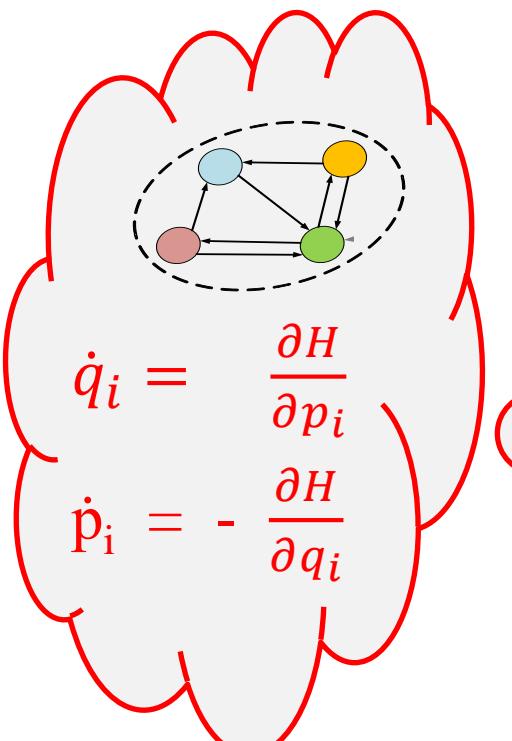
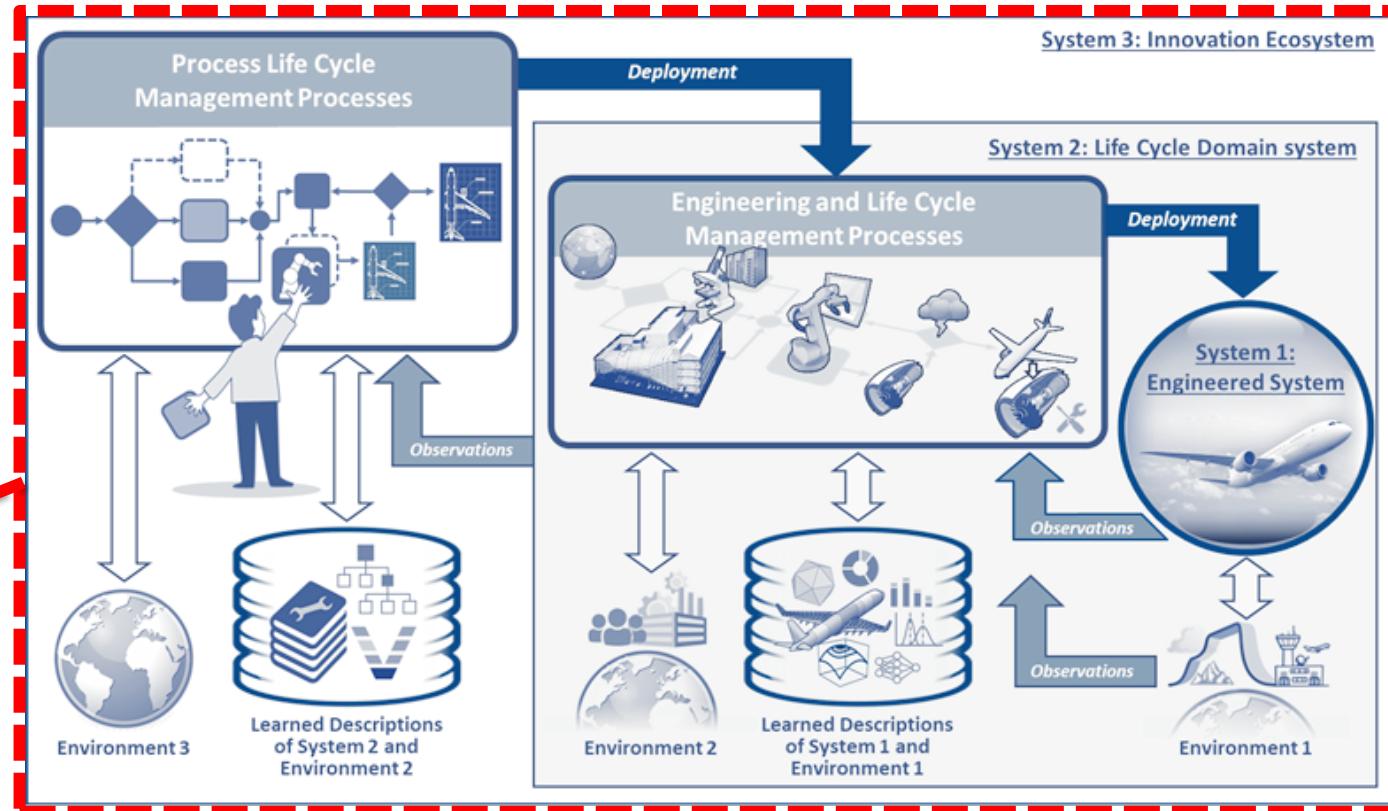


Dublin, Ireland
July 2 - 6, 2024



W R Hamilton
Dublin, Ireland
(1805-1865)

INCOSE ASELCM Innovation Ecosystem Pattern



What Can Hamilton Tell Us?

Innovation Ecosystem Dynamics, Value, and Learning I

Abstract

- Held in Dublin, Ireland, INCOSE IS2024 invites us to refresh understanding of contributions to systems engineering by Ireland's greatest mathematician--Sir William Rowan Hamilton (1805 - 1865), Professor of Astronomy at Trinity College Dublin, and Royal Astronomer of Ireland.
- His profound contributions to STEM deserve greater systems community attention.
- Supporting theory and practice, they intersect Foundations and Applications streams of INCOSE's Future of Systems Engineering (FuSE) program.
- Strikingly, key aspects apply to systems of all types, including socio-technical and information systems.
- Hamilton abstracted the energy-like generator of dynamics for all systems, while also generalizing momentum.
- Applied to the INCOSE Innovation Ecosystem Pattern as dynamics of learning, development, and life cycle management, this suggests an architecture for integration of the digital thread and machine learning in innovation enterprises, along with foundations of systems engineering as a dynamical system.

Contents

- Hamilton and colleagues: Launching the STEM revolution
- Challenges in current innovation ecosystems
- Are current assumptions too conservative?
- Informally, the Hamiltonian
- Application: States and learning in an innovation ecosystem
- Machine learning, human learning, ecosystem learning
- Real projects: Decision-making and the digital thread
- Classical physics models: Practical for socio-technical systems?
- Ecosystem selection forces, dissipation, entropy, and complexity
- So what? Conclusions and future work
- References

Launching the STEM revolution (c. 1700 – 2000)

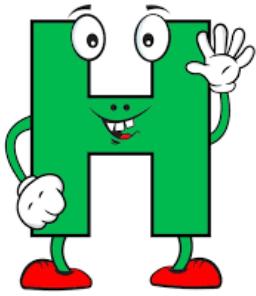
- Millennia of observation and thought about natural phenomena were punctuated by the much shorter STEM revolution:
 - In less than 300 years, Newton, Lagrange, Gauss, Euler, Jacobi, Hamilton, Gibbs, and others set the conceptual and mathematical framework supporting the dramatic acceleration of STEM.
- What followed rapidly changed the quality, length, and possibilities of human life.
- William Rowan Hamilton made enormous contributions to those theoretical foundations of scientific and engineering disciplines.
- His mathematical patterns describe phenomena of mechanics, electrical science, thermodynamics and subsequent disciplines--the foundations of today's STEM.
- “The chief law of physics, the pinnacle of the whole system is . . . the principle of least action” (Hamilton’s Principle)--Max Planck, 1925. [1]
- A surprise: We will summarize here how Hamilton’s work also applies to information systems and socio-technical systems:
 - The innovation ecosystem / supply chain itself, viewed as a dynamical system!

Challenges in current innovation ecosystems

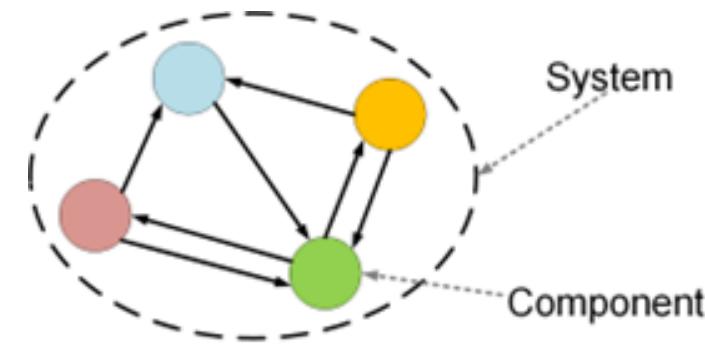
- A. Project and program planning: What are predictable efforts, times, and costs of performing innovation and life cycle management? What are related uncertainties (and consequent risks) in those predictions? [2-5]
- B. Project execution management: As projects are performed (and encounter real-world perturbations only partly predictable), what are the means of preparing, monitoring, and directing them for optimum outcome—including decision-making in particular? During complex multi-enterprise development projects, how can we detect and act on systemic project uncertainties and instabilities threatening success? [6-9]
- C. Project learning and its recurrent application: What are means and effects of accumulating new experience in items (A) and (B) above, distilling, managing trust in, and applying knowledge and competency in future projects? [9-18]
- D. Information and information system roles in items (A), (B), and (C) above: A common thread through the above are roles of information and information systems—both those using engineered information technologies and those performed by human beings. What is the theoretical basis for engineering the performance of these subsystems as an integrated part of larger enterprise systems in which they appear? [9, 18-22]

Are current assumptions too conservative?

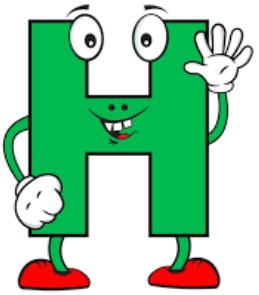
- Hamilton's framework is most familiar to engineers in mechanical, civil, or electromagnetics settings.
- The systems community may be assuming that Hamilton's mathematical contributions do not address the socio-technical and information system questions above in a practical way.
- Symptom: A continued call and search for what are perceived as missing theoretical foundations for the science and engineering of generalized systems. [24]
- Disciplines in engineering and sciences are concerned with phenomena (e.g., mechanical, electrical, chemical) specific to those disciplines, leading to impactful phenomena-specific patterns of interactions described by laws specific to those disciplines, often in mathematical form.
- What about equivalent impactful phenomena, theory, and mathematics for systems in general?
- We assert: More attention should be given to already modeled phenomena (from Hamilton and other STEM pioneers) before spending too much effort looking elsewhere. [25-26]



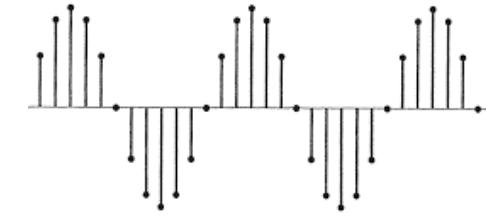
Informally, the Hamiltonian



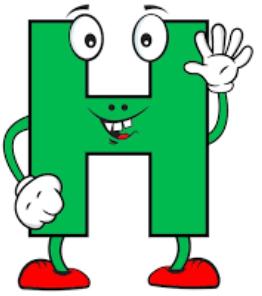
- Hamilton described an energy-like “characteristic function” of a system’s state in a general and mathematical way not restricted to only mechanical or other “hard” engineered systems. [27]
- Systems: Start with a system of any type. By “system”, we mean a set of interacting system components.
- Interactions: By “interact” we mean they exchange input-outputs, such as force, material, energy, or information, resulting in changes of state of the components.
- States: By “state” of a component we mean the condition of the component that can modify its current input-output behavior. Interaction thus changes state, which in turn impacts interaction.



Non-deterministic and discrete systems



- This short and informal discussion focuses on deterministic, smoothly continuous systems, to build intuition.
- However, discrete Hamiltonian systems have been heavily explored and exploited, including providing the symplectic Hamiltonian integrators found in numerical simulation. [28-29]
- Non-deterministic cases: Hamiltonian mechanics also provide the foundations of the rich historical field of statistical mechanics, where state flows are replaced by probability density flows.[30-31]
- Probabilistic cases also re-enter this story through machine learning and human behavior.

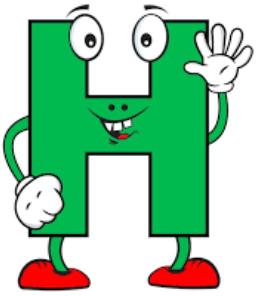


State trajectories; Hamilton's generalized momentum

- States: Have a way of representing the state of the system of interest $Q(t) = \{q_1, \dots, q_n\}$, whose values change over time at rate $\dot{Q}(t) = \{\dot{q}_1, \dots, \dot{q}_n\}$, believed sufficient to characterize observed interactions.
- Characterizing System Level Behavior: Imagine now a scalar-valued function of state and time, not yet defined here, from Hamilton: $H(Q, \dot{Q}, t)$, later $H(Q, P, t)$, intended to characterize something about the system--we have not said how yet.
- Momentum: Hamilton invented “generalized momentum”, $P(t) = \{p_1, \dots, p_n\}$, generalizing the idea of momentum in elementary physics--describing ability to change \dot{Q} . His generalized P is defined as sensitivity of H (not defined here just yet) to $\dot{Q}(t)$:

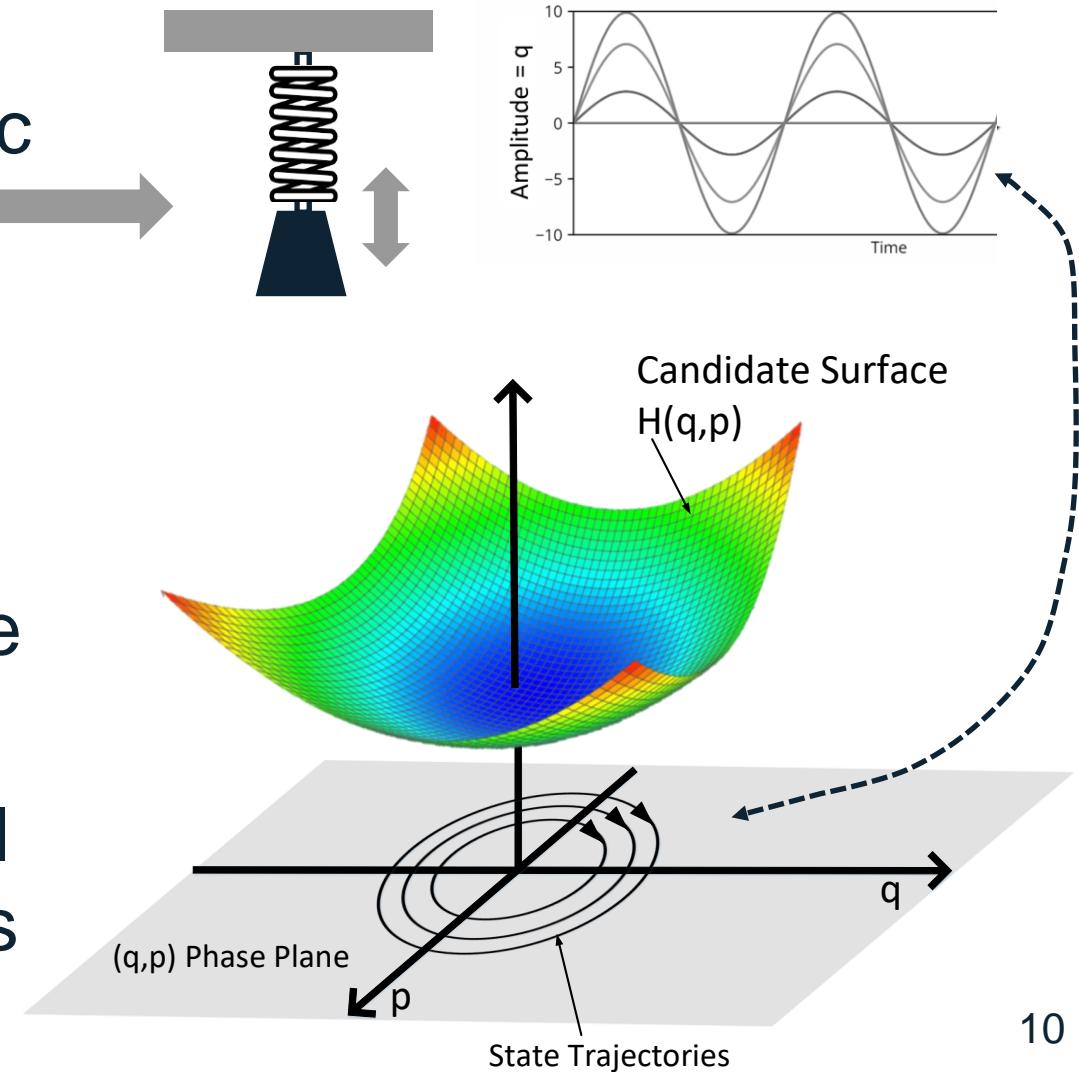
$$p_i \equiv \frac{\partial H}{\partial \dot{q}_i} \quad (\text{Hamilton}) \quad \text{Equation (1)}$$

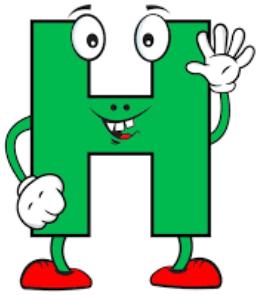
Intuition: If H turns out to be something “like” energy, this says momentum is sensitivity of energy to changes in velocity--or that energy is exchanged to change velocity.



Defining a surface, $H(Q, P)$, that “characterizes” the family of trajectories

- Consider an undamped (simple harmonic oscillator) mass-spring system.
- We are looking for a smooth surface, $H(Q, P)$ that sits above the (q, p) plane.
- Hamilton found a surface function H that “characterizes” the family of system state trajectories in the (q, p) plane below it.
- The Hamiltonian function has the special nature that “describes” all the trajectories below it! What could that be?





Defining the Hamiltonian ---- $H(Q, P)$: A different reasoning path to build intuition

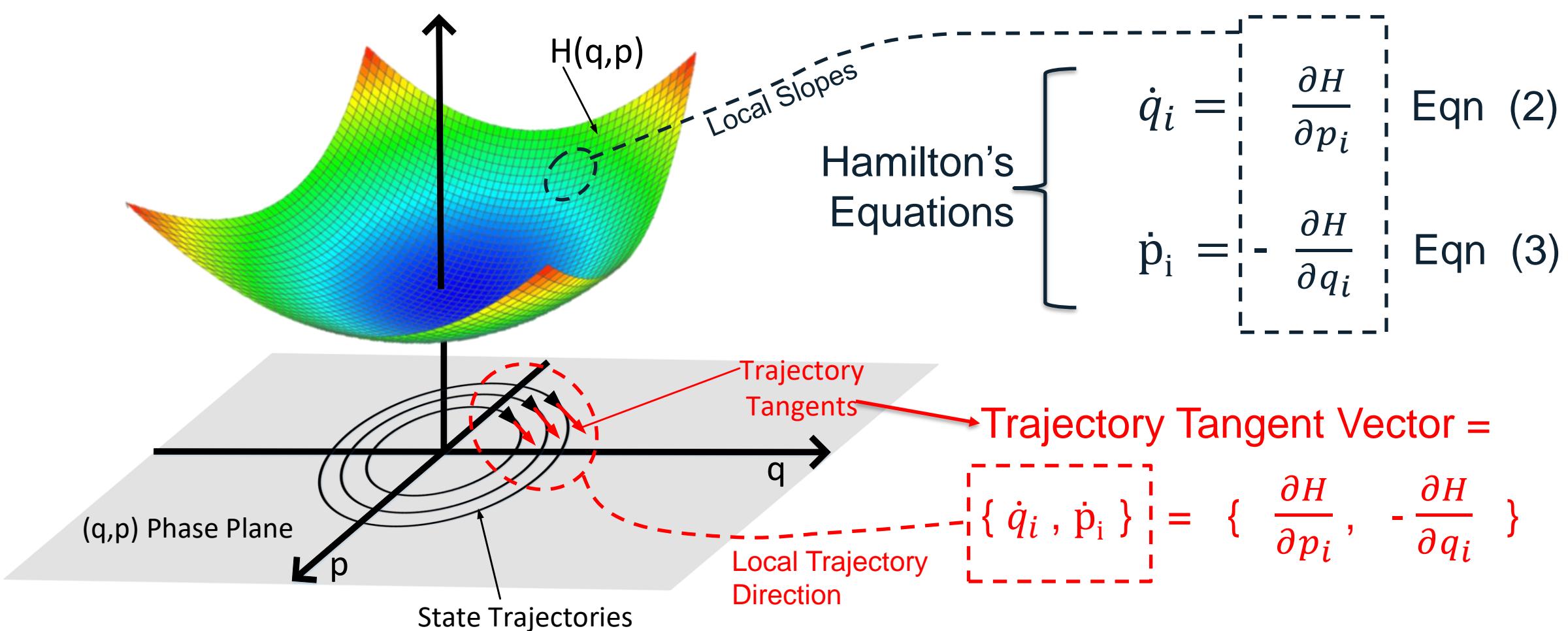
- We want H to “characterize” (describe) the system’s (Q, P) trajectories, and will do so by *tying those trajectories to the local slopes of surface $H(Q, P)$* .
- This provides an intuitive way to define $H(Q, P)$
- First, pick the local sensitivity of H with respect to p_i at (q_i, p_i) is to be equal to the time rate of change of q_i along the system’s state trajectory passing through (q_i, p_i) :

$$\dot{q}_i = \frac{\partial H}{\partial p_i} \quad (\text{Hamilton}) \quad \text{Equation (2)}$$

- Second, pick the local sensitivity of H with respect to q_i at (Q, P) is to be the negative of the time rate of change of p_i along the system’s state trajectory passing through (q_i, p_i) :

$$\dot{p}_i = - \frac{\partial H}{\partial q_i} \quad (\text{Hamilton}) \quad \text{Equation (3)}$$

- Why does it work?

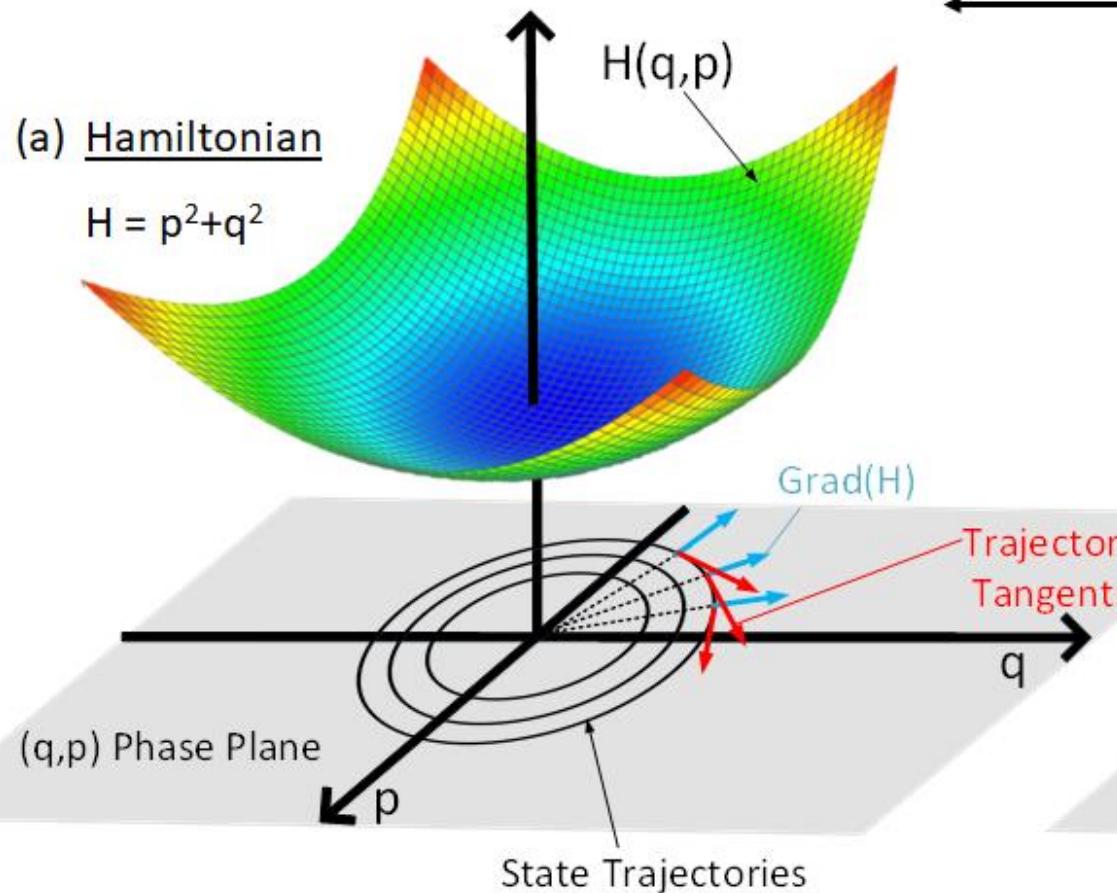
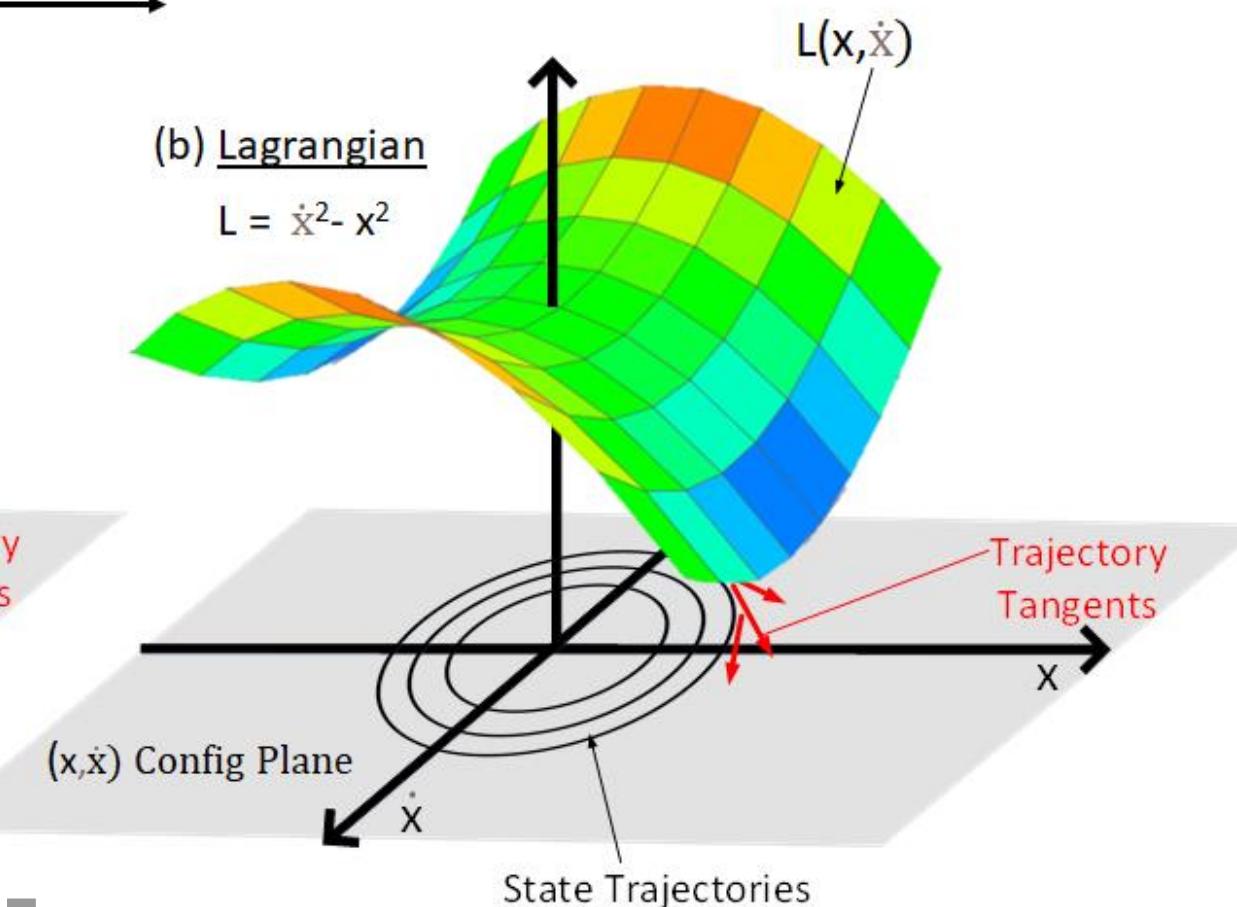


- For intuition, notice that dividing both sides of Eq (2) by both sides of Eq (3) shows that the instantaneous direction of motion in the (q, p) plane is the same as the ratio of the local surface slopes of H in the q and p directions.
- The relative slopes of H “steer” the trajectories in the (q, p) plane!
- So, the surface $H(Q, P)$ “characterizes” all the dynamic trajectories in the (Q, P) plane.

Defining the Hamiltonian: A non-traditional path builds intuition and expands awareness of energies.

- The Traditional Sequence (based on recognized energies of familiar types):
 - Start from an accepted Lagrangian for a familiar system class, energies (e.g., mechanical).
 - Perform Legendre (purely mathematical) transformation to obtain Hamiltonian (H). [32-33]
 - H satisfies Hamilton's equations of motion, including generalized momentum, conservation of energy, etc., and has the advantage of being directly integrable via symplectic integrators.
- The Alternate Sequence (based on observation of state trajectories):
 - Start with any deterministic¹ system and its state variables (state 'positions', velocities).
 - Observe the state trajectories of the system over time.
 - Generate a "characteristic function" H from the observed state trajectories².
 - This H likewise satisfies Hamilton's equations of motion, defines a generalized momentum, and is integrable via symplectic integrators.
 - Provides a broader interpretation of P.E. and K.E. beyond just familiar mechanical and other "traditional" systems—energy as a "characteristic function" in spirit of Hamilton.

Historically, the Lagrangian came before the Hamiltonian



$$\dot{q}_i = \frac{\partial H}{\partial p_i}$$
$$-\dot{p}_i = \frac{\partial H}{\partial q_i} \quad \text{where} \quad p_i \equiv \frac{\partial H}{\partial \dot{x}_i}$$

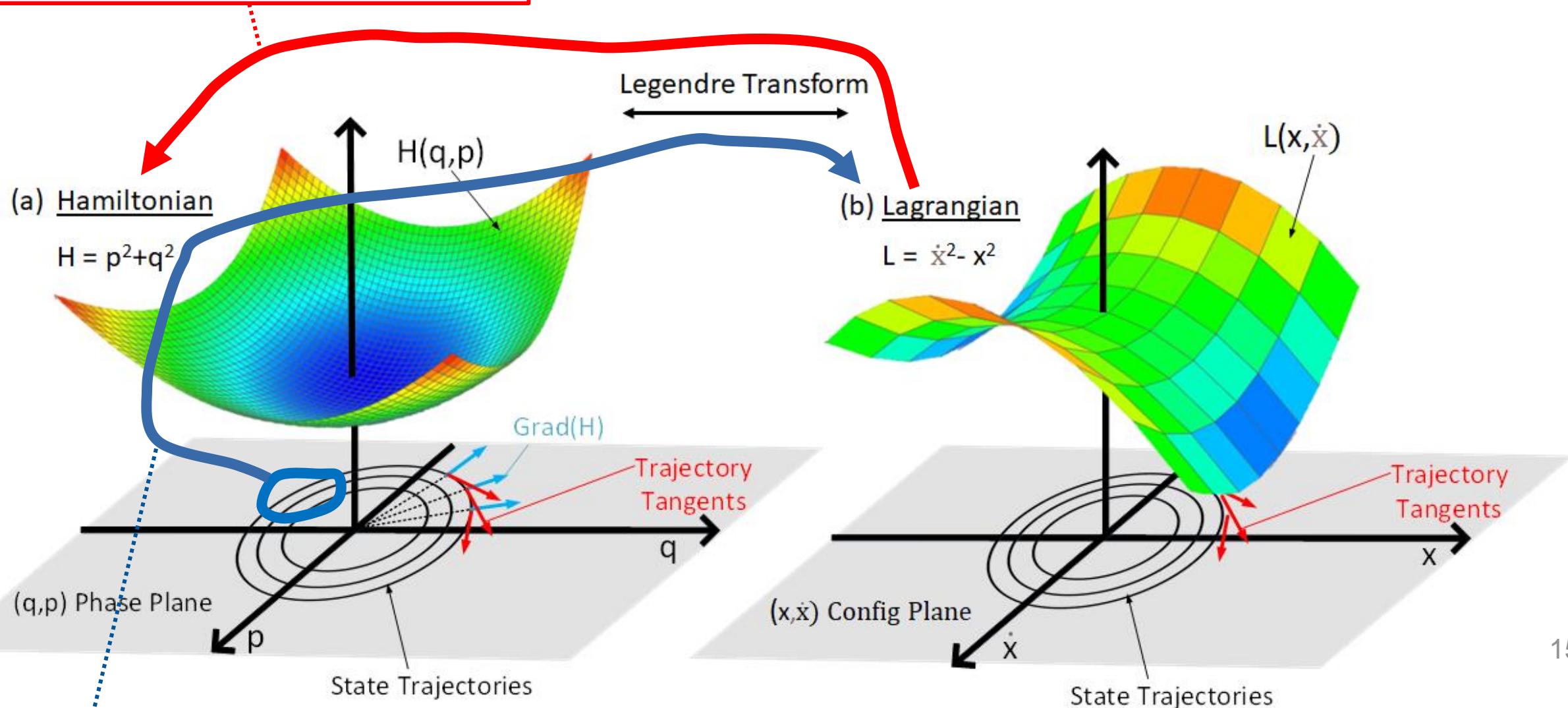
← Hamilton
(first order)

→ Euler-Lagrange
(second order)

$$\frac{\partial L}{\partial x_i} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}_i} \right) = 0$$

Traditional Reasoning Sequence:
Assumes energy concept and leads to Hamiltonian [32-33]

The historical path assumed we already had a Lagrangian and familiar mechanical or other energies. The alternate path does not require those, and teaches us about “energies” of different systems.

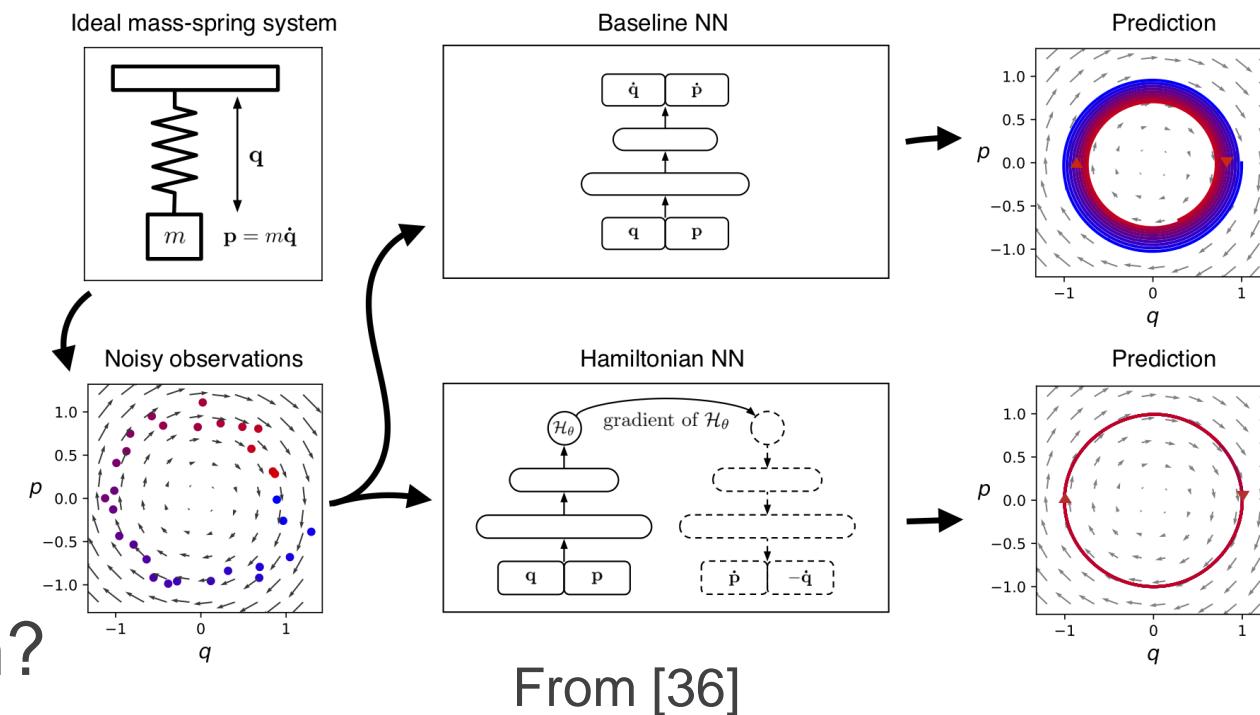


Alternate Reasoning Sequence: Assumes only States, Trajectories; leads directly to Hamiltonian and “energy”. Examining $\text{Grad}(H)$ leads to invariance (conservation) of H along trajectories; variational/Lagrangian insight. [40]

Machine learning--yet another path to Hamiltonians: Physics-informed neural networks (PINNs)

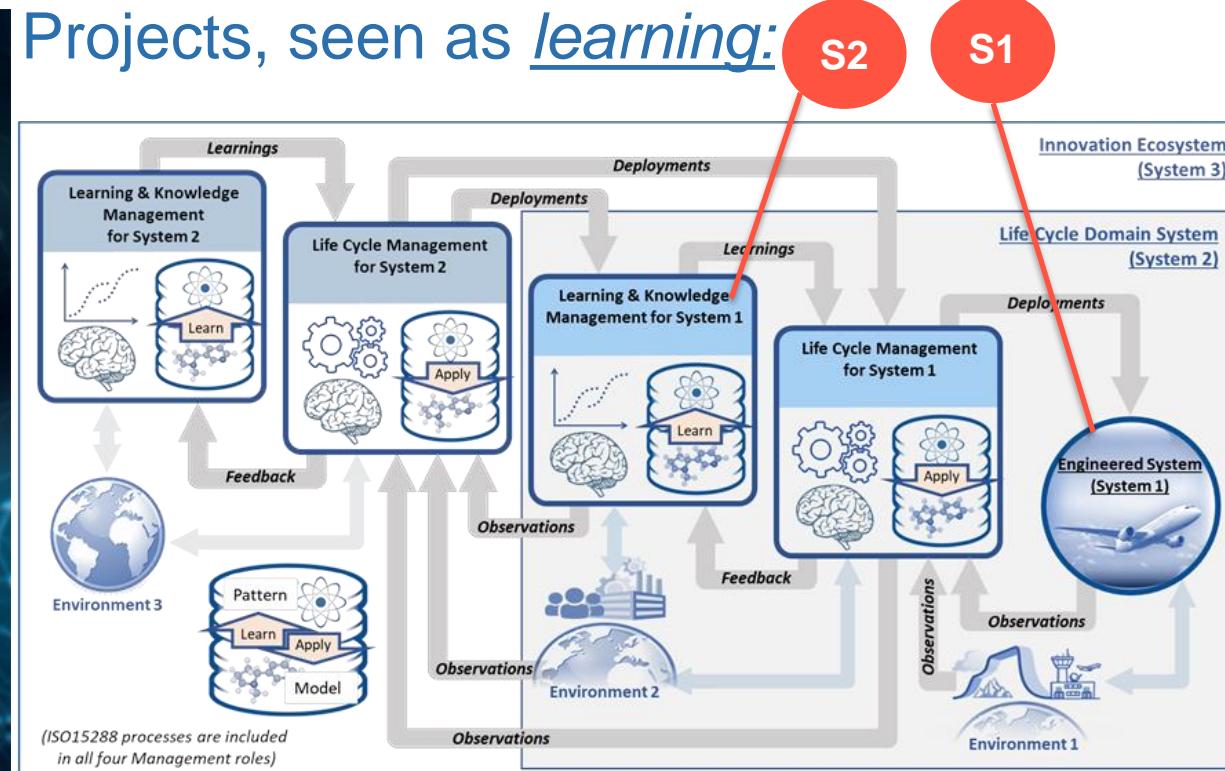
- Hamiltonian Neural Networks (HNNs) are part of the emerging family of Physics-Informed Neural Networks (PINNs). [34]
- HNNs learn a Hamiltonian by observing empirical trajectory data.

- Used to learn Hamiltonians of:
 - Ocean currents [36]
 - Three body problems [37]
 - Molecules [38]
 - Stars orbiting a galactic center [39]
- Why not also Systems of Innovation?



Application: States and learning in an innovation ecosystem

The diverse engineering, production, sustainment, other life cycle management processes of any innovation ecosystems can be characterized using the “Consistency Management” paradigm of INCOSE ASELCM Pattern: [22,42,43]



System 2 learns about **System 1** and its environment

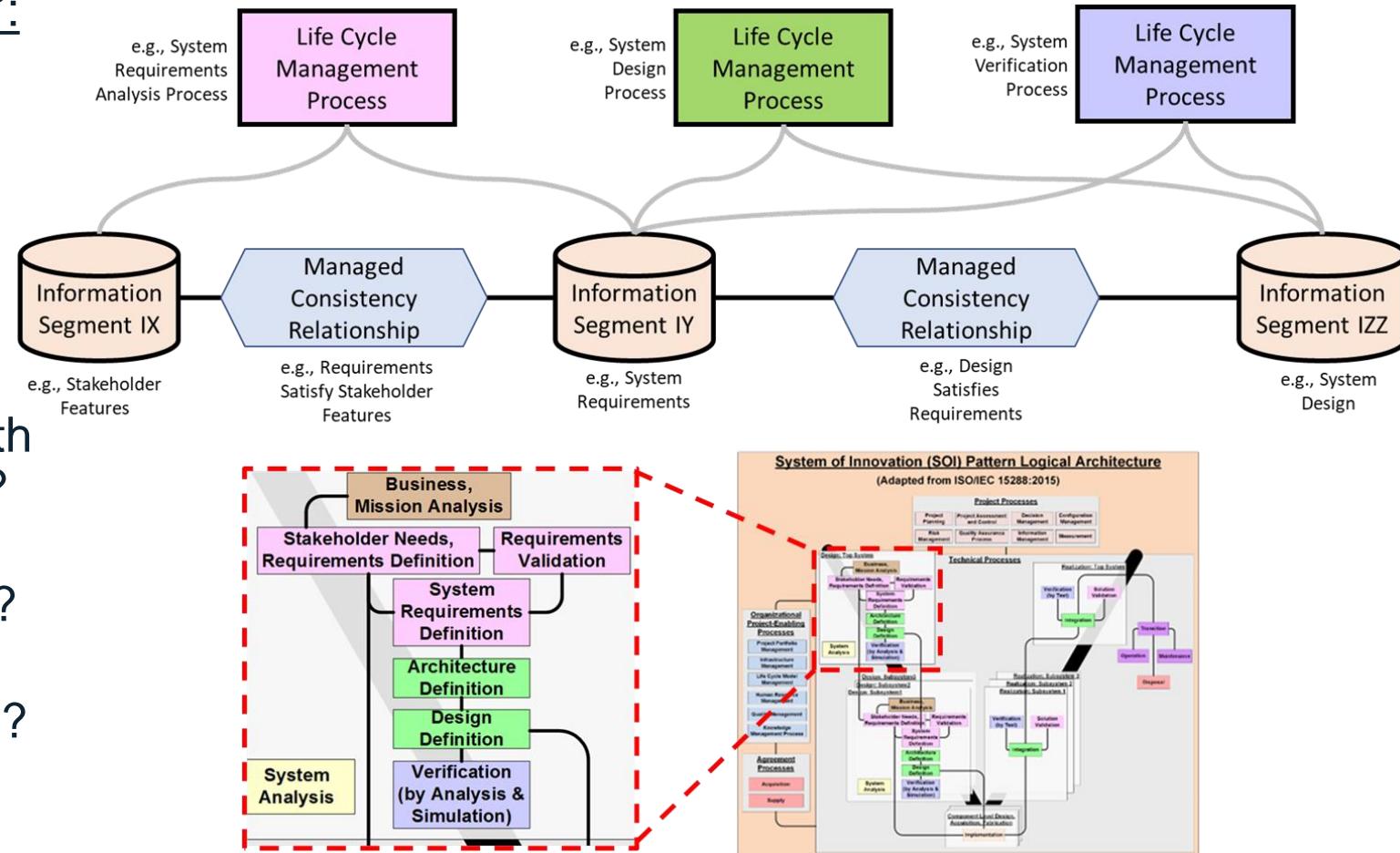
Application: Jan, 2023 17

Application: June, 2023

The consistency management paradigm [43]

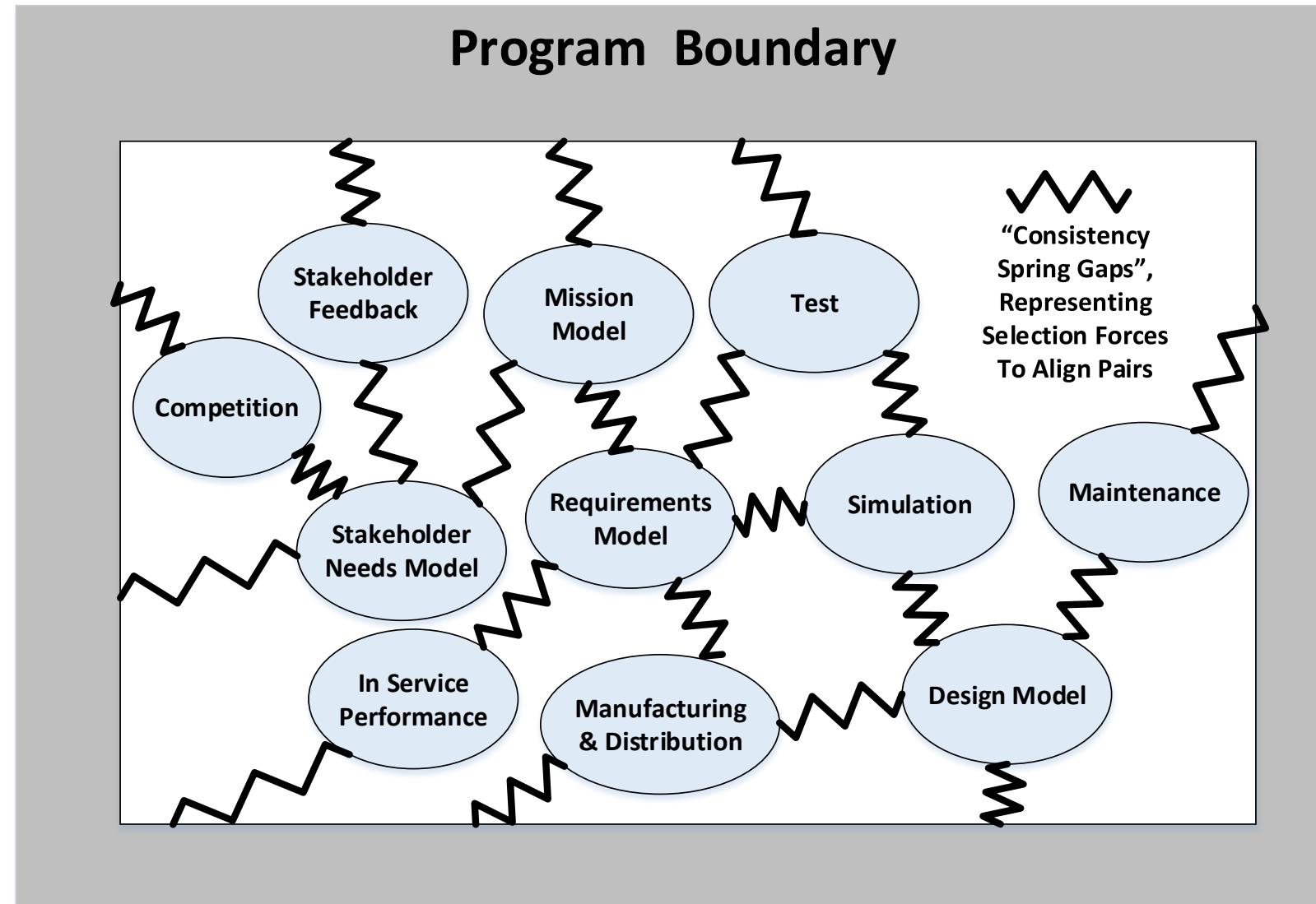
Examples of managed “consistency pairs”:

1. Design consistent with requirements?
2. Requirements consistent with mission and stakeholder needs and priorities?
3. Design consistent with experience?
4. Manufactured product consistent with design specifications?
5. Observed use of product consistent with the product mission and requirements?
6. Performance of deployed product consistent with specified requirements?
7. Environment of product use consistent with product mission and requirements?
8. Simulation outputs consistent with empirical observations?
9. Design consistent with good practice?
10. And many, many more . . .



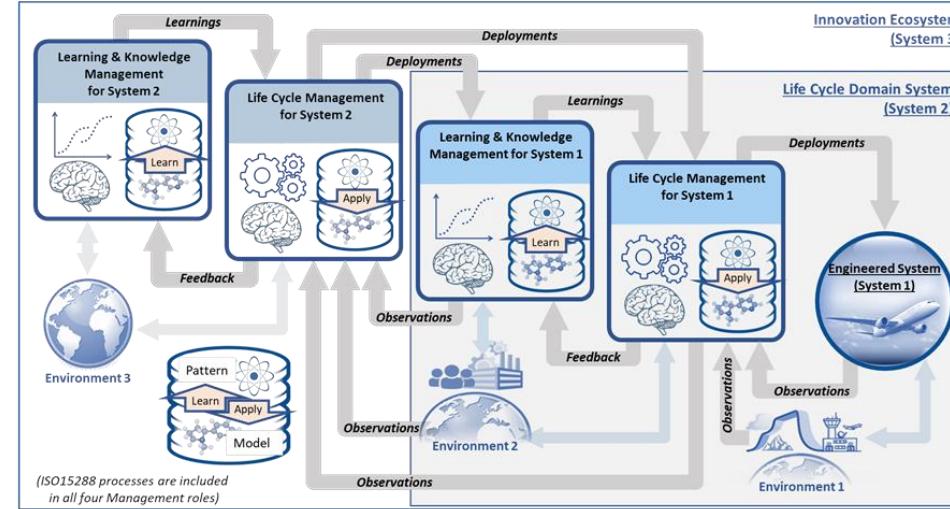
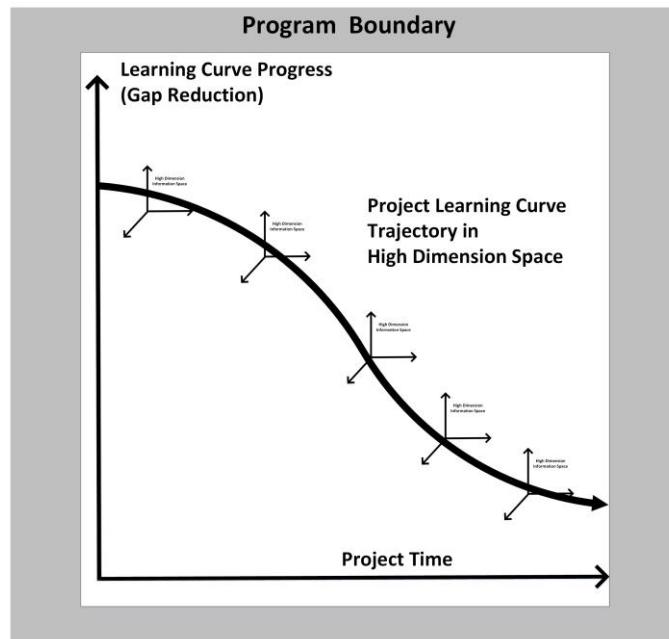
The consistency management paradigm

- During a project:
Consistency gap “springs” jiggle until we reduce gaps to acceptable levels of consistency.
- A model of all innovation ecosystems—good ones as well as not so good ones.
- What are the dynamics of such systems?
- What are the selection “forces”?
- What is the “energy”?
- What is overall “trajectory” in this “state space”?

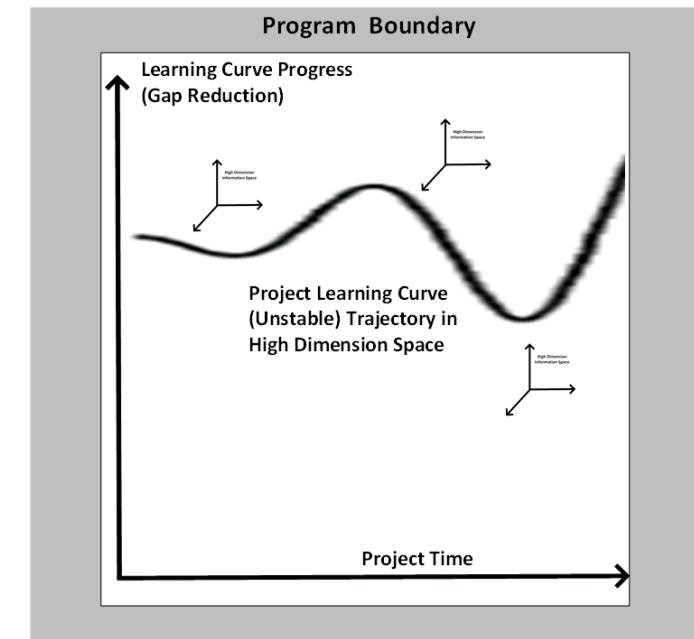


Overall trajectories, seen as:

- Boundary value problem
- Learning curve problem

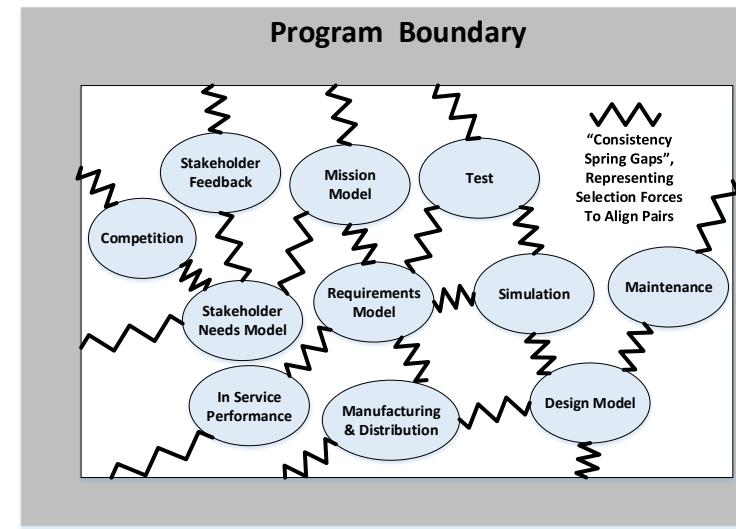
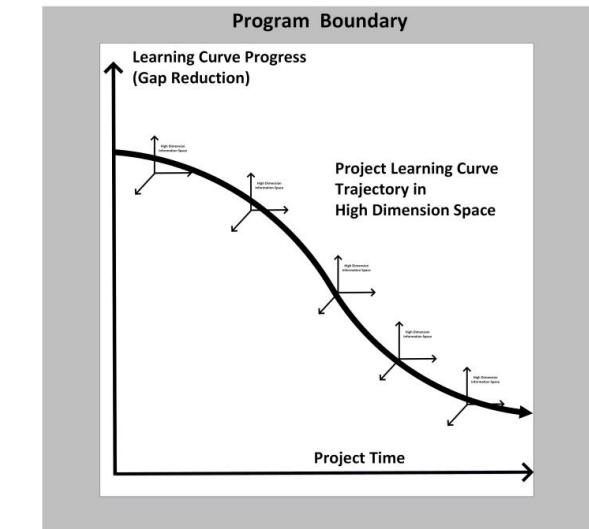


A well-behaved project reduces uncertainty, consistency gaps.

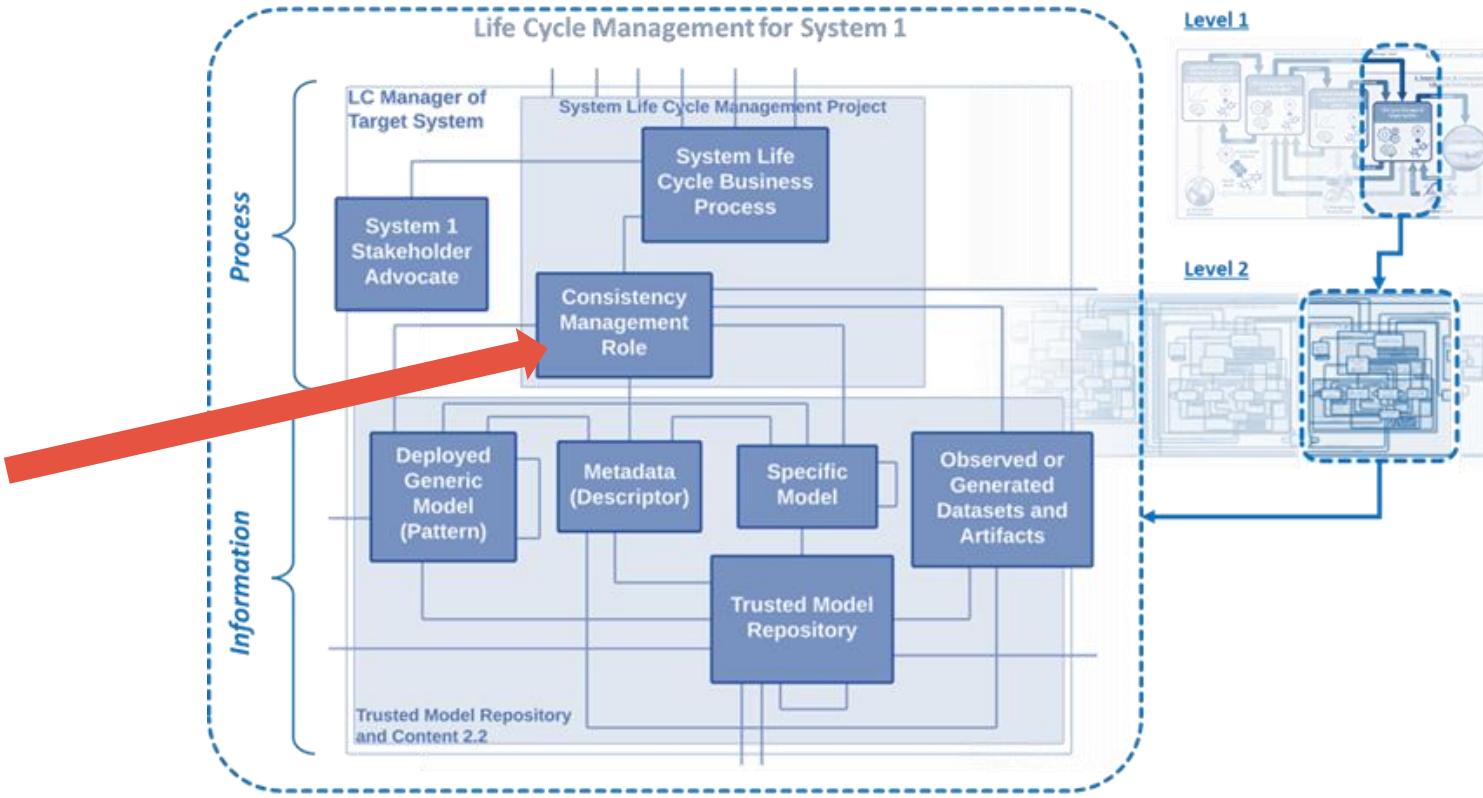


Other projects can be unstable.

In Engineering Projects: Machine learning, human learning, System 2 energy and momentum



- If current knowledge is viewed as state, can we use sizes of its “consistency gaps” as a form of “potential energy” for discovering Hamiltonians?
- Confidence in learned patterns, uncertainty management, Bayes [66]
- John Hopfield’s seminal 1982 PNAS paper rekindled research in neural network learning machines, referring to “energy” functions “isomorphic to an Ising model” (physics). [48]
- Contemporary machine learning abounds in “energy-based methods”. [49, 67]
- Recognizing the deep connections between performance of neural nets over large sample spaces and the probability distributions of statistical physics. [50]



- Executing real projects involves *making decisions*:
 - Incremental, minor but accumulating decisions;
 - Major milestone, stage-gate decisions.
- *We can view all such decisions as reconciling inconsistencies.* [54, 55]
- The ASELCM reference model of the digital thread represents the roles of detecting and reconciling inconsistencies, along with recording them. [41]

Classical mathematical physics models: Practical for socio-technical systems?

$$\dot{q}_i = \frac{\partial H}{\partial p_i}$$

$$\dot{p}_i = - \frac{\partial H}{\partial q_i}$$

- Are Hamilton's mathematical models even plausible for describing complex, human-performed socio-technical systems, such as engineering or other innovation life cycle management?
- That such a question would even be seriously considered has recently become more likely, based on advancements in machine learning leading to surprising demonstrations. [18]

Ecosystem selection forces, dissipation, entropy, and complexity

- For a future discussion:
 - Selection forces [53-55]
 - Hamiltonian learning systems [56]
 - Innovation ecosystem dissipation and reversibility [57]
 - Entropy and its preservation in Hamiltonian systems [58]
 - The question of non-holonomic constraints [61-64]

So what? Conclusions and future work

This paper [65] has:

1. Outlined some of the questions faced by Innovation Ecosystem projects;
2. Provided an informal refresher on how Hamilton's framework applies to diverse systems, including socio-technical and information systems, and ASELCM Pattern;
3. Shown that the key Innovation Ecosystem state variables relevant for Hamiltonian "potential" modeling include Consistency Management "gaps" central to digital thread;
4. Noted Energy Based Learning methods for machine learning are already being used to learn real system Hamiltonians as well as being Hamiltonian modeled themselves;
5. Shown that consistency management's needs for inconsistency detection and reconciliation are candidates for machine learning based aids to labor-intense roles;
6. Shown that this synthesis suggests an Innovation Enterprise architecture integrating the digital thread as well as machine and human learning;
7. Laid a foundation for future momentum kinetics and applications work utilizing these approaches, as well as case study work.

Questions, discussion

-

-

-

-

-

-

Thank you!

34th Annual **INCOSE**
international symposium
hybrid event

Dublin, Ireland
July 2 - 6, 2024

www.incose.org/symp2024
#INCOSEIS

References

- [1] Planck, M. (1925) *A Survey of Physics: A Collection of Lectures and Essays*, Transl. by R. Jones and D.H. Williams, Methuen & Co., Ltd.
- [2] Valerdi, R., Boehm, B., Reifer, D. (2003), COSYSMO: A constructive systems engineering cost model coming of age, in *Proc. of 13th INCOSE International Symposium*, Crystal City, VA.
- [3] de Weck, O. (2023). The first law of systems science: Conservation of complexity. *Proc. of INCOSE 2023 International Workshop*, Los Angeles, CA.
- [4] ISO (2023) ISO/IEC/IEEE International Standard - Systems and software engineering -- System life cycle processes, in ISO/IEC/IEEE 15288-2023, doi: 10.1109/IEEESTD.2023.7106435.
- [5] Walden, D., et al, eds. (2023) *INCOSE Systems Engineering Handbook*, Fifth Edition, International Council on Systems Engineering, San Diego, CA.
- [6] SEI (2010). CMMI® for Development, Version 1.3 CMMI-DEV, V1.3 CMMI Product Team Improving processes for developing better products and services November 2010 TECHNICAL REPORT CMU/SEI-2010-TR-033 ESC-TR-2010-033, Carnegie Mellon University Software Engineering Institute
- [7] Rebentisch, E. (2017), editor, *Integrating Program Management and Systems Engineering: Methods, Tools, and Organizational Systems for Improving Performance*, Wiley, 2017. ISBN-10 : 9781119258926
- [8] Dove, R. (2001). *Response Ability: The Language, Structure, and Culture of the Agile Enterprise*. Wiley. ISBN-10: 9780471350187
- [9] Schindel, W. (2022) Realizing the value promise of digital engineering: Planning, implementing, and evolving the ecosystem, in *INCOSE Insight: Special Issue on Digital Engineering*. Vol 25 Issue 1.
- [10] Mihaly, H (2017). From NASA to EU: the evolution of the TRL scale in public sector innovation, in *The Innovation Journal*. 22: 1–23.
- [12] Trees, L., McCulloch, M., Witt, N. (2021). Knowledge management trends: Survey report, American Productivity & Quality Center, Houston, TX.
- [13] Alexander, C. (1977). *A Pattern Language: Towns/Buildings/Construction*, Oxford U. Press.
- [14] Gamma, E., et al (1994) *Design Patterns: Elements of Reusable Object-Oriented Software*. Addison-Wesley.

[15] Cloutier, R. (2008). *Applicability of Patterns to Architecting Complex Systems: Making Implicit Knowledge Explicit*, VDM Publishers, Saarbrucken, Germany.

[16] ISO (2021) ISO/IEC 26580:2021, Software and systems engineering: Methods and tools for the feature-based approach to software and systems product line engineering”, Technical Committee : ISO/IEC JTC 1/SC 7. ICS: 35.080.

[17] Clements, P. and Northrop, L. (2002), *Software Product Lines: Practices and Patterns*, Addison-Wesley.

[18] LeCun, Y., Bengio, Y., & Hinton, G. (2015) Deep learning, in *Nature*, Vol 521, pp. 436-444, MacMillan.

[19] Shannon, C. (1948) A mathematical theory of communication. In *Bell System Technical Journal*. 27 (3): 379–423.

[20] Foorthuis, R., Steenbergen, M. van, Brinkkemper, S., Bruls, W. (2016). A theory building study of enterprise architecture practices and benefits. In *Information Systems Frontiers*, Vol 18, Iss 3, pp. 541-564. DOI: 10.1007/s10796-014-9542-1.

[22] Cribb, M., et al. (2023). Digital thread: Definition, value, and reference model. American Institute of Aeronautics and Astronautics.

[24] Friedenthal, S., et al (2021) INCOSE Systems Engineering Vision 2035: Engineering Solutions for a Better World. International Council on Systems Engineering, San Diego, CA.

[25] Schindel, W. (2016). Got phenomena? Science-based disciplines for emerging systems challenges. In *Proc of INCOSE 2016 International Symposium*, 26(1), 2256–2271.

[26] Schindel, W. (2020) SE foundation elements: Discussion inputs to INCOSE Vision 2035 theoretical foundations section,V2.3.2a., INCOSE Patterns Working Group. Download from--
https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:patterns:science_math_foundations_for_systems_and_systems_engineering--1_hr_awareness_v2.3.2a.pdf

[27] Hamilton, W. (1834) On a general method in dynamics, in *Phil Trans of the Royal Society*, Part II, 1834, pp 247-308.

[28] Shibberu, Y. (1994), Time-discretization of Hamiltonian dynamical systems, in *Computers Math. Applic.*, Vol 28, No 10-12, pp. 123-145.

[29] Marsden, J., and West, M. (2001) Discrete mechanics and variational integrators, in *Acta Numerica*, pp 357-514.

[30] Gibbs, J. W. (1901) *Elementary Principles of Statistical Mechanics*, Dover Publishers, Garden City, NY.

[31] Khinchin, A. (1949) *Mathematical Foundations of Statistical Mechanics*, New York, Dover Publishers.

[32] Greenwood, D. (1977) *Classical Dynamics*, Dover Publications, Mineola, NY.

[33] Landau, L, and Lifshitz, E (1976) *Mechanics*, Third Edition, London, Butterworth Heinemann.

[34] Wikipedia (2024) Physics-informed neural networks. Retrieve from--
https://en.wikipedia.org/wiki/Physics-informed_neural_networks

[35] Bertalan, T., et al (2019). On learning Hamiltonian systems from data, in *Chaos*, 29, 121107-1-9. AIP Publishing.

[36] Greydanus, S., et al (2019) Hamiltonian neural networks, in *Proc. of NeurIPS 2019*, Vancouver, BC.

[37] Toth, P., Rezende, D., Jaegle, A., Racanière, S., Botev, A. & Higgins I. (2020) Hamiltonian generative networks, in *Proc. of the 2020 International Conference on Learning Representations*. Addis Ababa, Ethiopia.

[38] Bhat, H., Ranka, K. & Isborn, C. (2020), Machine learning a molecular Hamiltonian for predicting electron dynamics. *Intl J of Dynamics and Control*. 8, 1089–1101.

[39] Chen, R., and Tao, M. (2021). Data-driven prediction of general Hamiltonian dynamics via learning exactly-symplectic maps, *Proc. of 38th International Conference on Machine Learning*. 139:1717-1727.

[40] Lanczos, C. (1986) *The Variational Principles of Mechanics*, 4th Edition, New York, Dover Publishers.

[42] Schindel, W. & Dove, R. (2016). Introduction to the agile systems engineering life cycle MBSE pattern, in *Proc. of INCOSE 2016 International Symposium*, Edinburg, UK.

[43] Schindel, W. (2021) Consistency management as an integrating paradigm for digital life cycle management with learning, INCOSE MBSE Patterns Working Group, download from—
https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:patterns:aselcm_pattern_consistency_management_as_a_digital_life_cycle_management_paradigm_v1.3.1.pdf

[48] Hopfield, J. (1982) Neural networks and physical systems with emergent collective computational abilities, in *Proc. Natl. Acad. Sci. USA*, Vol 79, pp 2554-2558, Biophysics.

[49] LeCun, Y., et al (2006). A tutorial on energy-based learning, in *Predicting Structured Data*, MIT Press.

[50] Hinton, G., and Zemel, R. (1993) Autoencoders, minimum description length and Helmholtz free energy, in *Proc of Advances in Neural Information Processing Systems 6* (NIPS 1993), pp 3-10.

[53] Schindel, W. (2017). Innovation, risk, agility, and learning, viewed as optimal control & estimation. In *Proc of 2017 INCOSE International Symposium*. Adelaide, AU.

[54] Schindel, W. (2023) All decisions across life cycles of systems are reconciliations of inconsistencies, presentation to INCOSE North Texas Chapter, Aug 08, 2023. Download from--
https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:patterns:incose_north_texas_pgm_08.08.2023_v1.2.2.pdf

[55] Schindel, W.- (2024) All decisions are reconciliations of inconsistencies: Preparing for the digital thread and machine learning, accepted for presentation at INCOSE 2024 International Symposium, Dublin.

[56] Ramacher, U. (1993) Hamiltonian dynamics of neural networks. *Neural Networks* Vol 6 pp 547-557.

[57] Hey, A., ed. (1996) *Feynman and computation: Exploring the limits of computers*. Perseus, Cambridge, MA

[58] Carcassi, G., Aidala, C. (2020) Hamiltonian mechanics is conservative of information entropy. *Studies in History and Philosophy of Science, Part B: Studies in History and Philosophy of Modern Physics*, August, pp 60-71.

[59] Li, M., Vitany, P. (1997). *An introduction to Kolmogorov complexity and its applications*. Second edition. Springer.

[61] Bloch, A. (2003) *Nonholonomic mechanics and control*. New York: Springer. New York.

[62] Rojo, A., Bloch, A. (2018) *The History and Physics of the Least Action Principle*. Cambridge U Press, NY.

[63] Flannery, M. (2005) The enigma of nonholonomic constraints. *Am. J. Phys.* 73(3), March, 2005.

[64] Eden R. (1951) The Hamiltonian dynamics of non-holonomic systems. *Proc. of the Royal Society*, 07 March 1951. Volume 205 Issue 1083. DOI:<https://doi.org/10.1098/rspa> .

[65] Schindel, W.- (2024) Innovation ecosystem dynamics, value and learning I: What can Hamilton tell us? Accepted to appear in *Proc of the INCOSE 2024 International Symposium*, Dublin.

[66] Jaynes, E. (2003) *Probability Theory: The Logic of Science*. Cambridge U. Press. ISBN-10: 0521592712.

[67] LeCun, Y. (2021) The energy-based learning model, lecture video of May 18, 2021. Download from <https://www.youtube.com/watch?v=4lthJd3DNTM>