
System Verification via Model-Checking: A Case study of

a multi-differential drive robot

Ibukun Phillips & Robert Kenley – Purdue University

www.incose.org/symp2023 #INCOSEIS 115-20 July - 2023

Presentation Outline

www.incose.org/symp2023 #INCOSEIS 2

▪ MBSE/Cyber-physical

systems

▪ Verification in SE

▪ Formal Methods

▪ Model Checking

▪ Temporal Logic Language

Introduction
Proposed

Framework
Conclusion

15-20 July - 2023

▪ NuSMV Model Checker

▪ Kripke Structure

▪ Autonomous multi-differential drive

robot (DDR) Case Study

▪ Verification and Results

▪ Interpretation of Results

▪ Limitations & Future Work

Introduction

www.incose.org/symp2023 #INCOSEIS 3

▪ MBSE/Cyber-physical

systems

▪ Systems Verification in MBSE

▪ Formal Methods in SE

▪ Model Checking

▪ Temporal Logic Language

Introduction
Proposed

Framework
Conclusion

15-20 July - 2023

MBSE & Cyber-Physical Systems design

15-20 July - 2023 www.incose.org/symp2023 #INCOSEIS 4

• What are Cyber-physical systems (CPS)?

– Integration of physical, communication and computing technology systems

– Complex multidisciplinary systems

– Applications: Smart Manufacturing, Emergency Response, Air Transportation, Critical

Infrastructure, Health Care and Medicine, Intelligent Transportation, etc.

– CPS design entails a multidisciplinary

approach (Lefèvre, et al., 2014)

Opportunities for Model-Based

Systems Engineering (MBSE)

Cyber-physical system components.

Source: (Henriksen-Bulmer, et al (2000))

Systems Verification in MBSE

15-20 July - 2023 www.incose.org/symp2023 #INCOSEIS 5

Pros

• MBSE supported with SysML & UML languages for system modeling

• Leverages its diagram types for the specification, analysis, design, verification, and validation

of CPS.

Challenges

• Common modeling languages are semi-formal modeling approach and lacks mathematically

rigorous, high-level formal language that can support automated design and analysis of

systems (Wang, et al., 2019)

• Inapplicability of existing conventional verification approaches for rigorously evaluating these

systems against system specifications

• Applications: systems where a design failure would result in a catastrophic situation such as

hardware systems, traffic control software, aerospace systems etc.

Formal Methods in Systems Engineering

www.incose.org/symp2023 #INCOSEIS 6

• Most common V&V (verification & validation) method in literature (Martínez-Fernández, 2022)

• Formal verification is broadly classified into deductive verification and model checking

(Seger, 1992)

• Utilized to analyze and verify system (hardware and software) models at any part of the

system lifecycle

• Formal methods + system models and SysML/UML diagrams → Effective formal modeling

and specification of systems to ensure the correctness of system requirements.

Model Checking in SE

Schools of Thought
Mahani et al. (2021)

Direct

(Clarke & Heinle, 2000)

Indirect

(Caltais, et al., 2016; Kölbl, et al., 2018)

SysML model
Verification Tool

SysML model Verification ToolIntermediate model

Formal Methods: Model Checking

www.incose.org/symp2023 #INCOSEIS 7

Model Checking Process leveraging on System Models

• Indirect School of Thought for model checking application

Model Checking: Temporal Logic Language

www.incose.org/symp2023 #INCOSEIS 8

• TLL is the verification language for the formalism for this transformation to be used by

model checkers.

• Classified into linear temporal logic (linear time structure) and Computational tree logic

(branching time structure). (Lahtinen, 2008).

• Formal semantics of temporal formulas is defined for paths of a Kripke structure (Biere, et

al., 2009) - crucial in expressing temporal issues in reactive and concurrent systems like

CPS

• Typical Linear temporal logic operators are:

–F p (read “in the future p”), stating that a certain condition p holds in one of the future

time instants;

–G p (read “globally p”), stating that a certain condition p holds in all future time instants;

–p U q (read “p until q”), stating that condition p holds until a state is reached where

condition q holds;

–X p (read “next p”), stating that condition p is true in the next state.

Proposed Framework

www.incose.org/symp2023 #INCOSEIS 9

Introduction
Proposed

Framework
Conclusion

15-20 July - 2023

▪ NuSMV Model Checker

▪ Kripke Structure

▪ Autonomous multi-differential drive

robot (DDR) Case Study

▪ Verification and Results

NuSMV Model Checker

www.incose.org/symp2023 #INCOSEIS 10

• New Symbolic Model Verifier (NuSMV)

– Used to analyze temporal logic specifications of various systems (Cavada, et al., 2005)

– Abstract notation of Kripke structure

– Permits Linear Temporal Logic (LTL), Computational Tree Logic (CTL), and the Property

Specification Language (PSL).

A simple NuSMV Module declaration. Source: (Cavada, et al., 2013)

variable declaration

variable initialization

variable transition

Kripke Structure in NuSMV from SysML Transformation

www.incose.org/symp2023 #INCOSEIS 11

• Underlying abstraction of the model checking process based on the concept of Finite State

Machines (FSMs)

– defined as a quadruple 𝑀 =(𝑆,𝑅,𝑆0,𝐿)

where 𝑆 is the set of states with 𝑆 =

{𝑆0,𝑆1,𝑆2,𝑆3}

– 𝑆0⊆𝑆 is the set of initial states

– 𝑅 ⊆ 𝑆 𝑋 𝑆 is the transition relation with 𝐶
= {𝐶1,…,𝐶11} being the transition set

– and 𝐿∶𝑆 → 𝑃(𝐴) is the labeling function,

where 𝐴 is the set of atomic

propositions, and 𝑃(𝐴) is the powerset

over 𝐴

Finite State Machine model. Source: (Ding, et al., 2018)

Case study: Autonomous multi-differential drive robot (DDR)

www.incose.org/symp2023 #INCOSEIS 12

• DDR system is a CPS of autonomous mobile robots (differential drive robots)

– developed to identify and retrieve a target inside a forest with an unknown path plan

• Goal: utilize model checking to verify some system models already available for this DDR

system that can be described in terms of the forest environment, operational specifications,

and differential robot specifications.

System Environment

Diagram for the DDR.

Source: (Abu Al-Haija, 2022)

Model Transformation: DDR Operational States

www.incose.org/symp2023 #INCOSEIS 13

STM Diagram for the DDR System Operational States. Source: (Abu Al-Haija, 2022)

Model Transformation: DDR Operational States

www.incose.org/symp2023 #INCOSEIS 14

NuSMV model for the DDR Operational States

Model Transformation: Motor Control Unit

www.incose.org/symp2023 #INCOSEIS 15

STM Diagram for the DDR Motor Control Unit. Source: (Abu Al-Haija, 2022)

Model Transformation: Motor Control Unit

www.incose.org/symp2023 #INCOSEIS 16

NuSMV model of the Motor Control Unit

Verification and Results

www.incose.org/symp2023 #INCOSEIS 17

DDR Operational States model

Requirement:

- LTLSPEC -p “G (state = active & timer

<= 120)”

Motor Control Unit model

Requirement:

- LTLSPEC -p “G (state = rotate &

set_speed <= 15)”

System Requirement Diagram for the Autonomous DDR. Source: (Abu Al-Haija, 2022)

Verification and Results

www.incose.org/symp2023 #INCOSEIS 18

NuSMV model of the Motor Control Unit

Verification Results

Conclusion

www.incose.org/symp2023 #INCOSEIS 19

Introduction
Proposed

Framework
Conclusion

15-20 July - 2023

▪ Interpretation of Results

▪ Limitations & Future Work

Interpretation of Results

www.incose.org/symp2023 #INCOSEIS 20

• For both models, the specifications are false, which means that the NuSMV

models do not satisfy the requirements defined in LTL.

• Conversely, a counterexample is provided in both models to detail the execution

sequence that breaks the LTL specification/requirement formula.

• An implication of the false specification for the DDR navigation requirement in

State 1.1 is that the DDR could be in an inactive phase. At the same time, the

timer variable is at most 120 minutes which shows that the navigation duration

requirement is unrealistic. In reality, the timer can be at most 120 minutes, but

the DDR may not be fully operational and switched on for it to be in the active

phase

• The model checking process helped identify the faulty requirements in the

SysML requirement diagram of the DDR

• Defects in product/system development and verification, especially in system

design, can be found using the proposed method.

Limitations & Future Work

www.incose.org/symp2023 #INCOSEIS 21

• State-space explosion problem

– Binary Decision Diagrams (BDDs)

– Abstraction

– Partial-order reduction (Lahtinen, 2008)

Future Work

• Other behavioral SysML diagrams (use case, activity, and sequence

diagrams) can be formally expressed in the verification language of a model

checker like NuSMV

• Partial or full automation of the SysML model transformation into the model

checking tool (NuSMV).

References

15-20 July - 2023
www.incose.org/symp2023 #INCOSEIS 22

• Abu Al-Haija, Q., 2022. SysML-Based Design of Autonomous Multi-robot Cyber-Physical System Using Smart IoT Modules:

A Case Study. Machine Learning Techniques for Smart City Applications: Trends and Solutions, pp. 203-219.

• Biere, A. et al., 2009. Bounded model checking. In: Handbook of satisfiability., pp. 457-481.

• Caltais, G., Leitner-Fischer, F., Leue, S. & Weiser, J., 2016. SysML to NuSMV model transformation via object-orientation.

Cham, Springer, pp. 31-45.

• Cavada, R. et al., 2005. Nusmv 2.4 user manual.

• Cavada, R. et al., 2013. NuSMV 2.5 User Manual.

• Clarke, E. M., & Heinle, W. (2000). Modular translation of Statecharts to SMV. Technical Report CMU-CS-00-XXX,

Carnegie Mellon University School of Computer Science.

• Ding, Y. et al., 2018. System states transition safety analysis method based on FSM and NuSMV, pp. 107-112.

• Lahtinen, J., 2008. Simplification of NuSMV Model Checking Counter Examples.

• Lefèvre, J. et al., 2014. Multidisciplinary modelling and simulation for mechatronic design. Journal of Design Research,

9(12), pp. 127-144.

• Kölbl, M., Leue, S. & Singh, H., 2018. From SysML to model checkers via model transformation. Cham, Springer, pp. 255-

274.

• Martínez-Fernández, Bogner, J., Franch, X., Oriol, M., Siebert, J., Trendowicz, A., Vollmer, A.M., and Stefan Wagner., 2022.

Software engineering for AI-based systems: a survey.. ACM Transactions on Software Engineering and Methodology,

31(2), pp. 1-59.

• Mahani, M., Rizzo, D., Paredis, C. & Wang, Y., 2021. Automatic formal verification of SysML state machine diagrams for

vehicular control system, : SAE.

• Henriksen-Bulmer, J., Faily, S., & Jeary, S. (2020). DPIA in context: applying dpia to assess privacy risks of cyber physical

systems. Future internet, 12(5), 93.

www.incose.org/symp2023

#INCOSEIS

