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Introduction
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Why do we need Modelling ?

Describe an engineering system

and benefit multiple applications
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Hybrid model

First-principle

Black-box
model

model
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Combine data-driven methods physics-informed

Goal | and physical knowledge to Methodd neural network (PINN)
improve the prediction of oil well
dynamics.

The neural ordinary

Tool differential equation is Programming Julia
the main tool for the language
modeling and the
simulation.
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Mass of the gas in the annulus
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Methodology
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Training dataset

Loss
function

|
v Physics 4/

~ model MLk
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Update parameters of MLP
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* The input of the physics model is the current state vector
and control input wu.

* The output of the physics model is the derivatives of the
state vector, which is then broadcasted to multiple dense
layers.

 An ODE solver differentiate the output of the MLP as the
prediction of the states at the next time step.

x = f(x,u)

A%y,
PINN Cxy, trss) = j L j NN(f G 62 Bs )
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Mgq = Wga — Wyinj
Mg = Wyinj T Wgr — Wy,
mpy = Wy — Wy

+ 23 algebra equations
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* The simplified physics model provides not only the state
estimation at the next time step by solving the ODEs, but also the
constraints including prior knowledge of the initial states and
iInput, wu.

* The true values of the three parameters in the oil well model
were assumed unknown.

* The physical model used here is not necessary to be accurate to
describe the whole system. The unknown part and uncertainty
can be learnt during the training of the PINN model using training
data
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* A neural network is designed to learn the different between the output
of the physics model and the training data

* A neural network with dense layers was used in PINN
NN(X) = Wn 02(W201(W1x + bl) + bz) ot bn

* The residual of the simplified physics model was combined within the
mismatch in the training data on'the state variables

L(p) = (NN(0) = x0)? + ) (PINN(tie41) = Xis1)?

k
» The ADAM algorithm was run first and then the BFGS algorithm was
used to precisely search around the minimum area within a small
range.
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Data
collection
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Initial states

Data preprocessing

60% of Di 20% of Di 20% of Di

training
Model

development
Prediction
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» Datasets were collected from a gas lifting oil well simulator

* The sampling time for the transient is smaller than the sampling time
for the steady state

* Qutputs were added with white noise which follows the normal
distribution with zero mean.

* There are 200 dataset groups with different initial states. 160 groups
of the collected data were used for training and the rest 40 groups
were for evaluation and testing.

15-20 July - 2023 www.incose.org/symp2023 #INCOSEIS 16



* The range of the training data is around 3000 to 20000, which is
difficult for machine learning algorithms to learn from it.

« Besides, features have different magnitudes. The feature with a
large magnitude impacts the neural network model more, as the
large numerical values dominate during the calculation of the loss
function.

 optimization algorithm adopted in this work, ADAM, uses gradient

descent ) )
Normalization
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Tune hyperparameters of the neural network including the
number of epochs, the number of layers, the learning rate, the

number of nodes in each layer and the activation function for
each layer.

S(0) = —%E(PINN(JC("), t) — xb)?
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Result
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Mass of the gas in annulus Mass of the gas in tubing Mass of the liquid in tubing
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100
Training epoch
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—— Training
Validation
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200
Training epoch
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Discussion & Conclusion
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* The design of the physics model is subject to certain limitations
due to the connection between the simplified physics model and
the neural network in PINN.

* The prediction of the performance can only be in the training
range. With an untrained initial state, the test performance will
have a significant bias from the true output.

* In the validation part, grid search using cross-validation can be
an alternative for automatically seeking optimum
hyperparameters if the programming environment allows so.
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* This research study set out to propose a physics-informed data-
driven method for modelling a gas lifting oil well.

* The results of this study show that the trained PINN model is
able to predict the outputs of states with initial states which is
within the training range for both steady-state and transient.

 The potential application of the PINN model is an auxiliary
model based on data and prior physical knowledge of the ol
production process, which might help provide information for
model-based control.
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