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MBSE & Cyber-Physical Systems design
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• What are Cyber-physical systems (CPS)?

– Integration of physical, communication and computing technology systems

– Complex multidisciplinary systems

– Applications: Smart Manufacturing, Emergency Response, Air Transportation, Critical 

Infrastructure, Health Care and Medicine, Intelligent Transportation, etc.

– CPS design entails a multidisciplinary

approach (Lefèvre, et al., 2014)

Opportunities for Model-Based 

Systems Engineering (MBSE)

Cyber-physical system components. 

Source: (Henriksen-Bulmer, et al (2000))



Systems Verification in MBSE 
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Pros

• MBSE supported with SysML & UML languages for system modeling

• Leverages its diagram types for the specification, analysis, design, verification, and validation 

of CPS.

Challenges

• Common modeling languages are semi-formal modeling approach and lacks mathematically 

rigorous, high-level formal language that can support automated design and analysis of 

systems (Wang, et al., 2019)

• Inapplicability of existing conventional verification approaches for rigorously evaluating these 

systems against system specifications

• Applications: systems where a design failure would result in a catastrophic situation such as 

hardware systems, traffic control software, aerospace systems etc.



Formal Methods in Systems Engineering
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• Most common V&V (verification & validation) method in literature (Martínez-Fernández, 2022)

• Formal verification is broadly classified into deductive verification and model checking

(Seger, 1992)

• Utilized to analyze and verify system (hardware and software) models at any part of the 

system lifecycle

• Formal methods + system models and SysML/UML diagrams → Effective formal modeling 

and specification of systems to ensure the correctness of system requirements.

Model Checking in SE 

Schools of Thought
Mahani et al. (2021)

Direct

(Clarke & Heinle, 2000)

Indirect

(Caltais, et al., 2016; Kölbl, et al., 2018)

SysML model
Verification Tool

SysML model Verification ToolIntermediate model



Formal Methods: Model Checking
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Model Checking Process leveraging on System Models 

• Indirect School of Thought for model checking application



Model Checking: Temporal Logic Language 
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• TLL is the verification language for the formalism for this transformation to be used by 

model checkers. 

• Classified into linear temporal logic (linear time structure) and Computational tree logic 

(branching time structure). (Lahtinen, 2008). 

• Formal semantics of temporal formulas is defined for paths of a Kripke structure (Biere, et 

al., 2009) - crucial in expressing temporal issues in reactive and concurrent systems like 

CPS

• Typical Linear temporal logic operators are:

–F p (read “in the future p”), stating that a certain condition p holds in one of the future 

time instants;

–G p (read “globally p”), stating that a certain condition p holds in all future time instants;

–p U q (read “p until q”), stating that condition p holds until a state is reached where 

condition q holds;

–X p (read “next p”), stating that condition p is true in the next state.



Proposed Framework
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NuSMV Model Checker 
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• New Symbolic Model Verifier (NuSMV)

– Used to analyze temporal logic specifications of various systems (Cavada, et al., 2005)

– Abstract notation of Kripke structure

– Permits Linear Temporal Logic (LTL), Computational Tree Logic (CTL), and the Property 

Specification Language (PSL).

A simple NuSMV Module declaration. Source: (Cavada, et al., 2013) 

variable declaration

variable initialization

variable transition



Kripke Structure in NuSMV from SysML Transformation
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• Underlying abstraction of the model checking process based on the concept of Finite State 

Machines (FSMs) 

– defined as a quadruple 𝑀 =(𝑆,𝑅,𝑆0,𝐿) 

where 𝑆 is the set of states with 𝑆 = 

{𝑆0,𝑆1,𝑆2,𝑆3}

– 𝑆0⊆𝑆 is the set of initial states

– 𝑅 ⊆ 𝑆 𝑋 𝑆 is the transition relation with 𝐶
= {𝐶1,…,𝐶11} being the transition set

– and 𝐿∶𝑆 → 𝑃(𝐴) is the labeling function, 

where 𝐴 is the set of atomic 

propositions, and 𝑃(𝐴) is the powerset 

over 𝐴

Finite State Machine model. Source: (Ding, et al., 2018)



Case study: Autonomous multi-differential drive robot (DDR) 
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• DDR system is a CPS of autonomous mobile robots (differential drive robots) 

– developed to identify and retrieve a target inside a forest with an unknown path plan

• Goal: utilize model checking to verify some system models already available for this DDR 

system that can be described in terms of the forest environment, operational specifications, 

and differential robot specifications.

System Environment 

Diagram for the DDR. 

Source: (Abu Al-Haija, 2022) 



Model Transformation: DDR Operational States 
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STM Diagram for the DDR System Operational States. Source: (Abu Al-Haija, 2022)



Model Transformation: DDR Operational States 
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NuSMV model for the DDR Operational States



Model Transformation: Motor Control Unit 
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STM Diagram for the DDR Motor Control Unit. Source: (Abu Al-Haija, 2022)



Model Transformation: Motor Control Unit 
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NuSMV model of the Motor Control Unit



Verification and Results 
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DDR Operational States model

Requirement:

- LTLSPEC -p “G (state = active & timer 

<= 120)”

Motor Control Unit model

Requirement:

- LTLSPEC -p “G (state = rotate &         

set_speed <= 15)”

System Requirement Diagram for the Autonomous DDR. Source: (Abu Al-Haija, 2022)



Verification and Results 
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NuSMV model of the Motor Control Unit

Verification Results



Conclusion
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Interpretation of Results
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• For both models, the specifications are false, which means that the NuSMV

models do not satisfy the requirements defined in LTL. 

• Conversely, a counterexample is provided in both models to detail the execution 

sequence that breaks the LTL specification/requirement formula.

• An implication of the false specification for the DDR navigation requirement in 

State 1.1 is that the DDR could be in an inactive phase. At the same time, the 

timer variable is at most 120 minutes which shows that the navigation duration 

requirement is unrealistic. In reality, the timer can be at most 120 minutes, but 

the DDR may not be fully operational and switched on for it to be in the active 

phase

• The model checking process helped identify the faulty requirements in the 

SysML requirement diagram of the DDR

• Defects in product/system development and verification, especially in system 

design, can be found using the proposed method.



Limitations & Future Work
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• State-space explosion problem

– Binary Decision Diagrams (BDDs)

– Abstraction

– Partial-order reduction   (Lahtinen, 2008)

Future Work

• Other behavioral SysML diagrams (use case, activity, and sequence 

diagrams) can be formally expressed in the verification language of a model 

checker like NuSMV

• Partial or full automation of the SysML model transformation into the model 

checking tool (NuSMV).
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