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Abstract
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• Held in Dublin, Ireland, INCOSE IS2024 invites us to refresh understanding of 
contributions to systems engineering by Ireland’s greatest mathematician--     
Sir William Rowan Hamilton (1805 - 1865), Professor of Astronomy at Trinity 
College Dublin, and Royal Astronomer of Ireland. 

• His profound contributions to STEM deserve greater systems community 
attention. 

• Supporting theory and practice, they intersect Foundations and Applications 
streams of INCOSE’s Future of Systems Engineering (FuSE) program. 

• Strikingly, key aspects apply to systems of all types, including socio-technical 
and information systems. 

• Hamilton abstracted the energy-like generator of dynamics for all systems, 
while also generalizing momentum. 

• Applied to the INCOSE Innovation Ecosystem Pattern as dynamics of learning, 
development, and life cycle management, this suggests an architecture for 
integration of the digital thread and machine learning in innovation enterprises, 
along with foundations of systems engineering as a dynamical system.
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Launching the STEM revolution  (c. 1700 – 2000) 
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• Millennia of observation and thought about natural phenomena were punctuated by 
the much shorter STEM revolution: 

– In less than 300 years, Newton, Lagrange, Gauss, Euler, Jacobi, Hamilton, 
Gibbs, and others set the conceptual and mathematical framework supporting 
the dramatic acceleration of STEM. 

• What followed rapidly changed the quality, length, and possibilities of human life. 

• William Rowan Hamilton made enormous contributions to those theoretical 
foundations of scientific and engineering disciplines.

• His mathematical patterns describe phenomena of mechanics, electrical science, 
thermodynamics and subsequent disciplines--the foundations of today’s STEM.

• “The chief law of physics, the pinnacle of the whole system is . . . the principle of 
least action” (Hamilton’s Principle)--Max Planck, 1925. [1]

• A surprise: We will summarize here how Hamilton’s work also applies to information 
systems and socio-technical systems:

– The innovation ecosystem / supply chain itself, viewed as a dynamical system!   



Challenges in current innovation ecosystems
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A. Project and program planning: What are predicable efforts, times, and costs of 
performing innovation and life cycle management? What are related uncertainties (and 
consequent risks) in those predictions?  [2-5]

B. Project execution management: As projects are performed (and encounter real-world 
perturbations only partly predictable), what are the means of preparing, monitoring, 
and directing them for optimum outcome—including decision-making in particular? 
During complex multi-enterprise development projects, how can we detect and act on 
systemic project uncertainties and instabilities threatening success?  [6-9]

C. Project learning and its recurrent application: What are means and effects of 
accumulating new experience in items (A) and (B) above, distilling, managing trust in, 
and applying knowledge and competency in future projects? [9-18]

D. Information and information system roles in items (A), (B), and (C) above: A common 
thread through the above are roles of information and information systems—both 
those using engineered information technologies and those performed by human 
beings. What is the theoretical basis for engineering the performance of these 
subsystems as an integrated part of larger enterprise systems in which they appear? 
[9, 18-22]



Are current assumptions too conservative?
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• Hamilton’s framework is most familiar to engineers in mechanical, civil, or 
electromagnetics settings. 

• The systems community may be assuming that Hamilton’s mathematical 
contributions do not address the socio-technical and information system questions 
above in a practical way.   

• Symptom: A continued call and search for what are perceived as missing theoretical 
foundations for the science and engineering of generalized systems. [24]

• Disciplines in engineering and sciences are concerned with phenomena (e.g., 
mechanical, electrical, chemical) specific to those disciplines, leading to impactful 
phenomena-specific patterns of interactions described by laws specific to those 
disciplines, often in mathematical form. 

• What about equivalent impactful phenomena, theory, and mathematics for systems 
in general?

• We assert: More attention should be given to already modeled phenomena (from 
Hamilton and other STEM pioneers) before spending too much effort looking 
elsewhere.  [25-26]



Informally, the Hamiltonian        
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• Hamilton described an energy-like “characteristic function” of a 
system’s state in a general and mathematical way not restricted 
to only mechanical or other “hard” engineered systems.   [27]

• Systems: Start with a system of any type. By “system”, we mean 
a set of interacting system components. 

• Interactions: By “interact” we mean they exchange input-outputs, 
such as force, material, energy, or information, resulting in 
changes of state of the components. 

• States: By “state” of a component we mean the condition of the 
component that can modify its current input-output behavior. 
Interaction thus changes state, which in turn impacts interaction.



Non-deterministic and 

discrete systems
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• This short and informal discussion focuses on deterministic, 
smoothly continuous systems, to build intuition. 

• However, discrete Hamiltonian systems have been heavily 
explored and exploited, including providing the symplectic 
Hamiltonian integrators found in numerical simulation.  [28-29]

• Non-deterministic cases: Hamiltonian mechanics also provide the 
foundations of the rich historical field of statistical mechanics, 
where state flows are replaced by probability density flows.[30-31]

• Probabilistic cases also re-enter this story through machine 
learning and human behavior. 



State trajectories; 

Hamilton’s generalized momentum
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• States: Have a way of representing the state of the system of interest Q(t) = {q1,..., qn}, 

whose values change over time at rate ሶQ(t) = { ሶ𝑞1, . . . , ሶ𝑞𝑛}, believed sufficient to 

characterize observed interactions.      

• Characterizing System Level Behavior: Imagine now a scalar-valued function of state 

and time, not yet defined here, from Hamilton: H(Q, ሶQ, t), later H(Q, P, t), intended to 

characterize something about the system--we have not said how yet.   

• Momentum: Hamilton invented “generalized momentum”, P(t) = {p1,...,pn}, generalizing 

the idea of momentum in elementary physics--describing ability to change ሶQ. His 

generalized P is defined as sensitivity of H (not defined here just yet) to ሶQ(t):

                     pi ≡
𝜕𝐻

𝜕 ሶ𝑞𝑖
               (Hamilton)                   Equation (1)  

Intuition: If H turns out to be something “like” energy, this says momentum is sensitivity 

of energy to changes in velocity--or that energy is exchanged to change velocity.



Defining a surface, H(Q,P), that 

“characterizes” the family of trajectories
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• Consider an undamped (simple harmonic 

oscillator) mass-spring system.

• We are looking for a smooth surface,    

H(Q, P) that sits above the (q, p) plane.

• Hamilton found a surface function H that 

“characterizes” the family of system state 

trajectories in the (q, p) plane below it. 

• The Hamiltonian function has the special 

nature that “describes” all the trajectories 

below it!  What could that be? . . . . .
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Defining the Hamiltonian ---- H(Q,P):

A different reasoning path to build intuition
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• We want H to “characterize” (describe) the  system’s (Q,P) trajectories, and will do so 

by tying those trajectories to the local slopes of surface H(Q,P). 

• This provides an intuitive way to define H(Q,P)….

• First, pick the local sensitivity of H with respect to pi at (qi, pi) is to be equal to the time 

rate of change of qi along the system’s state trajectory passing through (qi, pi):

ሶ𝑞𝑖  =
𝜕𝐻

𝜕𝑝𝑖
 (Hamilton)                       Equation (2)      

• Second, pick the local sensitivity of H with respect to qi at (Q,P) is to be the negative of 

the time rate of change of pi along the system’s state trajectory passing through (qi, pi):

                                      ṗi  =  -
𝜕𝐻

𝜕𝑞𝑖
 (Hamilton)                       Equation  (3)

• Why does it work? . . . .
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ሶ𝑞𝑖 = 
𝜕𝐻

𝜕𝑝𝑖
 Eqn  (2)  

ṗi  =  -
𝜕𝐻

𝜕𝑞𝑖
 Eqn  (3)

Trajectory Tangent Vector = 

{ ሶ𝑞𝑖 , ṗi  }   = {   
𝜕𝐻

𝜕𝑝𝑖
 ,   -

𝜕𝐻

𝜕𝑞𝑖
    } 

 

• For intuition, notice that dividing both sides of Eq (2) by both sides of Eq (3) shows 

that the instantaneous direction of motion in the (q, p) plane is the same as the ratio of 

the local surface slopes of H in the q and p directions. 

• The relative slopes of H “steer” the trajectories in the (q, p) plane!

• So, the surface H(Q, P) “characterizes” all the dynamic trajectories in the (Q, P) plane. 

Hamilton’s 

Equations

Local Trajectory 

Direction



Defining the Hamiltonian: A non-traditional path 

builds intuition and expands awareness of energies.
• The Traditional Sequence (based on recognized energies of familiar types):

– Start from an accepted Lagrangian for a familiar system class, energies (e.g., mechanical).

– Perform Legendre (purely mathematical) transformation to obtain Hamiltonian (H).  [32-33]

– H satisfies Hamilton’s equations of motion, including generalized momentum, conservation 

of energy, etc., and has the advantage of being directly integrable via symplectic integrators.

• The Alternate Sequence (based on observation of state trajectories):

– Start with any deterministic1 system and its state variables (state ‘positions’, velocities).

– Observe the state trajectories of the system over time.

– Generate a “characteristic function” H from the observed state trajectories2.

– This H likewise satisfies Hamilton’s equations of motion, defines a generalized momentum, 

and is integrable via symplectic integrators.

– Provides a broader interpretation of P.E. and K.E. beyond just familiar mechanical and other 

“traditional” systems—energy as a “characteristic function” in spirit of Hamilton.
13________________________________________________________________________________________________

                 (1) Also formulated for probabilistic and discrete systems.     (2) One interesting method: Machine learning.



Historically, the Lagrangian came before the Hamiltonian

𝜕𝐿

𝜕𝑥𝑖
−

ⅆ

ⅆ𝑡

𝜕𝐿

𝜕 ሶ𝑥𝑖
= 0 Hamilton                       Euler-Lagrange →

       (first order)                   (second order)

𝑤ℎ𝑒𝑟𝑒 𝑝𝑖 ≡
𝜕𝐻

𝜕 ሶ𝑥𝑖 14



Alternate Reasoning Sequence: Assumes only States, Trajectories; leads directly to Hamiltonian and “energy”. 

Examining Grad(H) leads to invariance (conservation) of H along trajectories; variational/Lagrangian insight.  [40]

Traditional Reasoning Sequence:

Assumes energy concept and leads 

to Hamiltonian [32-33]

The historical path assumed we already had a Lagrangian and 

familiar mechanical or other energies. The alternate path does not 

require those, and teaches us about “energies” of different systems.

15



Machine learning--yet another path to Hamiltonians: 

Physics-informed neural networks (PINNs)

• Hamiltonian Neural Networks (HNNs) are part of the emerging 

family of Physics-Informed Neural Networks (PINNs).  [34]

• HNNs learn a Hamiltonian by observing empirical trajectory data.

16
From [36]

• Used to learn Hamiltonians of:
•   Ocean currents [36]

•   Three body problems [37]

•   Molecules [38]

•   Stars orbiting a galactic center [39]

• Why not also Systems of Innovation?



Application: States and learning in an innovation ecosystem
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The diverse engineering, production, sustainment, other life cycle management 

processes of any innovation ecosystems can be characterized using the 

“Consistency Management” paradigm of INCOSE ASELCM Pattern:  [22,42,43]

Application: June, 2023 Application: Jan, 2023System 2 learns about System 1 and its environment

Projects, seen as learning: S2 S1



The consistency management paradigm   [43]
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Examples of managed “consistency pairs”:

1. Design consistent with requirements?

2. Requirements consistent with mission 
and stakeholder needs and priorities? 

3. Design consistent with experience? 

4. Manufactured product consistent with 
design specifications? 

5. Observed use of product consistent with 
the product mission and requirements? 

6. Performance of deployed product 
consistent with specified requirements? 

7. Environment of product use consistent 
with product mission and requirements? 

8. Simulation outputs consistent with 
empirical observations?

9. Design consistent with good practice?

10. And many, many more . . .
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Program  Boundary
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The consistency management paradigm

• During a project: 
Consistency gap “springs” 
jiggle until we reduce gaps to 
acceptable levels of 
consistency.

• A model of all innovation 
ecosystems—good ones as 
well as not so good ones.

• What are the dynamics of 
such systems?

• What are the selection 
“forces”?

• What is the “energy”?

• What is overall “trajectory” in 
this “state space”?
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Overall trajectories, seen as: 
• Boundary value problem

• Learning curve problem

A well-behaved project reduces 

uncertainty, consistency gaps.

Other projects can be unstable.



In Engineering Projects: 

Machine learning, human 

learning, System 2 energy 

and momentum
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• If current knowledge is viewed as state, can we use sizes of its “consistency gaps” 
as a form of “potential energy” for discovering Hamiltonians? 

• Confidence in learned patterns, uncertainty management, Bayes [66]

• John Hopfield’s seminal 1982 PNAS paper rekindled research in neural network 
learning machines, referring to “energy” functions “isomorphic to an Ising model” 
(physics).  [48]

• Contemporary machine learning abounds in “energy-based methods”. [49, 67]

• Recognizing the deep connections between performance of neural nets over large 
sample spaces and the probability distributions of statistical physics. [50]
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• Executing real projects involves making decisions:
– Incremental, minor but accumulating decisions;

– Major milestone, stage-gate decisions.

• We can view all such decisions as reconciling inconsistencies. [54, 55]

• The ASELCM reference model of the digital thread represents the roles of 
detecting and reconciling inconsistencies, along with recording them. [41]



Classical mathematical physics models: 

Practical for socio-technical systems?
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• Are Hamilton’s mathematical models even 
plausible for describing complex, human-
performed socio-technical systems, such as 
engineering or other innovation life cycle 
management?

• That such a question would even be seriously 
considered has recently become more likely, 
based on advancements in machine learning 
leading to surprising demonstrations.  [18]

ሶ 𝑞𝑖 =
𝜕𝐻

𝜕𝑝𝑖
 

ṗi  =  -
𝜕𝐻

𝜕𝑞𝑖
 



Ecosystem selection forces, dissipation, 

entropy, and complexity
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• For a future discussion:

– Selection forces  [53-55]

– Hamiltonian learning systems  [56]

– Innovation ecosystem dissipation and reversibility  [57]

– Entropy and its preservation in Hamiltonian systems [58]

– The question of non-holonomic constraints [61-64]



So what? Conclusions and future work
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This paper [65] has:

1.Outlined some of the questions faced by Innovation Ecosystem projects;

2.Provided an informal refresher on how Hamilton’s framework applies to diverse 
systems, including socio-technical and information systems, and ASELCM Pattern;

3.Shown that the key Innovation Ecosystem state variables relevant for Hamiltonian 
“potential” modeling include Consistency Management “gaps” central to digital thread;

4.Noted Energy Based Learning methods for machine learning are already being used 
to learn real system Hamiltonians as well as being Hamiltonian modeled themselves;

5.Shown that consistency management’s needs for inconsistency detection and 
reconciliation are candidates for machine learning based aids to labor-intense roles;

6.Shown that this synthesis suggests an Innovation Enterprise architecture integrating 
the digital thread as well as machine and human learning;

7.Laid a foundation for future momentum kinetics and applications work utilizing these 
approaches, as well as case study work.



Questions, discussion

•  

•  

•  

•  

•    

•  
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www.incose.org/symp2024 

#INCOSEIS

Thank you!
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