
Modeling Principles to Moderate the Growth
of Technical Debt in Descriptive Models

www.incose.org/symp2024 #INCOSEIS 12-6 July 2024

Ryan Noguchi, The Aerospace Corporation Approved for public release. OTR-2024-00758

Agenda

2-6 July 2024 www.incose.org/symp2024 #INCOSEIS 2

• Introduction—The Discipline of Model Architecting

• Technical Debt in Descriptive Models

• 5 Model Federation Principles

• 3 Model Layers Principles

• 6 Modeling Domain Principles

• 4 Modeling Semantics Principles

Introduction—The Discipline of Model Architecting

2-6 July 2024 www.incose.org/symp2024 #INCOSEIS 3

• Architecting principles and heuristics
– Guide architects and facilitate rapid and effective architectural decision-making
– Similar principles are needed to facilitate the practice of model architecting

• This presentation describes 18 modeling principles
– Commonly observed in modeling practice
– Strongly influence model technical debt
– Consider them when making decisions about model architecture and implementation
– Many of these principles are primarily oriented toward object-oriented (OO) models

• Particularly those using SysML or UAFML

• None of these principles are absolute
– Each represents a concept that is generally beneficial, not necessarily universally ideal

The Technical Debt Concept

2-6 July 2024 www.incose.org/symp2024 #INCOSEIS 4

• Technical debt is a widely-used concept in the software domain:
– A metaphor for development or sustainment costs deferred to the future (Cunningham, 1992)

• Like financial debt, technical debt represents the deferred costs of repairing,
reworking, or replacing a product that wasn’t built perfectly from the beginning

– Created “when developers violate good architectural or coding practices, creating
structural flaws in the code” (Curtis et al.)

• Much research and evolution of practice in the software domain is focused on
managing technical debt

– Limiting its growth
– Paying off debt over time
– Avoiding growth of technical debt resulting from ignorance

Cunningham, W. (1992). The Wycash portfolio management system, in
Addendum to the Proceedings of Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA), ACM Press.

Curtis, B., Sappidi, J., & Szynkarski, A. (2012a). Estimating the Size,
Cost, and Types of Technical Debt. 3rd International Workshop
on Managing Technical Debt.

5 Model Federation Principles

2-6 July 2024 www.incose.org/symp2024 #INCOSEIS 5

• A model federation is a distributed set of models connected by a
controlled set of model usage relationships
– To enable their content to be shared whilst retaining their autonomy and

ability to evolve independently

• Federation adds complexity and requires active architecting
attention
– Tradeoffs among different federation architectures and approaches

Model Federation Principle: Consider Federation Early (CFE)

2-6 July 2024 www.incose.org/symp2024 #INCOSEIS 6

• Most modeling efforts begin with a single, monolithic model
– Scaling and federation are often afterthoughts

• As the model grows in size and use, the value of federation grows
– Changing model federation architecture becomes increasingly difficult as the model grows
– Often results in a large “balloon payment”

• Taxes associated with delayed federation are deceptively low
– Waiting until “the last responsible moment” to make model architectural decisions often results

in being too late to avoid significant rework costs

• Modeling projects generally should address federation proactively
– Not all model projects should use federation
– Federation should be done to address specific functional objectives for the models

Model Federation Principle: Partition for Cohesion (PfC)

2-6 July 2024 www.incose.org/symp2024 #INCOSEIS 7

• A key role of architects is partitioning a large component into discrete components
– And allocating responsibilities and defining interfaces between components

• Model partitioning should be driven by considerations of both model governance and
model usage

– These often represent competing sources of tension for model partitioning

• Align model partitions with organizational responsibilities for model content
– Improves efficiency of model governance

• Model usage is facilitated when fewer model boundaries are crossed in queries
– Each boundary crossing can result in semantic mismatch, complicate query construction, or

impede tool performance

• Impact of misalignment—too much coupling, not enough cohesion—can manifest in
substantial additional effort needed to build, sustain, and use those models

Model Federation Principle: Federate to Interrogate (FtI)

2-6 July 2024 www.incose.org/symp2024 #INCOSEIS 8

• Directional usage relationships between federated models should be designed to
avoid model usage cycles or interdependencies

– These can result in performance problems

• The diagram on the left depicts a simple dependency cycle
– Federations should be architected to avoid cycles
– Federations should align model usages with the most important query navigation paths

• Queries navigating reverse paths can be accommodated by introducing an
additional “bridging” model (Model B) as shown in the diagram on the right

1) a model usage cycle 2) Breaking the cycle via a “bridging” model

Martin, R. & Martin, M. (2006). Agile Principles,
Patterns, and Practices in C#. Pearson.

Model Federation Principle: Dependency Inversion Principle (DIP)

2-6 July 2024 www.incose.org/symp2024 #INCOSEIS 9

• Analogous to the OO software principle of the same name
– “More abstract software modules should depend on less abstract modules” (Martin & Martin, 2006)

– More abstract modules are typically more stable than more concrete modules
– Easier to manage dependencies when those dependencies are more stable
– As a result, violating DIP is riskier than following DIP

Martin, R. & Martin, M. (2006). Agile Principles,
Patterns, and Practices in C#. Pearson.

Dependency is from the more
concrete model C to the more
abstract model A, consistent with DIP

An interface model can insulate two models
from volatility in the other; model I is more
abstract (and stable) than models A and C

Model Federation Principle: Define Clear Interfaces (DCI)

2-6 July 2024 www.incose.org/symp2024 #INCOSEIS 10

• Connections between federated models should establish consistent mechanisms for:
– Semantically connecting concepts represented by model elements
– Querying those models.

• Connect specific model elements with specific relationships carrying specific semantics

• It is particularly vital to define model interfaces when connecting modeling “dialects”
– Every SysML model represents a potentially different domain language with its own concepts

and its own context

• Failing to implement a standard often results in inconsistent modeling patterns being used
and makes it difficult for users to get correct answers to their queries

A
«System»

A Prime
«block»

X Prime
«activity»

X
«Function»

«allocate» «allocate»

«IsCapableToPerform»

«allocate»«allocate»

«IsCapableToPerform»

«allocate»«allocate»

Figure adapted from:
Martin, J.N. & Brookshier, D. (2023). Linking UAF and

SysML Models: Achieving Alignment
between Enterprise and System Architectures.
33rd INCOSE International Symposium.

3 Model Layers Principles

2-6 July 2024 www.incose.org/symp2024 #INCOSEIS 11

• Descriptive models are constructed with multiple layers
– Layers of abstraction facilitate separations of concerns

– Taxonomic layers represent key domain concepts at different levels of
granularity

• The model architect must make critical decisions about
the definition of these layers
– Selecting the right number of layers
– Identifying the intent of each layer

– Defining the interfaces between layers

Model Layers Principle: Just Enough Layers (JEL)

2-6 July 2024 www.incose.org/symp2024 #INCOSEIS 12

• Too few abstraction layers increases risk that additional intermediate layers must
be added later

• Too many abstraction layers drives additional complexity and taxes

• Too few taxonomic layers can create difficult rework for each usage or
specialization of each model element

• Too many taxonomic layers can lead to an explosion of additional model elements

Transport Layer
«block»

Physical Layer
«block»

Network Layer
«block»

Data Link Layer
«block»

Communications Satellite
«block»

Subsystem
«block»

System
«block»

Segment
«block»

Element
«block»

Communications Relay
«block»

Communications Node
«block»

Geostationary COMSAT
«block»

0..*0..* 0..*0..*0..* 0..*

Model Layers Principle: Don’t Cross Streams (DCS)

2-6 July 2024 www.incose.org/symp2024 #INCOSEIS 13

• Avoid creating connections between abstraction layers
– Communication across abstraction layers dilutes separation of concerns
– Often results when mixing structure and abstraction in a single hierarchy
– Also seen when combining contextual tenses within the same model
– Easily renders the model inconsistent, incoherent, and very difficult to correct

• Modeling methodology should clearly define the use of these layers
and identify specific interface points between those layers
– Enforce consistency and avoid breaking encapsulation

Syracuse IV Satellite

«block»
«physical»

Headquarters

«block»
«logical»

formatted command messageformatted command message

Model Layers Principle: Scale Free Decomposition (SFD)

2-6 July 2024 www.incose.org/symp2024 #INCOSEIS 14

• Modelers often overuse bespoke levels of decomposition
– A specific taxonomy of distinct element types at each level

• Often, the natural representation is a tree structure where
composite and atomic elements can be treated equivalently
– e.g., a scale-free (recursive) mode of decomposition
– Minimizes the addition of extraneous decomposition layers
– Also facilitates satisfaction of the other two Model Layers Principles

• Just Enough Layers
• Don’t Cross Streams

6 Modeling Domain Principles

2-6 July 2024 www.incose.org/symp2024 #INCOSEIS 15

• Descriptive models for MBSE must accurately represent
the domain being modeled
– At least to the extent that it answers the stakeholders’ questions

• Misalignment between the way concepts are modeled
and stakeholders’ expectations of those concepts is a
significant source of technical debt

Modeling Domain Principles: Other People’s Profiles (OPP)

2-6 July 2024 www.incose.org/symp2024 #INCOSEIS 16

• Avoid reinventing the square wheel

• While it can be very useful to create new metamodels and profiles to better
represent vital concepts within the model’s domain, this also has a downside

– Often, homegrown approaches are narrowly focused and poorly documented,
reducing their reusability and understandability.

• Unique profiles must be continually maintained through the life of the project
– Often this maintenance cost can be significantly reduced by extending standards

• By converging on a preferred set of these standards and contributing to their
evolution, the MBSE community can better leverage reuse, improve model
interoperability, and more efficiently use their resources

Modeling Domain Principles: Single Responsibility Principle (SRP)

2-6 July 2024 www.incose.org/symp2024 #INCOSEIS 17

• Definitions should be minimal in scope
– Represent a single coherent concept, not a combination of multiple distinct concepts

• A composite concept is usually best represented using multiple inheritance

• Failure to adhere to this principle often results in the need to eventually break
up the definition into its constituent components

– This results in substantial propagation of rework to the specializations and usages of
that definition as well as users of those usages

• Modelers very experienced with OO programming can be subconsciously
biased against multiple inheritance due to their software experience

Communications Satellite
«block»

Satellite
«block»

Communications Relay
«block»

Communications Node
«block»

Geostationary COMSAT
«block»

Modeling Domain Principles: Open/Closed Principle (OCP)

2-6 July 2024 www.incose.org/symp2024 #INCOSEIS 18

• Model element type definitions should be designed to be
specialized without needing to be modified

– Typically, modification is needed because the definition is
overly constrained

– While it isn’t possible to anticipate all future contexts,
enabling future flexibility is not difficult when done early

• In this figure, the Communications Satellite block has a
Payload part with the default multiplicity of 1

– This multiplicity limits its use in the frequently observed cases
in which the satellite bears multiple payloads

– If the multiplicity is corrected, rework is driven to many of its
specializations

– That rework typically requires manual inspection of each
specialization to determine if rework is warranted

Modeling Domain Principles: Liskov Substitution Principle (LSP)

2-6 July 2024 www.incose.org/symp2024 #INCOSEIS 19

• Any specialization of a base classifier should be a valid substitute for
that base classifier (Liskov, 1988; Martin, 1996)

• In descriptive models, generalization should be reserved for those
contexts for which that substitution is valid
– Not just used as a convenient mechanism for reuse

• In OO software, inheritance is often avoidable as most use cases for
inheritance are better implemented by composition
– However, in OO modeling, inheritance carries semantics of substitutability and

should be reserved for that purpose

Liskov, B. (1988). Data abstraction and hierarchy.
SIGPLAN Notices 23.

Martin, R. (1996). The Liskov Substitution Principle.
C++ Report, Vol 9 (2).

Modeling Domain Principles: Interface Segregation Principle (ISP)

2-6 July 2024 www.incose.org/symp2024 #INCOSEIS 20

• Type definitions should avoid defining features that are not required (or
even meaningful) in all of its specializations

• In the diagram below, the Communications Node has an electrical power
port whose multiplicity value makes it non-optional

– As a result, all Communications Nodes must have one, even if not needed
– It is often difficult to deactivate those features for those specializations that don’t use them

Modeling Domain Principles: Reify for Reuse (RfR)

2-6 July 2024 www.incose.org/symp2024 #INCOSEIS 21

• Modelers often rely too heavily on primitive types

• Enumerations are often a better choice

• If a concept is frequently reused in different contexts
it is often better to reify it

– i.e., create a class to represent it

• This provides greater flexibility to model users and
facilitates model maintenance and evolution

– The concept appears only once in the model rather than
countless times buried within other model elements

– Using a model element rather than an enumeration offers
opportunities to take advantage of generalization

MEO
HEO
LEO
GEO

Orbital Regime
«valueType»

orbit_type : Orbital Regime
values

Satellite
«block»

orbit_type : string = "GEO"
values

Satellite
«block»

orbit_type : string = "GEO" orbit_type : Orbital Regime

MEO
HEO
LEO
GEO

orbit_type : Orbital Regime
references

Satellite
«block»

Orbital Regime
«block»

MEO
«block»

LEO
«block»

HEO
«block»

GEO
«block»

orbit_type : Orbital Regime

String primitive

Enumeration

Reification

4 Modeling Semantics Principles

2-6 July 2024 www.incose.org/symp2024 #INCOSEIS 22

• Some of the most common but least visible
problems in models are semantic in nature
– Inconsistent use of modeling constructs, resulting in ambiguity
– Mismatches between the modeler’s and model users’

expectations of the semantics of the concepts being modeled,
resulting in confusion or misinterpretation

Modeling Semantics Principle: Avoid Undertyping

2-6 July 2024 www.incose.org/symp2024 #INCOSEIS 23

• Modelers frequently underspecify model elements
– Often the intent is to avoid being constrained by deciding on a narrowly defined type or stereotype

• In the figure on the left, the single stereotype «Protocol Link» types all connections
– Regardless of whether they are appropriately connected at that level of abstraction

• Often, a suitable corrective action is to create a set of specializations of the type or
stereotype to use in these different roles, as shown on the right

– Here, «TCP Protocol Link» and «IP Protocol Link» are specializations of «Protocol Link»
– This allows the different types or stereotypes to be treated either as equivalent or different

Example of undertyping Example without undertyping

 : Computer2

^ : TCP Layer

^ : IP Layer

 : Computer1

^ : TCP Layer

^ : IP Layer

^ : TCP Layer

^ : IP Layer

^ : TCP Layer

^ : IP Layer

«proxy»
TCP I/F : protocol interface

«proxy»
IP I/F : protocol interface

«proxy»
TCP I/F : protocol interface

«proxy»
IP I/F : protocol interface

«Protocol Link»

«Protocol Link»«Protocol Link»

«Protocol Link»

 : Computer2

^ : TCP Layer

^ : IP Layer

 : Computer1

^ : TCP Layer

^ : IP Layer

^ : TCP Layer

^ : IP Layer

^ : TCP Layer

^ : IP Layer

«proxy»
TCP I/F : tcp_interface

«proxy»
IP I/F : ip_interface

«proxy»
TCP I/F : tcp_interface

«proxy»
IP I/F : ip_interface

«TCP Protocol Link»

«IP Protocol Link»«IP Protocol Link»

«TCP Protocol Link»

Modeling Semantics Principle: Avoid Overloading

2-6 July 2024 www.incose.org/symp2024 #INCOSEIS 24

• Modelers often overload concepts with multiple meanings

• In this example of semantic overloading the «dependency» and «satisfy» relationships are
each used in the same model to express multiple distinct meanings

• Overloading results in rework that can be very difficult to find since each instance must be
assessed separately to determine which of the overloaded meanings is the correct one

• This model view shown is not necessarily wrong, but overloading adds some risk of
technical debt that more refinement will be needed in the future involving major rework

Modeling Semantics Principle: Avoid Composition Misuse

2-6 July 2024 www.incose.org/symp2024 #INCOSEIS 25

• Modelers often overuse composition when describing entities that are
not intended to be duplicated
– Composition establishes the existence of an individual usage of a block

definition in the separate context
• That individual usage is distinct and separate from every other usage

– While this is often appropriate, in other cases it is dangerous and misleading
• In the diagram below, the two model elements representing the GPS system are

intended to represent the same system, not two separate copies of that system

• This problem often does not
manifest when models are used
in isolation but emerges when
models are federated

Modeling Semantics Principle: Intrinsic is Permanent

2-6 July 2024 www.incose.org/symp2024 #INCOSEIS 26

• Modelers often use permanent modeling constructs to represent
characteristics that are transitory or context-dependent

– This results in ambiguity or misinterpretation when the context changes

• E.g., using stereotypes for a “system of interest” or a “stakeholder”
– Both concepts are context-dependent, not intrinsic properties of the modeled entity

– This can significantly hinder the model’s reuse and interpretation within a federation

• Instead, contextually dependent characteristics should be modeled using
modeling constructs that properly convey the context in which the assertion
is being made

– e.g., being a stakeholder is usually better modeled as a role or a relationship

– The nature of that relationship may differ significantly between stakeholders

Summary

2-6 July 2024 www.incose.org/symp2024 #INCOSEIS 27

• This presentation described 18 key modeling principles
– These principles reflect over a decade of observation and experience of many descriptive modeling

efforts and their need for rework to accommodate their changing context.

• These principles are not fundamentally novel or unprecedented
– Most are related to principles and heuristics well known in system architecting and software domains

• Each of these principles represents a suggested modeling choice
– Intent is to reduce the assumption of excessive technical debt in these models

• Following these principles does not guarantee success
– However, neglecting these principles elevates risk

www.incose.org/symp2024
#INCOSEIS

