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Abstract

« Held in Dublin, Ireland, INCOSE 1S2024 invites us to refresh understanding of
contributions to systems engineering by Ireland’s greatest mathematician--
Sir William Rowan Hamilton (1805 - 1865), Professor of Astronomy at Trinity
College Dublin, and Royal Astronomer of Ireland.

« His profound contributions to STEM deserve greater systems community
attention.

e Supporting theory and practice, they intersect Foundations and Applications
streams of INCOSE's Future of Systems Engineering (EUSE) program.

« Strikingly, key aspects apply to systems of all types, including socio-technical
and Information systems.

« Hamilton abstracted the energy-like generator of dynamics for all systems,
while also generalizing momentum.

« Applied to the INCOSE Innovation Ecosystem Pattern as dynamics of learning,
development, and life cycle management, this suggests an architecture for
Integration of the digital thread and machine learning in innovation enterprises,
along with foundations of systems engineering as a dynamical system. 5
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Launching the STEM revolution (c. 1700 — 2000)

Millennia of observation and thought about natural phenomena were punctuated by
the much shorter STEM revolution:

— Inless than 300 years, Newton, Lagrange, Gauss, Euler, Jacobi, Hamilton,
Gibbs, and others set the conceptual and mathematical framework supporting
the dramatic acceleration of STEM.

What followed rapidly changed the quality, length, and possibilities of human life.

William Rowan Hamilton made enormous contributions to those theoretical
foundations of scientific and engineering disciplines.

His mathematical patterns describe phenomena of mechanics, electrical science,
thermodynamics and subsequent disciplines--the foundations of today’s STEM.

“The chief law of physics, the pinnacle of the whole system is . . . the principle of
least action” (Hamilton’s Principle)--Max Planck, 1925. [1]

A surprise: We will summarize here how Hamilton’s work also applies to information
systems and socio-technical systems:

— The innovation ecosystem / supply chain itself, viewed as a dynamical system!



Challenges In current innovation ecosystems

. Project and program planning: What are predicable efforts, times, and costs of
performing innovation and life cycle management? What are related uncertainties (and
consequent risks) in those predictions? [2-5]

. Project execution management: As projects are performed (and encounter real-world
perturbations only partly predictable), what are the means of preparing, monitoring,
and directing them for optimum outcome—including decision-making in particular?
During complex multi-enterprise development projects, how can we detect and act on
systemic project uncertainties and instabilities threatening success? [6-9]

. Project learning and its recurrent application: What are means and effects of
accumulating new experience in items (A) and (B) above, distilling, managing trust in,
and applying knowledge and competency in future prOJects’P [9-18]

. Information and information system roles in items (A), (B), and (C) above: A common
thread through the above are roles of information and information systems—both
those using engineered information technologies and those performed by human
beings. What is the theoretical basis for engineering the performance of these
[c,ubsyste]ms as an integrated part of larger enterprise systems in which they appear?
9, 18-22 5




Are current assumptions too conservative?

Hamilton’s framework is most familiar to engineers in mechanical, civil, or
electromagnetics settings.

The systems community may be assuming that Hamilton’s mathematical _
contributions do not address the socio-technical and information system questions
above in a practical way.

Symptom: A continued call and search for what are perceived as missing theoretical
foundations for the science and engineering of generalized systems. [24]

Disciplines in engineering and sciences are concerned with phenomena (e.g.,
mechanical, electrical, chemical) specific to those disciplines, leading to |mpactful
phenomena specific patterns of interactions described by laws specific to those
disciplines, often in mathematical form.

What about equivalent impactful phenomena, theory, and mathematics for systems
In general?

We assert:. More attention should be given to already modeled phenomena (from
Hamilton and other STEM pioneers) before spending too much effort looking
elsewhere. [25-26] 5
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« Hamilton described an energy-like “characteristic function” of a
system’s state in a general and mathematical way not restricted

to only mechanical or other "hard” engineered systems. [27]

« Systems: Start with a system of any type. By “system”, we mean
a set of interacting system components.

* Interactions: By “interact” we mean they exchange input-outputs,
such as force, material, energy, or information, resulting in
changes of state of the components.

- States: By “state” of a component we mean the condition of the
component that can modify its current input-output behavior.
Interaction thus changes state, which in turn impacts interaction.




‘ & Non-deterministic and
4 discrete systems

This short and informal discussion focuses on deterministic,
smoothly continuous systems, to build intuition.

However, discrete Hamiltonian systems have been heavily
explored and exploited, including providing the symplectic
Hamiltonian integrators found in numerical simulation. [28-29]

Non-deterministic cases: Hamiltonian mechanics also provide the
foundations of the rich historical field of statistical mechanics,
where state flows are replaced by probability density flows.[30-31]

Probabilistic cases also re-enter this story through machine
learning and human behavior. 8




State trajectories;
Hamilton’s generalized momentum

 States: Have a way of representing the state of the system of interest Q(t) = {q4,..., 4.},

whose values change over time at rate Q(t) = {g;, . . . , g}, believed sufficient to
characterize observed interactions.

« Characterizing System Level Behavior: Imagine now a scalar-valued function of state
and time, not yet defined here, from Hamilton: H(Q, Q, t), later H(Q, P, t), intended to
characterize something about the system--we have not said how yet.

« Momentum: Hamilton invented “generalized momentum”, P(t) = {p,,...,p,}, generalizing
the idea of momentum in elementary physics--describing ability to change Q. His
generalized P is defined as sensitivity of H (not defined here just yet) to Q(t):

OH : :
P = 90, (Hamilton) Equation (1)
l
Intuition: If H turns out to be something “like” energy, this says momentum is sensitivity
of energy to changes in velocity--or that energy is exchanged to change velocity. 9




Defining a surface, H(Q,P), that
“characterizes” the family of trajectories

10
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oscillator) mass-spring system.

« Consider an undamped (simple harmonic %I

* We are looking for a smooth surface,
H(Q, P) that sits above the (g, p) plane.

« Hamilton found a surface function H that
“characterizes” the family of system state
trajectories in the (g, p) plane below It.

* The Hamiltonian function has the special
nature that “describes” all the trajectories
below it! What could that be? . . ...
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Defining the Hamiltonian ---- H(Q,P):
A different reasoning path to build intuition

 We want H to “characterize” (describe) the system’s (Q,P) trajectories, and will do so
by tying those trajectories to the local slopes of surface H(Q,P).

 This provides an intuitive way to define H(Q,P)....

* First, pick the local sensitivity of H with respect to p; at (q;, p;) is to be equal to the time
rate of change of g, along the system’s state trajectory passing through (q;, p):

: OH : :
% = 3, (Hamilton) Equation (2)
l

» Second, pick the local sensitivity of H with respect to g, at (Q,P) is to be the negative of
the time rate of change of p,along the system’s state trajectory passing through (q;, p;):

i OH : :
pi = - 5o (Hamilton) Equation (3)
l

« Why does it work? . . .. 11
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 For intuition, notice that dividing both sides of Eq (2) by both sides of Eq (3) shows
that the instantaneous direction of motion in the (g, p) plane is the same as the ratio of
the local surface slopes of H in the g and p directions.

* The relative slopes of H “steer” the trajectories in the (g, p) plane! 19
 So, the surface H(Q, P) “characterizes” all the dynamic trajectories in the (Q, P) plane.




Defining the Hamiltonian: A non-traditional path
builds intuition and expands awareness of energies.

« The Traditional Sequence (based on recognized energies of familiar types):
— Start from an accepted Lagrangian for a familiar system class, energies (e.g., mechanical).
— Perform Legendre (purely mathematical) transformation to obtain Hamiltonian (H). [32-33]
— H satisfies Hamilton’s equations of motion, including generalized momentum, conservation
of energy, etc., and has the advantage of being directly integrable via symplectic integrators.
« The Alternate Sequence (based on observation of state trajectories):
— Start with any deterministic! system and its state variables (state ‘positions’, velocities).
— Observe the state trajectories of the system over time.
— Generate a “characteristic function” H from the observed state trajectories?.

— This H likewise satisfies Hamilton’s equations of motion, defines a generalized momentum,
and is integrable via symplectic integrators.

— Provides a broader interpretation of P.E. and K.E. beyond just familiar mechanical and other
“traditional” systems—energy as a “characteristic function” in spirit of Hamilton.

13

(1) Also formulated for probabilistic and discrete systems. (2) One interesting method: Machine learning.



Historically, the Lagrangian came before the Hamiltonian
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< >

(a) Hamiltonian (b) Lagrangian

Trajectory
Tangents

Trajectory
Tangents

State Trajectories State Trajectories

i I W

Op; oH
ol Where pi = — < Hamilton Euler-Lagr = oL _d (oL} _ 0
: 0x; Jrange dx; dt\ax,
—Pi = dg; (first order) (second order) Xi Xi
]




Traditional Reasoning Sequence: | I he historical path assumed we already had a Lagrangian and
Assumes energy concept and leads | familiar mechanical or other energies. The alternate path does not
to Hamiltonian [32-33] require those, and teaches us about “energies” of different systems.
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Alternate Reasoning Sequence: Assumes only States, Trajectories; leads directly to Hamiltonian and “energy”.
Examining Grad(H) leads to invariance (conservation) of H along trajectories; variational/Lagrangian insight. [40]




Machine learning--yet another path to Hamiltonians:
Physics-informed neural networks (PINNS)

« Hamiltonian Neural Networks (HNNs) are part of the emerging

family of Physics-Informed Neural Networks (PINNsS). [34]

 HNNSs learn a Hamiltonian by observing empirical trajectory data.
=) N
- O:O_ ”

 Used to learn Hamiltonians of:

« QOcean currents [36]
 Three body problems [37] ( Noiy observatons
» Molecules [38] .
« Stars orbiting a galactic center [39] Po-o—\j-:;f \ o I,? >
N
q From [36]

* Why not also Systems of Innovation?



Application: States and learning in an innovation ecosystem

The diverse engineering, production, sustainment, other life cycle management
processes of any innovation ecosystems can be characterized using the
“Consistency Management” paradigm of INCOSE ASELCM Pattern: [22,42,43]

Projects, seen as learning: 9 e

Learnings vation Ecosystem
Deployments Stm3

7
Le. ami ng & Knowledge Deployments

Lf\:vl Domain System

~
ufeql Management Ledrnings
for System 2

[ Learning & I(nowledge’1

Management for System 1

DIGITAL THIRIEADS

DEFINITION, VALUE, AND REFERENCE MODEL

DIGITAL TWIIN3

REFERENCE MODEL, REALIZATIONS & RECOMMENDATIONS

(15015288 processes are include
in all four Management roles,

Application: Jun’ 2023 System 2 |learns about System 1 and its environment Application: Jan, 202317




The consistency management paradigm [43]

Examples of managed “consistency pairs”: , _ —
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9. Design consistent with good practice?
10. And many, many more . ..

18



The consistency management paradigm

e During a project:
Consistency gap “springs”
jiggle until we reduce gaps to
acceptable levels of
consistency.

« A model of all innovation
ecosystems—qgood ones as
well as not so good ones.

 What are the dynamics of
such systems?

 What are the selection
“forces”?

* What is the “energy”?

 What is overall “trajectory” in
this “state space”™?

Program Boundary

)

vV

“Consistency
Spring Gaps”,
Representing
Selection Forces
To Align Pairs

Stakeholder .
Feedback Mission
Model
Requirements Maintenance
Stakeholder Model
Needs Model

In Service q
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Innovation Ecosystem
Deployments System 3

Life Cycle Domain System

(System 2)

Overall trajectories, seen as:
« Boundary value problem
« Learning curve problem

Learning & Knowledge Deployments

(1S015288 processes are include
in all four Management roles)

Program Boundary Program Boundary

Learning Curve Progress Learning Curve Progress
LS .
(Gap Reduction)

(Gap Reduction)

Project Learning Curve
(Unstable) Trajectory in

High Dimension Space IW—'

Project Learning Curve
e Trajectory in
High Dimension Space

Project Time N

Project Time

h 4

A well-behaved project reduces Other projects can be unstable.
uncertainty, consistency gaps. 20



In Engineering Projects: T
Machine learning, human
learning, System 2 energy
and momentum

If current knowledge is viewed as state, can we use sizes of its “consistency gaps’
as a form of “potential energy” for discovering Hamiltonians?

Confidence In learned patterns, uncertainty management, Bayes [66]

John Hopfield’'s seminal 1982 PNAS paper rekindled research in neural network
learning machines, referring to “energy” functions “isomorphic to an Ising model”

(physics). [48]
« Contemporary machine learning abounds in “energy-based methods”. [49, 67]

* Recognizing the deep connections between performance of neural nets over large
sample spaces and the probabillity distributions of statistical physics. [50]

21
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« Executing real projects involves making decisions:
— Incremental, minor but accumulating decisions;
— Major milestone, stage-gate decisions.
* We can view all such decisions as reconciling inconsistencies. [54, 55]

 The ASELCM reference model of the digital thread represents the roles of
detecting and reconciling inconsistencies, along with recording them. [41] )

2



Classical mathematical physics models:
Practical for socio-technical systems?

* Are Hamilton’s mathematical models even
plausible for describing complex, human-
performed socio-technical systems, such as

engineering or other innovation life cycle
management?

* That such a question would even be seriously
considered has recently become more likely,
based on advancements in machine learning
leading to surprising demonstrations. [18]

23



Ecosystem selection forces, dissipation,
entropy, and complexity

For a future discussion:

— Selection forces [53-55]

— Hamiltonian learning systems [56]

— Innovation ecosystem dissipation and reversibility [57]
— Entropy and its preservation in Hamiltonian systems [58]
— The question of non-holonomic constraints [61-64]

24



So what? Conclusions and future work

This paper [65] has:
1. Outlined some of the questions faced by Innovation Ecosystem projects;

2.Provided an informal refresher on how Hamilton’s framework applies to diverse
systems, including socio-technical and information systems, and ASELCM Pattern;

3.Shown that the key Innovation Ecosystem state variables relevant for Hamiltonian
“potential” modeling include Consistency Management “gaps” central to digital thread,;

4.Noted Energy Based Learning methods for machine learning are already being used
to learn real system Hamiltonians as well as being Hamiltonian modeled themselves;

5.Shown that consistency management’s needs for inconsistency detection and
reconciliation are candidates for machine learning based aids to labor-intense roles;

6.Shown that this synthesis suggests an Innovation Enterprise architecture integrating
the digital thread as well as machine and human learning;

7.Laid a foundation for future momentum kinetics and applications work utilizing these
approaches, as well as case study work.

25



Questions, discussion

26



Thank you!

& 4" Annual INCOSE
international symposium
T NS
. / Dublin, Ireland
4 July 2 - 6, 2024

www.incose.org/symp2024
#INCOSEIS

3\

27



References

[1] Planck, M. (1925) A Survey of Physics: A Collection of Lectures and Essays, Transl. by R. Jones and D.H. Williams, Methuen &
Co., Ltd.

[2] Valerdi, R., Boehm, B., Reifer, D. (2003), COSYSMO: A constructive systems engineering cost model coming of age, in Proc. of
13th INCOSE International Symposium, Crystal City, VA.

[3] de Weck, O. (2023). The first law of systems science: Conservation of complexity. Proc. of INCOSE 2023 International
Workshop, Los Angeles, CA.

[4] ISO (2023) ISO/IEC/IEEE International Standard - Systems and software engineering -- System life cycle processes, in
ISO/IEC/IEEE 15288-2023, doi: 10.1109/IEEESTD.2023.7106435.

[5] Walden, D., et al, eds. (2023) INCOSE Systems Engineering Handbook, Fifth Edition, International Council on Systems
Engineering, San Diego, CA.

[6] SEI (2010). CMMI® for Development, Version 1.3 CMMI-DEV, V1.3 CMMI Product Team Improving processes for developing
better products and services November 2010 TECHNICAL REPORT CMU/SEI-2010-TR-033 ESC-TR-2010-033, Carnegie
Mellon University Software Engineering Institute

[7] Rebentisch, E. (2017), editor, Integrating Program Management and Systems Engineering: Methods, Tools, and Organizational
Systems for Improving Performance, Wiley, 2017. ISBN-10 : 9781119258926

[8] Dove, R. (2001). Response Ability: The Language, Structure, and Culture of the Agile Enterprise. Wiley. ISBN-10:
9780471350187

[9] Schindel, W. (2022) Realizing the value promise of digital engineering: Planning, implementing, and evolving the ecosystem, in
INCOSE Insight: Special Issue on Digital Engineering. Vol 25 Issue 1.

[10] Mihaly, H (2017). From NASA to EU: the evolution of the TRL scale in public sector innovation, in The Innovation Journal. 22:
1-23.

[12] Trees, L., McCulloch, M., Witt, N. (2021). Knowledge management trends: Survey report, American Productivity & Quality
Center, Houston, TX.

[13] Alexander, C. (1977). A Pattern Language: Towns/Buildings/Construction, Oxford U. Press.

[14] Gamma, E., et al (1994) Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley.



[15] Cloutier, R. (2008). Applicability of Patterns to Architecting Complex Systems: Making Implicit Knowledge Explicit, VDM
Publishers, Saarbrucken, Germany.

[16] ISO (2021) ISO/IEC 26580:2021, Software and systems engineering: Methods and tools for the feature-based approach to
software and systems product line engineering”, Technical Committee : ISO/IEC JTC 1/SC 7. ICS: 35.080.

[17] Clements, P. and Northrop, L. (2002), Software Product Lines: Practices and Patterns, Addison-Wesley.

[18] LeCun, Y., Bengio, Y., & Hinton, G. (2015) Deep learning, in Nature, Vol 521, pp. 436-444, MacMillan.

[19] Shannon, C. (1948) A mathematical theory of communication. In Bell System Technical Journal. 27 (3): 379-423.

[20] Foorthuis, R., Steenbergen, M. van, Brinkkemper, S., Bruls, W. (2016). A theory building study of enterprise architecture
practices and benefits. In Information Systems Frontiers, Vol 18, Iss 3, pp. 541-564. DOI: 10.1007/s10796-014-9542-1.

[22] Cribb, M., et al. (2023). Digital thread: Definition, value, and reference model. American Institute of Aeronautics and
Astronautics.

[24] Friedenthal, S., et al (2021) INCOSE Systems Engineering Vision 2035: Engineering Solutions for a Better World.
International Council on Systems Engineering, San Diego, CA.

[25] Schindel, W. (2016). Got phenomena? Science-based disciplines for emerging systems challenges. In Proc of INCOSE 2016
International Symposium, 26(1), 2256-2271.

[26] Schindel, W. (2020) SE foundation elements: Discussion inputs to INCOSE Vision 2035 theoretical foundations
section,V2.3.2a., INCOSE Patterns Working Group. Download from--
https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:patterns:science_math_foundations_for_systems_and_syst
ems_engineering--1_hr_awareness_v2.3.2a.pdf

[27] Hamilton, W. (1834) On a general method in dynamics, in Phil Trans of the Royal Society, Part Il, 1834, pp 247-308.

[28] Shibberu, Y. (1994), Time-discretization of Hamiltonian dynamical systems, in Computers Math. Applic., Vol 28, No 10-12, pp.
123-145.

[29] Marsden, J., and West, M. (2001) Discrete mechanics and variational integrators, in Acta Numerica, pp 357-514.

[30] Gibbs, J. W. (1901) Elementary Principles of Statistical Mechanics, Dover Publishers, Garden City, NY.

[31] Khinchin, A. (1949) Mathematical Foundations of Statistical Mechanics, New York, Dover Publishers.

[32] Greenwood, D. (1977) Classical Dynamics, Dover Publications, Mineola, NY.

[33] Landau, L, and Lifshitz, E (1976) Mechanics, Third Edition, London, Butterworth Heinemann.



https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:patterns:science_math_foundations_for_systems_and_systems_engineering--1_hr_awareness_v2.3.2a.pdf
https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:patterns:science_math_foundations_for_systems_and_systems_engineering--1_hr_awareness_v2.3.2a.pdf

[34] Wikipedia (2024) Physics-informed neural networks. Retrieve from--
https://en.wikipedia.org/wiki/Physics-informed_neural _networks

[35] Bertalan, T., et al (2019). On learning Hamiltonian systems from data, in Chaos, 29, 121107-1-9. AIP Publishing.

[36] Greydanus, S., et al (2019) Hamiltonian neural networks, in Proc. of NeurlPS 2019, Vancouver, BC.

[37] Toth, P., Rezende, D., Jaegle, A., Racaniere, S., Botev, A. & Higgins . (2020) Hamiltonian generative networks, in Proc. of the
2020 International Conference on Learning Representations. Addis Ababa, Ethiopia.

[38] Bhat, H., Ranka, K. & Isborn, C. (2020), Machine learning a molecular Hamiltonian for predicting electron dynamics. Intl J of
Dynamics and Control. 8, 1089-1101.

[39] Chen, R., and Tao, M. (2021). Data-driven prediction of general Hamiltonian dynamics via learning exactly-symplectic maps,
Proc. of 38th International Conference on Machine Learning. 139:1717-1727.

[40] Lanczos, C. (1986) The Variational Principles of Mechanics, 4th Edition, New York, Dover Publishers.

[42] Schindel, W. & Dove, R. (2016). Introduction to the agile systems engineering life cycle MBSE pattern, in Proc. of INCOSE 2016
International Symposium, Edinburg, UK.

[43] Schindel, W. (2021) Consistency management as an integrating paradigm for digital life cycle management with learning,
INCOSE MBSE Patterns Working Group, download from—
https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:patterns:aselcm_pattern_--

consistency _management_as_a_digital_life_cycle_management_paradigm_v1.3.1.pdf

[48] Hopfield, J. (1982) Neural networks and physical systems with emergent collective computational abilities, in Proc. Natl. Acad.
Sci. USA, Vol 79, pp 2554-2558, Biophysics.

[49] LeCun, Y., et al (2006). A tutorial on energy-based learning, in Predicting Structured Data, MIT Press.

[50] Hinton, G., and Zemel, R. (1993) Autoencoders, minimum description length and Helmholtz free energy, in Proc of Advances in
Neural Information Processing Systems 6 (NIPS 1993), pp 3-10.

[53] Schindel, W. (2017). Innovation, risk, agility, and learning, viewed as optimal control & estimation. In Proc of 2017 INCOSE
International Symposium. Adelaide, AU.

[54] Schindel, W. (2023) All decisions across life cycles of systems are reconciliations of inconsistencies, presentation to INCOSE
North Texas Chapter, Aug 08, 2023. Download from-- 30
https.//www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:patterns:incose_north_texas_pgm_08.08.2023 v1.2.2.pdf



https://en.wikipedia.org/wiki/Physics-informed_neural_networks
https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:patterns:aselcm_pattern_--_consistency_management_as_a_digital_life_cycle_management_paradigm_v1.3.1.pdf
https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:patterns:aselcm_pattern_--_consistency_management_as_a_digital_life_cycle_management_paradigm_v1.3.1.pdf
https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:patterns:incose_north_texas_pgm_08.08.2023_v1.2.2.pdf

[55] Schindel, W.- (2024) All decisions are reconciliations of inconsistencies: Preparing for the digital thread and machine
learning, accepted for presentation at INCOSE 2024 International Symposium, Dublin.

[56] Ramacher, U. (1993) Hamiltonian dynamics of neural networks. Neural Networks Vol 6 pp 547-557.

[57] Hey, A., ed. (1996) Feynman and computation: Exploring the limits of computers. Perseus, Cambridge, MA

[58] Carcassi, G., Aidala, C. (2020) Hamiltonian mechanics is conservative of information entropy. Studies in History and
Philosophy of Science, Part B: Studies in History and Philosophy of Modern Physics, August, pp 60-71.

[59] Li, M., Vitany, P. (1997). An introduction to Kolmogorov complexity and its applications. Second edition. Springer.

[61] Bloch, A. (2003) Nonholonomic mechanics and control. New York: Springer. New York.

[62] Rojo, A., Bloch, A. (2018) The History and Physics of the Least Action Principle. Cambridge U Press, NY.

[63] Flannery, M. (2005) The enigma of nonholonomic constraints. Am. J. Phys. 73(3), March, 2005.

[64] Eden R. (1951) The Hamiltonian dynamics of non-holonomic systems. Proc. of the Royal Society, 07 March 1951. Volume
205 Issue 1083. DOI:https://doi.org/10.1098/rspa .

[65] Schindel, W.- (2024) Innovation ecosystem dynamics, value and learning |: What can Hamilton tell us? Accepted to appear in
Proc of the INCOSE 2024 International Symposium, Dublin.

[66] Jaynes, E. (2003) Probability Theory: The Logic of Science. Cambridge U. Press. ISBN-10: 0521592712.

[67] LeCun, Y. (2021) The energy-based learning model, lecture video of May 18, 2021. Download from
https://www.youtube.com/watch?v=41thJdA3DNTM



https://www.youtube.com/watch?v=4lthJd3DNTM

	Slide 1: Innovation Ecosystem Dynamics, Value, and Learning I 
	Slide 2: Abstract
	Slide 3: Contents
	Slide 4: Launching the STEM revolution  (c. 1700 – 2000) 
	Slide 5: Challenges in current innovation ecosystems
	Slide 6: Are current assumptions too conservative?
	Slide 7: Informally, the Hamiltonian        
	Slide 8: Non-deterministic and  discrete systems
	Slide 9: State trajectories;  Hamilton’s generalized momentum
	Slide 10: Defining a surface, H(Q,P), that “characterizes” the family of trajectories
	Slide 11: Defining the Hamiltonian ---- H(Q,P): A different reasoning path to build intuition
	Slide 12
	Slide 13: Defining the Hamiltonian: A non-traditional path builds intuition and expands awareness of energies.
	Slide 14
	Slide 15
	Slide 16: Machine learning--yet another path to Hamiltonians: Physics-informed neural networks (PINNs)
	Slide 17: Application: States and learning in an innovation ecosystem
	Slide 18: The consistency management paradigm   [43]
	Slide 19
	Slide 20
	Slide 21: In Engineering Projects: Machine learning, human learning, System 2 energy and momentum
	Slide 22
	Slide 23: Classical mathematical physics models:  Practical for socio-technical systems?
	Slide 24: Ecosystem selection forces, dissipation, entropy, and complexity
	Slide 25: So what? Conclusions and future work
	Slide 26: Questions, discussion
	Slide 27
	Slide 28: References
	Slide 29
	Slide 30
	Slide 31

