) = 4.
– This encapsulates the industry knowledge that the difference between a dual-

string (warm) system and a dual-string (cold) system is greater than the 
difference between a dual-string (cold) system and a single-string system.

■ NLPCA lets the data speak for itself – optimal transformations are learned using 
machine learning… in particular auto-associative neural networks



NLPCA - ANNs
Auto-associative neural network

ANN parameters are 
optimized such that the 
difference between the 

output layer and the input 
layer is minimized.

The goal is for the low-
dimensional bottleneck layer 

to adequately retain the 
information contained in the 

input layer.

The result is that a non-
numeric input layer can be 
projected onto a numeric, 
low-dimensional space.



kNN Algorithm
Overview
■ Once we have our missions in a 

low-dimensional numeric space, 
we can calculate the distance from 
each mission to any model input 
easily (in a well-defined manner)

■ If we choose k=2, we only use the 
closest two missions to generate 
an estimate.

P1

P2

P3

P5

Your 
Project

P4

Example
𝑘 = 2

𝑑1
𝑑2

Cost Your Project =

Cost(PL)
𝑑L

+ Cost(PM)𝑑M
1
𝑑L
+ 1
𝑑M



kNN Model Example Output

Effort (work-months)
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Model Input:
• Medium Inheritance
• Small Mission Size
• Earth orbiter
• Single-string
• Two instruments
• Zero deployables

Uncertainty in 
the NLPCA 

leads to 
uncertainty in 

the kNN result.



NLPCA-based Clusters
Effort Model Clusters

1. Very Large, Old, 
Outer Planetary

2. Rovers 3. Landers 4. Large, Complex,
Inner-Outer Planetary

5. Large, Complex, Earth-Inner 
Planetary

6. Smaller, Higher
Inheritance

7. Large, Earth
Observatories and
Constellations

Cassini MER Insight Dawn Deep Impact DS1 GRO
Galileo MPF Phoenix GRAIL Genesis GLORY HST

MSL JUNO GPM Core NuStar MMS
Kepler LRO OCO-1 SDO
LADEE Mars Observer WISE Spitzer
MAVEN Mars Odyssey
Messenger OSIRIS-REx
MRO SMAP
New Horizons Stardust
Parker Solar Probe STEREO

TIMED
Van Allen Probe

SLOC Model Clusters
1. Very Large, 
Old, Outer
Planetary

2. Rovers 3. Landers 4. Large, Complex, 
Inner-Outer Planetary

5. Large, Moderately
Complex, Dual String 
(Cold)

6. Smaller or 
Simple, Earth –
Asteroid/ 
Comet

7. Small-Medium, Single-
String Inner-Planetary or 
Dual String (Cold)
Asteroid/Comet

8. Large, Earth
Observatories and
Constellations

Cassini MER Insight JUNO Deep Impact DS1 Contour GLAST
Galileo MPF Phoenix Mars Observer Genesis EO1 Dawn GRO

MSL MAVEN GOES-R GLORY GRAIL HST
Messenger LDCM GPM Core LADEE MMS
MRO Mars Odyssey IRIS LCROSS SDO
New Horizons NPP NuStar LRO Spitzer
Parker Solar Probe OSIRIS-REx OCO-1 STEREO

Stardust SMAP
Van Allen Probe TIMED

WISE



Clustering Algorithm Overview

Probabilistic Linkage Matrices
Calculated using the k-Means algorithm in NLPCA space
Cassini, Galileo, and Rovers and Landers are removed.



Clustering Algorithm
Overview
■ Once we have our missions 

in a low-dimensional 
numeric space, we can 
calculate the distance from 
each mission to the 
“center” of any cluster

■ Once in a cluster with k
missions, use the kNN 
weighted average formula 
for the estimate.

Cluster 
2 

centroid
Your 

Project

Cost Your Project =
∑N∈P!

𝐶𝑜𝑠𝑡(𝑃)
𝑑(𝑃, Your Project)

∑N∈P!
1

𝑑(𝑃, Your Project)

Cluster 
4 

centroid

Cluster 
3 

centroid

Cluster 
1 

centroid

Cluster 
5 

centroid

𝑘 = |𝐶#|



Clustering Model Example Output

Model Input:
• Medium Inheritance
• Small Mission Size
• Earth orbiter
• Single-string
• Two instruments
• Zero deployables

Uncertainty in the 
NLPCA leads to 

uncertainty in the 
cluster result.

Cluster Number
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Cluster 6 (Smaller, Higher
Inheritance)
DS1
GLORY
NuStar
OCO-1
WISE

Uncertainty in the 
Effort distribution is 

caused by uncertainty 
in the NLPCA as well 
as uncertainty in the 

cluster.



ASCoT as a web tool hosted on the Online 
NASA Space Estimation Tools (ONSET)

■ ASCoT as a web tool is
– a set of four independent Dash (Python) applications, which each access…
– the ASCoT master database

■ ONSET is a web framework
– Secure, Django framework, currently hosts two tools (built in Dash):
■ ASCoT, and 
■ COMPACT (the CubeSat Or Microsat Probabilistic and Analogies Cost Tool)

– Hosted independently behind the JPL firewall and by NASA HQ on ONCE (One 
NASA Cost Engineering)

– Surprisingly simple (but with a learning curve) to build another tool from the 
ground up and include it in the ASCoT framework



Stuff I didn’t talk about today

■ Previous version of ASCoT reported point estimates (instead of probability 
distributions)

– This is an example of an extended effort at JPL to improve Uncertainty 
Quantification (UQ)

■ Future of ASCoT includes parametric and analogic cost models of Instrument Flight 
Software (not just full flight software)

■ If you’re part of the NASA community and have a systems model you’d like to share 
as a web tool, let’s talk!



Closing Out

■ COCOMO, CER, kNN, and Clustering models all produce probabilistic output

■ CER tool reports uncertainty in model parameters
– Full posterior distribution available for download as a CSV from the web tool

■ kNN and Clustering models utilize NLPCA and accounts for uncertainty in neural 
network fit

■ If you don’t have access to ONCE, you can request access by navigating to:
– http://oncedata.com/ONCEUserAccessRequestForm.pdf

■ Questions? Comments? Suggestions? Shoot me an email.
– Samuel.R.Fleischer@jpl.nasa.gov
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