international symposium

hybrid event

Honolulu, HI, USA
July 15 - 20, 2023

33rd Annual INCOSE

PURDUE

UNIVERSITY

Iboukun Phillips & Robert Kenley — Purdue University

15-20 July - 2023 www.incose.org/symp2023 #INCOSEIS 1

)

_/

MBSE/Cyber-physical
systems

Verification in SE
Formal Methods
Model Checking

Temporal Logic Language

)

NuSMV Model Checker

Kripke Structure
Autonomous multi-differential drive
robot (DDR) Case Study

Verification and Results

www.incose.org/symp2023 #INCOSEIS

= [nterpretation of Results

= |Limitations & Future Work

)

J

MBSE/Cyber-physical
systems

Systems Verification in MBSE
Formal Methods in SE

Model Checking

Temporal Logic Language

www.incose.org/symp2023 #INCOSEIS

 What are Cyber-physical systems (CPS)?
— Integration of physical, communication and computing technology systems
— Complex multidisciplinary systems

— Applications: Smart Manufacturing, Emergency Response, Air Transportation, Critical
Infrastructure, Health Care and Medicine, Intelligent Transportation, etc.

— CPS design entails a multidisciplinary

. Cyber Physical System (CPS)
approach (Lefevre, et al., 2014)

Virtual Layer Components

Physical Components
Opportunities for Model-Based

Systems Engineering (MBSE)

Sensor
Human Components
Smart Device
YVear/use Install/use St
Cloud Medical lm;;ljigted Smart device
= Device (MD)

Cyber-physical system components.
Source: (Henriksen-Bulmer, et al (2000))

www.incose.org/symp2023 #INCOSEIS

Pros

 MBSE supported with SysML & UML languages for system modeling

« Leverages its diagram types for the specification, analysis, design, verification, and validation
of CPS.

Challenges

« Common modeling languages are semi-formal modeling approach and lacks mathematically
rigorous, high-level formal language that can support automated design and analysis of
systems (Wang, et al., 2019)

 Inapplicability of existing conventional verification approaches for rigorously evaluating these
systems against system specifications

« Applications: systems where a design failure would result in a catastrophic situation such as
hardware systems, traffic control software, aerospace systems etc.

www.incose.org/symp2023 #INCOSEIS 5

(Seger, 1992)

system lifecycle

and specification of systems to ensure the correctness of system requirements.

Model Checking in SE

Schools of Thought
Mahani et al. (2021)

Most common V&V (verification & validation) method in literature (Martinez-Fernandez, 2022)
Formal verification is broadly classified into deductive verification and model checking

Utilized to analyze and verify system (hardware and software) models at any part of the

Formal methods + system models and SysML/UML diagrams — Effective formal modeling

Direct
(Clarke & Heinle, 2000)

Indirect

(Caltais, et al., 2016; Kalbl, et al., 2018)

st -

Sys

ML model

Verification Tool

www.incose.org/symp2023 #INCOSEIS

SysML model

Verification Tool
6

Indirect School of Thought for model checking application

Verification via Model Checker

Requirement Diagrams

Properties
varified?

Counterexamples

Sequence Diagrams
Activity Diagrams
State-Machine Diagrams

Model Checking Process leveraging on System Models

www.incose.org/symp2023 #INCOSEIS

TLL is the verification language for the formalism for this transformation to be used by
model checkers.

Classified into linear temporal logic (linear time structure) and Computational tree logic
(branching time structure). (Lahtinen, 2008).

Formal semantics of temporal formulas is defined for paths of a Kripke structure (Biere, et
al., 2009) - crucial in expressing temporal issues in reactive and concurrent systems like
CPS

Typical Linear temporal logic operators are:

—F p (read “in the future p”), stating that a certain condition p holds in one of the future
time instants;

—G p (read “globally p”), stating that a certain condition p holds in all future time instants;

—p U g (read “p until "), stating that condition p holds until a state is reached where
condition g holds;

—X p (read “next p”), stating that condition p is true in the next state.

www.incose.org/symp2023 #INCOSEIS

)

NuSMV Model Checker

Kripke Structure

Autonomous multi-differential drive

robot (DDR) Case Study

Verification and Results

www.incose.org/symp2023 #INCOSEIS

« New Symbolic Model Verifier (NUSMV)
— Used to analyze temporal logic specifications of various systems (Cavada, et al., 2005)
— Abstract notation of Kripke structure

— Permits Linear Temporal Logic (LTL), Computational Tree Logic (CTL), and the Property
Specification Language (PSL).

1 MODULE main
2
3 VAR _ _
4 request : boolean; state : {ready,busy};]‘ variable declaration
5
6 ASSIGN . ?
7 init(state) := ready; | Ivariable initialization | -
8 next(state) := case ‘. v)
9 state = ready & request : busy; variable transition
10 TRUE : {ready,busy},
11 esac: t Name = "request=TRUE"
’ | [L
|_ ready J | busy

A simple NuSMV Module declaration. Source: (Cavada, et al., 2013)
www.incose.org/symp2023 #INCOSEIS 10

« Underlying abstraction of the model checking process based on the concept of Finite State
Machines (FSMs)

— defined as a quadruple M =(S,R,S,,L)
where S is the set of states with S =
{50,51,52,53}

— S,ES Is the set of initial states

— R € § X S is the transition relation with C
={C1,...,C11} being the transition set

— and L:S — P(A) is the labeling function,
where A is the set of atomic
propositions, and P(A) is the powerset
over A

Finite State Machine model. Source: (Ding, et al., 2018)

www.incose.org/symp2023 #INCOSEIS 11

DDR system is a CPS of autonomous mobile robots (differential drive robots)
— developed to identify and retrieve a target inside a forest with an unknown path plan

Goal: utilize model checking to verify some system models already available for this DDR
system that can be described in terms of the forest environment, operational specifications,

and differential robot specifications.

North
West Q—I—> East

South Vertical CLiff Wall
_/__/_/\ —
o) O © O E

D
O @D o
& @ o o
/ =\ & = o
Start " A ‘ . . et ra
. . . Finish
-~ — —
o @ o S
O o
o O

M e System Environment
Diagram for the DDR.

Vertical CLifY Wall
Source: (Abu Al-Haija, 2022)

www.incose.org/symp2023 #INCOSEIS 12

(state machine DDR Operational States [[l DDR Operational States]

@ “eyon T —— el
S!-ﬂ[-~
| wWander
Sense ‘ Pause

7 2k
\\ /,_’/ Aéz.k oS
T T B

STM Diagram for the DDR System Operational States. Source: (Abu Al-Haija, 2022)
www.incose.org/symp2023 #INCOSEIS

Model Transformation: DDR Operational States

13

MODULE active

VAR

sense boolean;

pause boolean;

halt boolean;

accelerate boolean;

resume : boolean;

active_state {wonder, avoid, localize, visualizel};
ASSTIGN

init (active_state) := wander;

next (active_state) := case

active_state = wander & sense

wander & pause

avoid & halt

localize & accelerate
visualize & resume

active state
active_states
active_state
active_state
TRUE
esac;

MODULE main
VAR
keyOff: boolean;
start: boolean;
state: {inactive, active, off};
timer: 1..120;|

ASSIGN
init (state) := inactive;
init (timer) := 1;
next (state) := case
state = inactive & start

(state = active) & (timer <= 120)
(state = active) & (timer > 128)
state = inactive & keyOff

TRUE

esac;

LR N]

avoid;
visuglize;
localize;
wander;
wander;
active_state;

active;
active;
inactive;
off;
state;

NuSMV model for the DDR Operational States

www.incose.org/symp2023 #INCOSEIS

14

[state machine Motor Gontrol Unif u Motor Control Unnu

1

. ﬁJ idlie j <

Ser Speed

L

Stbp } ralt | Rotate

Setr Speed

STM Diagram for the DDR Motor Control Unit. Source: (Abu Al-Haija, 2022)

www.incose.org/symp2023 #INCOSEIS

MODULE main
VAR
set_speed: 1..15;
halt: boolean;
no_navigation: boolean;

state: {idle, rotate, stop};

ASSIGN

init (state) := idle;

next (state) := case
state =
state =
state =
state =
TRUE
esac;

idle & set_speed<=15
rotate & set_speed<=15
rotate & halt

stop & no_navigation

. rotate,
: rotate;
: stop;

» idle;

. state;

NuSMV model of the Motor Control Unit

www.incose.org/symp2023 #INCOSEIS

16

Verification and Results

roq Mooe] OOR Syssem{ §j Core Sysiem Regrements | | Autonomous Deferential Robot I

Total Inear datance i 15 mie :]

=21

Text = "The body
heght for DOR shall
not excead 20 feet”

DDR Operational States model

Requirement:

- LTLSPEC -p “G (state = active & timer
<=120)"

{Each Tree w il have mnmum radus of 10 feet 1o he cff wal)

{Each Tree wil have minimum radius of 15 feet 1 e cosest tree |

Motor Control Unit model

Requirement:

- LTLSPEC -p “G (state = rotate &
set speed <= 15)”

System Requirement Diagram for the Autonomous DDR. Source: (Abu Al-Haija, 2022)

www.incose.org/symp2023 #INCOSEIS

17

) "'“’

4+

r s

Copyright
e e

\.o:}‘ e -

.,

ccl

+* ~
flatte

(c) 2010-2014,

n of NuSMV is
1995-2004,

b AN

ion of NuSMV is link

/minisat.se/MiniSa
(€) ’eeg-’ee:,
() 2007-2018,

_model
n_hierarc

iption:

Verification Results

the CUDD library

University

WWW.INC0oSe.o

NuSMV
NuSMV > encode_
NuSMV > build model
NuSMV >

NuSMV > check

yright (c) 2010-2014,

'k*s version
opyright (c)

1s linked t

/minisat.se/MiniSat

(c) 2093-2006, L1<Las Eer
Niklas Sorensson

(c) 2087-2010,

> read_model -1 MCU.smv
i

> flatten_hierarchy

variables

check_ltlspec -p
G set_
_Itlspec

-- specification G

-- as demonstrated by

. S"ECl”’ tion

Trace Description: LT
Trace Type:

Counterexam;
State: 1.1 «-
set_speed

nere

=
7 R G

op starts
rotate

b | 4
aded \=

ymp2023 #INCOSEIS

rongazio

ne Bruno Kessler

linked to the CUDD library version 2.
Regents

of the Un;ue"czty of 'o orado

v 19

ha Ms s AT Tvua
0 the MiniSat SAT solver.

Niklas Sorensson

)

www.incose.org/symp2023 #INCOSEIS

= Interpretation of Results

= |imitations & Future Work

19

For both models, the specifications are false, which means that the NuSMV
models do not satisfy the requirements defined in LTL.

Conversely, a counterexample is provided in both models to detalil the execution
sequence that breaks the LTL specification/requirement formula.

An implication of the false specification for the DDR navigation requirement in
State 1.1 is that the DDR could be in an inactive phase. At the same time, the
timer variable is at most 120 minutes which shows that the navigation duration
requirement is unrealistic. In reality, the timer can be at most 120 minutes, but
the DDR may not be fully operational and switched on for it to be in the active
phase

The model checking process helped identify the faulty requirements in the
SysML requirement diagram of the DDR

Defects in product/system development and verification, especially in system
design, can be found using the proposed method.

www.incose.org/symp2023 #INCOSEIS

20

State-space explosion problem

— Binary Decision Diagrams (BDDs)

— Abstraction

— Partial-order reduction (Lahtinen, 2008)

Future Work

Other behavioral SysML diagrams (use case, activity, and sequence
diagrams) can be formally expressed in the verification language of a model
checker like NuSMV

Partial or full automation of the SysML model transformation into the model
checking tool (NuUSMV).

www.incose.org/symp2023 #INCOSEIS 21

Abu Al-Haija, Q., 2022. SysML-Based Design of Autonomous Multi-robot Cyber-Physical System Using Smart IoT Modules:
A Case Study. Machine Learning Techniques for Smart City Applications: Trends and Solutions, pp. 203-219.

Biere, A. et al., 2009. Bounded model checking. In: Handbook of satisfiability., pp. 457-481.

Caltais, G., Leitner-Fischer, F., Leue, S. & Weiser, J., 2016. SysML to NuSMV model transformation via object-orientation.
Cham, Springer, pp. 31-45.

Cavada, R. et al., 2005. Nusmv 2.4 user manual.
Cavada, R. et al., 2013. NuSMV 2.5 User Manual.

Clarke, E. M., & Heinle, W. (2000). Modular translation of Statecharts to SMV. Technical Report CMU-CS-00-XXX,
Carnegie Mellon University School of Computer Science.

Ding, Y. et al., 2018. System states transition safety analysis method based on FSM and NuSMV, pp. 107-112.
Lahtinen, J., 2008. Simplification of NuSMV Model Checking Counter Examples.

Lefevre, J. et al.,, 2014. Multidisciplinary modelling and simulation for mechatronic design. Journal of Design Research,
9(12), pp. 127-144.

Kolbl, M., Leue, S. & Singh, H., 2018. From SysML to model checkers via model transformation. Cham, Springer, pp. 255-
274.

Martinez-Fernandez, Bogner, J., Franch, X., Oriol, M., Siebert, J., Trendowicz, A., Volimer, A.M., and Stefan Wagner., 2022.
Software engineering for Al-based systems: a survey.. ACM Transactions on Software Engineering and Methodology,
31(2), pp. 1-59.

Mahani, M., Rizzo, D., Paredis, C. & Wang, Y., 2021. Automatic formal verification of SysML state machine diagrams for
vehicular control system, : SAE.

Henriksen-Bulmer, J., Faily, S., & Jeary, S. (2020). DPIA in context: applying dpia to assess privacy risks of cyber physical
systems. Future internet, 12(5), 93.

www.incose.org/symp2023 #INCOSEIS 22

f\ 3¢ A1nual INCOSE
international symposium

'

v w2 .

) .y‘/ Honolulu, HI, USA
4 July 15 - 20, 2023
www.incose.org/symp2023

#INCOSEIS

