

34th Annual **INCOSE**
international symposium
hybrid event
Dublin, Ireland
July 2 - 6, 2024

Case Studies for Complexity Pattern Identification

Authors

- **Andy Pickard, Rolls-Royce Corporation (retired)**
- **Richard Beasley, Rolls-Royce plc (retired)**
- Dean Beale, Bristol University
- Dorothy McKinney, Lockheed Martin (retired)
- Rudolph Oosthuizen, University of Pretoria
- Dave Stewart, CACI
- Kenneth Cureton, University of Southern California
- Chandru Mirchandani, Leidos

Presenters

Andrew Pickard joined Rolls-Royce in 1977 after completing a Ph.D. at Cambridge University in Fatigue and Fracture of Metals and Alloys. He retired from Rolls-Royce at the end of 2022 after 45 years with the Company. He is a Rolls-Royce Associate Fellow in Systems Engineering, a Fellow of SAE International, a Fellow of the Institute of Materials, Minerals and Mining, a Chartered Engineer and a member of INCOSE. He is an Emeritus member and past Chair of the SAE Aerospace Council, and was Chief of Staff for INCOSE from 2016 to 2024

Richard Beasley worked at Rolls-Royce plc, predominantly in the Defence Aerospace area, from 1986 to May 2024. He joined with a BSc in Physics from Bristol University, and (as a part of RR professional development program) gained a MSc in Gas Turbine Engineering from Cranfield University.

Richard initially worked in Installation Aerodynamics, moving on to lead the UK Engine Stealth research program. He moved on (in 2001) to work in Safety, Reliability, Engine Health Monitoring, focusing on “design for service” and life cycle cost issues. Then in 2006 he moved on to start to lead an explicit focus on Systems Engineering implementation in Rolls-Royce, becoming a Rolls-Royce Associate Fellow in Systems Engineering in 2011.

Richard retired from Rolls-Royce in May 2024, and is now providing Systems advice via a sole-trading advisory company (RB Systems).

Richard has been a member of INCOSE since 2006, contributing to a range of technical products including the SEBoK (2012) and being a lead author on the first issue of the INCOSE SE Competency Framework (2018). He has served INCOSE as President of the UK Chapter (2014-16) and was the Director of Services on the main INCOSE Board (term finishing January 2024). Richard's professional qualifications are both a (UK) CEng and the INCOSE ESEP. He was a visiting fellow at the Bristol University Systems Centre whilst it was operating.

Agenda

- Purpose of Paper / Work
- Description of the Investigation Methodology
- Heuristics overview
- Overview of the Complexity Difficulty Assessment Tool (DAT)
- Summary of Case Studies
- Limitations of Analysis
- Outline of Results
- Observations (from exercise)
- Conclusions/Next Steps

Purpose / Content of Paper

Initial investigation / assessment of the effectiveness and usefulness of the Difficulty Assessment Tool (DAT) developed by the INCOSE Complex Systems WG to help choose appropriate heuristics for complex situations

- Complex Systems WG selected 67 Principles and Heuristics relevant to complex systems, and developed the DAT to prioritize which most relevant
- We choose eight (existing) case studies to try to validate the tool
- Applied the DAT – in five separate assessment teams (using problem description of case study only)
- Correlated results from the separate teams
- Checked the relevance of the DAT recommended Complexity Principles and Heuristics (knowing outcome from case study)
- Made recommendations for further assessment of the DAT

Investigation Methodology

Eight Case Studies

Developing World Incubators	Foot and Mouth
Fuel Vent Valve	Product Lines
Scott & Amundsen	Steam Blast
Supplier Relationships	Turbine Tip Clearance

Assessors perform Heuristic Usefulness Assessment

Heuristic Usefulness - Developing World Incubators					Score
A	B	C	D	E	
E		E	E	E	-2
31		31	31	31	-2
C10		C10			-2
C9					-1
C11					-1
C13					-1
Principle 3					0
Principle 4					0
Principle 5	Principle 5	Principle 5	Principle 5	Principle 5	
4		4	4	4	1
5		5	5	5	1
7		7	7	7	1
3		3	3	3	2

2-6 July 2024

[#INCOSEIS](http://www.incose.org/symp2024)

Case Study – Developing World Incubators

IS 2020 Paper 14 “How Systems Engineering and Systems Thinking Enable innovation”

Background

The majority of this material is taken from chapter 1 (The Adjacent Possible) of the book "where Good Ideas come from" (Johnson, 2010). An example of innovation given is the development of incubators for human babies.

The idea for an incubator came to Dr Stephane Tarnier (a Parisian obstetrician) when observing chicken egg incubators at the Paris Zoo in the 1880s. In the terms Johnson uses this was an 'adjacent possible'. The problem of infant mortality was clear and was a growing concern, and there was the technology in manufacturing available to make safe and reliable devices. The concept that was developed was highly effective. The death rate for low weight babies went from 66% to 38% if the baby was housed in Tarnier's box.

Throughout the 20th Century medical science and proactive continued to evolve the incubator concept. Supplemented with Oxygen therapy, they are standard equipment throughout the Western world. The uptake between 1950 and 1998 led to a 75% reduction in infant mortality in the USA. The benefit to public health, in terms of the sheer numbers of extra years of life provided (a baby that survives in an incubator for first few weeks of life goes on to live full life span), make incubators rival any other medical advance in 20th century for medical impact benefit

In the developing world there is still a bleak situation. In 2000 there were death rates approximately 100 / 1000 babies in countries like Ethiopia and Liberia. Modern Developed World Incubators are expensive and costly to maintain. In times of crisis the West is generous with medical donations. As a specific example after the 2004 tsunami, Meulaboh in Indonesia was donated 8 new, modern incubators. In 2008, whilst on a visit Dr Timothy Prospero found they were all out of order – humidity and an inability to understand the repair and operating manual were the root causes.

So something needed to be done – how could incubators be developed that were affordable, robust to the environment and easy to maintain for the developing world?

Assessors read Background

Assessors perform DAT Assessments

 Organisation Difficulty Scoring

Save

Organisation: A group of people who work together in an organized way for a shared purpose

Intricacy	Unpredictability	Unfamiliarity	Constraints / Enablers
1.1 How complicated are the relevant organisations, stakeholders or communities?	1.2 How challenging beyond your control are the relevant organisations, stakeholders or communities, within the task duration?	1.3 How unfamiliar/unaligned are the relevant organisations, stakeholders or communities?	1.4 How constrained are the relevant organisations, stakeholders or communities by processes, resources, information, facilities etc.
There are no inter-dependent interfaces 0	Very confident that change is unlikely to affect the task 0	All capability elements are aligned or familiar with each aspect of the task 0	No constraints 0
There are several interdependent interfaces and some of these need to be managed 1	Minimal change could affect the task. Significant confidence that there are no unknowns 1	Some aspects are not aligned or familiar which may require resolution 2	Minor constraints impeding progress 1
There are many interfaces or a few which have known or significant interface issues 2	Some change likely to affect delivery that may cause disruption 2	Major aspects are not aligned or familiar which will require resolution 2	Notable constraints across many aspects of the task 2
There are a large number of interfaces most of which have known significant issues 3	Many changes are expected which is likely to cause significant delivery disruption 3	Major aspects are not known and will require significant effort to resolve 3	Major constraints reducing the likelihood of an acceptable outcome 3
Currently unable to ascertain or bound the number of interfaces which are causing significant issues 4	Significant change are expected which will cause significant delivery disruption 4	Major aspects are not known within or outside the team and will require research / development to resolve 4	Major constraints that mean the probability of an acceptable outcome is low 4
Comment		Comment	
Although the number of stakeholders is limited, there can be antagonistic relationships, with the PDM not caring about supplier survival because there are many more out there. Suppliers have feelings too 		Lack of change makes the problem persist. Change needed to Purchasing culture and supplier response - trust issue 	
Comment		Comment	
The issue is not "known" but "cared about" 		Cultural change is very difficult and complex - need to be able to see two world views at once (Jack Ring Value Cycle) 	

Overview
→ Organisation
→ Technology
→ Process
→ Information
→ Benefit
→ Environment
→ Evaluation
Back
Next
Log Out
5

Heuristics

41 “complex” heuristics used in the initial case study screening & incorporated in the DAT tool

- Group 1 Top-down heuristics: The group of 7 Heuristics, A to G, were developed by considering founding principles of complexity and their implications for how to reduce or handle complexity.
- Group 2: Initial bottom-up heuristics; This group of 18 (1-18) heuristics were processed or inspired from searching the INCOSE Fellows heuristics database of 600+ heuristics using “complex” and “complexity” as search terms
- Group 3: Additional bottom-up heuristics: This group of 16 (19-34) heuristics were processed or inspired by searching the INCOSE Fellows heuristics database of 600+ heuristics using 32 search terms that were closely related to complex and complexity.

10 principles and 16 additional “complicated” heuristics added in the DAT tool

- Principles: A group of 10 principles developed by the “Bridge” team
- “Complicated” heuristics: A group of 16 (C1 - C16) heuristics were processed or inspired from searching the INCOSE Fellows heuristics database of 600+ heuristics using a number of search terms that were related to complicated and complicatedness but were equally applicable to complex and complexity

Heuristics

Group	#	Description	CSS?*	DAT?**	CC? ***
Group 1	7	Top-down heuristics: The group of 7 Heuristics, A to G, were developed by considering founding principles of complexity and their implications for how to reduce or handle complexity.	Yes	Yes	Blue
Group 2	18	Initial bottom-up heuristics; This group of 18 (1-18) heuristics were processed or inspired from searching the INCOSE Fellows heuristics database of 600+ heuristics using “complex” and “complexity” as search terms	Yes	Yes	Amber
Group 3	16	Additional bottom-up heuristics: This group of 16 (19-34) heuristics were processed or inspired by searching the INCOSE Fellows heuristics database of 600+ heuristics using 32 search terms that were closely related to complex and complexity.	Yes	Yes	Green
Principles	10	Based on the Principles established in the Bridge Study	No	Yes	Black
Complicated	16	Complicated System Heuristics that are equally applicable to complex systems were added to the 41 Complexity Heuristics	No	Yes	Grey

* Case Study Selection exercise

2-6 July 2024

** Included in the Difficulty Assessment Tool (DAT)

[#INCOSEIS](http://www.incose.org/symp2024)

*** Color Code

Difficulty Assessment Tool

	Difficulty Elements				
	Intricacy	Unpredictability	Unfamiliarity	Constraints/Enablers	
System Elements	Organization	0	1	4	0
	Technology	0	3	4	0
	Process	0	3	4	0
	Information	0	2	4	0
	Benefits	0	3	4	0
	Environment	0	4	4	0

Organisation Difficulty Scoring

Save

Organisation: A group of people who work together in an organized way for a shared purpose

Intricacy	Unpredictability	Unfamiliarity	Constraints / Enablers
1.1 How complicated are the relevant organisations, stakeholders or communities?	1.2 How changeable beyond your control are the relevant organisations, stakeholders or communities, within the task duration?	1.3 How unfamiliar/unaligned are the relevant organisations, stakeholders or communities?	1.4 How constrained are the relevant organisations, stakeholders or communities by processes, resources, information, facilities etc.
There are no inter-dependent interfaces <input type="radio" value="0"/>	Very confident that change is unlikely to affect the task <input type="radio" value="0"/>	All capability elements are aligned or familiar with each aspect of the task <input type="radio" value="0"/>	No constraints <input type="radio" value="0"/>
There are several interdependent interfaces and some of these need to be managed <input type="radio" value="1"/>	Minimal change could affect the task. Significant confidence that there are no unknowns. <input type="radio" value="1"/>	Some aspects are not aligned or familiar which may require resolution <input type="radio" value="1"/>	Minor constraints impeding progress <input type="radio" value="1"/>
There are many interfaces or a few which have known or significant interface issues <input type="radio" value="2"/>	Some change likely to affect delivery that may cause disruption <input type="radio" value="2"/>	Major aspects are not aligned or familiar which will require resolution <input type="radio" value="2"/>	Notable constraints across many aspects of the task <input type="radio" value="2"/>
There are a large number of interfaces most of which have known significant issues <input type="radio" value="3"/>	Many changes are expected which is likely to cause significant delivery disruption <input type="radio" value="3"/>	Major aspects are not known and will require significant effort to resolve <input type="radio" value="3"/>	Major constraints reducing the likelihood of an acceptable outcome <input type="radio" value="3"/>
Currently unable to ascertain or bound the number of interfaces which are causing significant issues <input type="radio" value="4"/>	Significant change are expected which will cause significant delivery disruption <input type="radio" value="4"/>	Major aspects are not known within or outside the team and will require research / development to resolve <input type="radio" value="4"/>	Major constraints that mean the probability of an acceptable outcome is low <input type="radio" value="4"/>
Comment	Comment	Comment	Comment
Although the number of stakeholders is limited, there can be antagonistic relationships, with the OEM not caring about supplier survival because there are many more out there. Suppliers have feelings too <input type="text"/>	Lack of change makes the problem persist. Change needed to Purchasing culture and supplier response - trust issue <input type="text"/>	The issue is not "known" but "cared about" <input type="text"/>	Cultural change is very difficult and complex - need to be able to see two world views at once (Jack Ring Value Cycle) <input type="text"/>

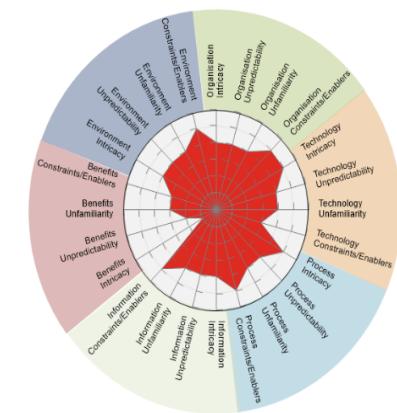
RB and AP Supplier Relationship Case Study

Export Save

ALL HEURISTICS - MOST IMPORTANT FIRST - PROCESS STEP SPECIFIC	Score	Useful?	New?
13. Complex Systems: As simple as possible, but no simpler!	26.1158		
Principle 1: Systems engineering in application is specific to stakeholder needs, solution space, resulting system solution(s), and context throughout the system life cycle.	25.2145		
Principle 10: Decision quality depends on knowledge of the system, enabling system(s), and interoperating system(s) present in the decision-making process	25.2145		
Principle 2: Systems engineering has a holistic system view that includes the system elements and the interactions amongst themselves.	25.2145		
Principle 3: Systems engineering influences and is influenced by internal and external resource, political, economic, social, technological, environmental, and legal factors	25.2145		
Principle 6: A focus of systems engineering is a progressively deeper understanding of the interactions, sensitivities.	25.2145		
Principle 7: Stakeholder needs can change and must be accounted for over the system life cycle	25.2145		

ALL HEURISTICS - MOST IMPORTANT FIRST - PROCESS STEP AGNOSTIC

Score	
E. Generous Leadership: Have generous leaders that protect and enable the expertise to lead decision making	6.84
31 Minimizing harmful element interactions supports resilient complex systems	6.75
13. Complex Systems: As simple as possible, but no simpler!	6.52
c4. Do the hard parts first, not the fun or familiar parts first	6.38
Principle 1: Systems engineering in application is specific to stakeholder needs, solution space, resulting system	6.30
Principle 10: Decision quality depends on knowledge of the system, enabling system(s), and interoperating sy	6.30
Principle 2: Systems engineering has a holistic system view that includes the system elements and the intera	6.30
Principle 3: Systems engineering influences and is influenced by internal and external resource, political, eco	6.30
Principle 4: Both Policy and Law must be properly understood to not overly constrain or under constrain the s	6.30
Principle 5: The real physical system is the only perfect representation of the system	6.30
Principle 6: A focus of systems engineering is a progressively deeper understanding of the interactions, sensit	6.30


LEAST IMPORTANT HEURISTICS - PROCESS STEP SPECIFIC	Score
3. Complex systems are not wholly complex	0
31 Minimizing harmful element interactions supports resilient complex systems	0
4. Do not assume complicated pegs fit in complex holes	0
5. For every complex problem, there is an answer that is clear, simple, and wrong	0
7. Iterate and/or aggregate with stable system steps	0

LEAST IMPORTANT HEURISTICS - PROCESS STEP AGNOSTIC

Score	
C14. Minimize effort by focusing on the main mission objective first.	3.8191
C10. Testing is expensive - make it efficient	4.0246
C9. Only insist on requirements which are essential	4.1309
C7. For suitability, such as safety and each other relevant "ility", it is important to articulate what the minimal a	4.1962
C11. Delve beneath the symptoms	4.4312

	Intricacy	Unpredictability	Unfamiliarity	Constraints/Enablers
Organisation	3	3	3	4
Technology	4	3	3	2
Process	4	3	3	4
Information	3	3	3	4
Benefits	0	1	2	2
Environment	3	3	3	4

Process Step: Stakeholder and System Requirements

Case Studies

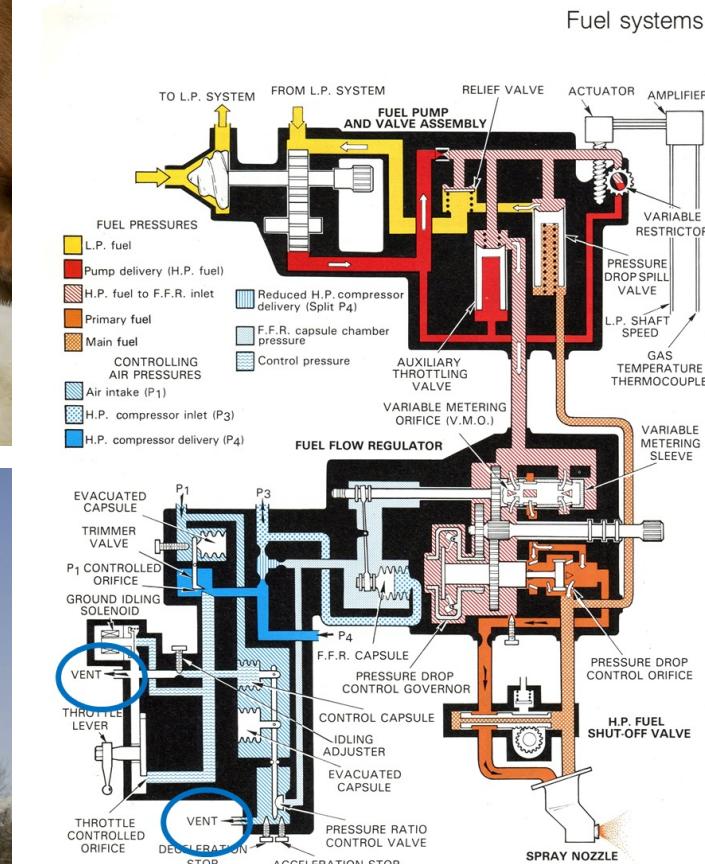
Case Study	When	Heuristic																																											
		A	B	C	D	E	F	G	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	Count		
Steam Blast	IS 2012												Y																												Y	4			
Change the component or the system?*	IS 2014	Y				Y			Y									Y		Y	Y																			Y	8				
Scott and Amundsen - consequence of failed test!	IS 2014												Y											Y																		Y	4		
Foot and Mouth in the UK	IS 2015	Y	Y																					Y	Y																	Y	4		
Supplier Relationships	IS 2019	Y											Y		Y								Y				Y														Y	5			
Third World Incubators	IS 2020												Y					Y																								Y	3		
FADECs and Product Lines	IS 2020	Y				Y							Y	Y	Y							Y				Y														Y	9				
Vent Valve*	IS 2020								Y		Y	Y																													Y	4			
		1	3	1	0	0	0	2	0	1	0	2	2	4	1	1	1	0	2	0	3	3	1	1	0	1	2	0	0	0	2	0	1	0	1	1	0	1	1	0	1	1	0	1	1

- Richard Beasley and Andy Pickard reviewed Rolls-Royce papers presented at INCOSE Symposia
- 33 potential case studies were identified
- The case studies were scored against the 41 Complex Systems Heuristics (groups 1 through 3)
- From these, 8 were selected based on coverage of the Heuristics and suitability for describing “Problem” and “Outcome”
- Problem and Outcome statements were written for these 8 selected Case Studies

Case Studies

#	Title	Origin
1	Developing World Incubators	The majority of this material is taken from Chapter 1 (The Adjacent Possible) of the book “Where Good Ideas Come From” (Johnson, 2010), which describes the development of incubators for human babies as an example of innovation. An extension to the paper by Ingram and Beasley, 2020 “How Systems Engineering and Systems Thinking Enable Innovation”
2	Foot and Mouth in the UK	This case study was addressed in a systems context in a paper describing different approaches to Systems Engineering needed depending on the type of systems situation (Kemp et al, 2015), with details taken from a subsequent UK National Audit report (Great Britain, 2002)
3	Fuel Vent Valve	This case study is from a paper looking at changes made to resolve problems on in-service products (Dunford and Pickard, 2020). In this outcome, it was determined that no technical change was actually required.
4	Product Lines	This case study is drawn from a paper looking at the application of product lines (Harper and Pickard, 2020).
5	Scott and Amundsen	The full background to this case study can be found in the Wikipedia article “Heroic Age of Antarctic Exploration” (Wikipedia, 2023).
6	Steam Blast	This case study originated in a paper on the Barriers to Systems Thinking (Beasley, 2012)
7	Supplier Relationships	This case study originated in a paper on Systems Engineering Professional Competencies (Beasley et al, 2019).
8	Turbine Tip Design	This case study is an example of “Yes” being the wrong answer to the question “can you change the system by changing only one part?” (Beasley et al, 2014).

Case Studies



Developing World Incubators

2-6 July 2024

Foot and Mouth

[#INCOSEIS](http://www.incose.org/symp2024)

Fuel Vent Valve

Case Studies

Feature Model

Modular features and requirements

Selection rules - mandated, with allowable tailoring, optional (select 0 or more) or inclusive/exclusive (AND, OR)

Allowable data ranges

Instantiation Process

PL & application team roles

How to use the feature model

How to validate/verify application

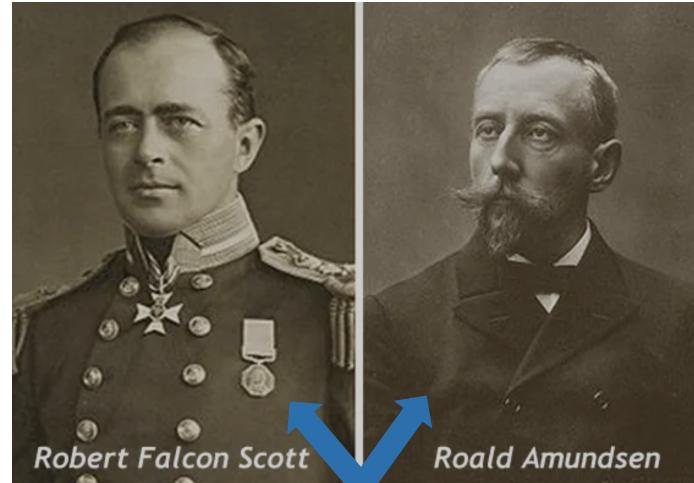
Configuration control of PL & application

Assets

Reqts, design, code, test, safety etc

Correctness on Product Line

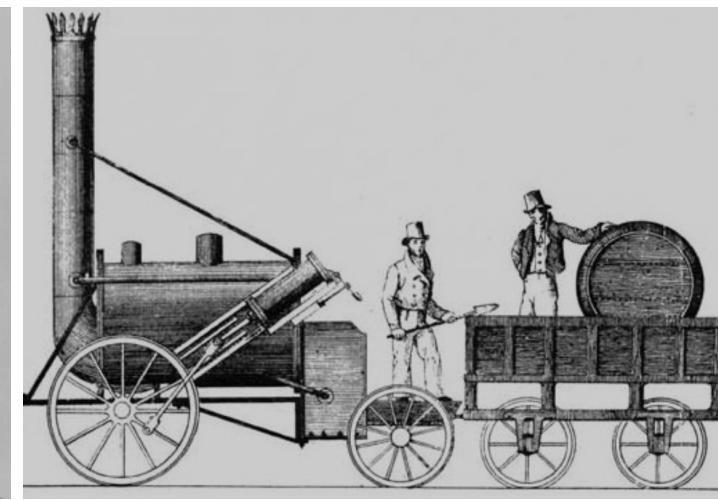
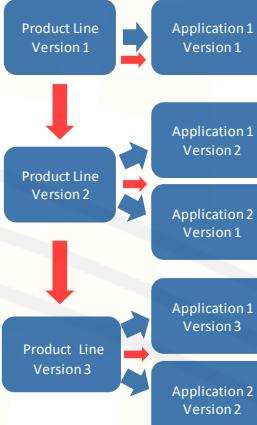
Completeness on Application


PL & application configured separately

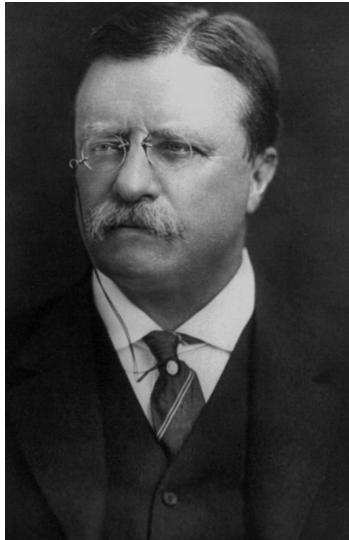
Example

Single Hardware part number with input/output superset

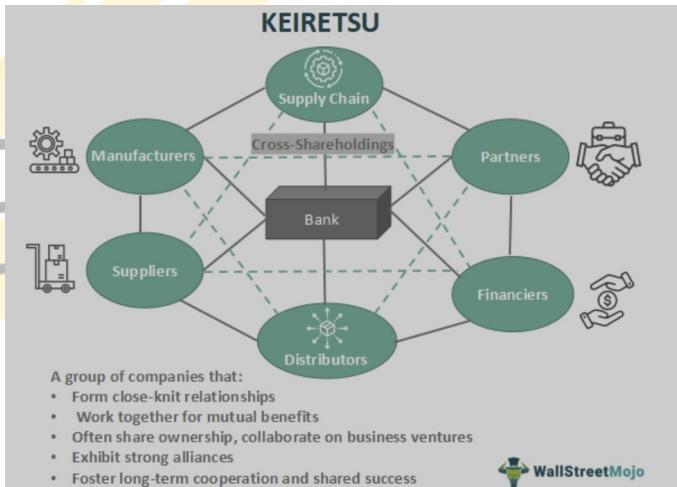
i/o reconfigurable in layered s/w



Product Line software with in-built variability (logic and data)

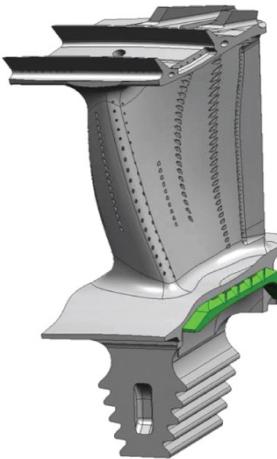
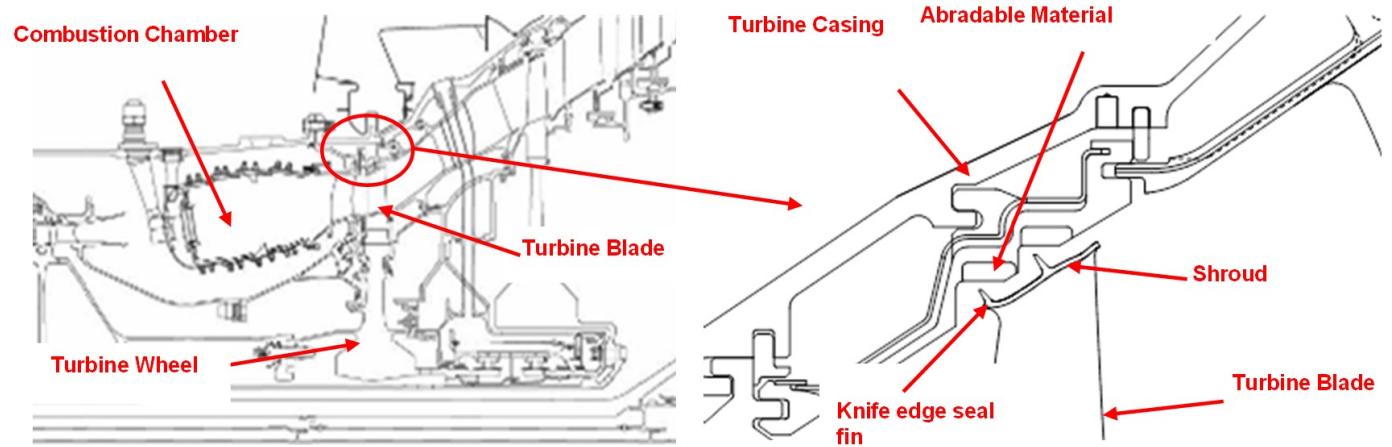
Clone and Own



Product Lines


Product Lines

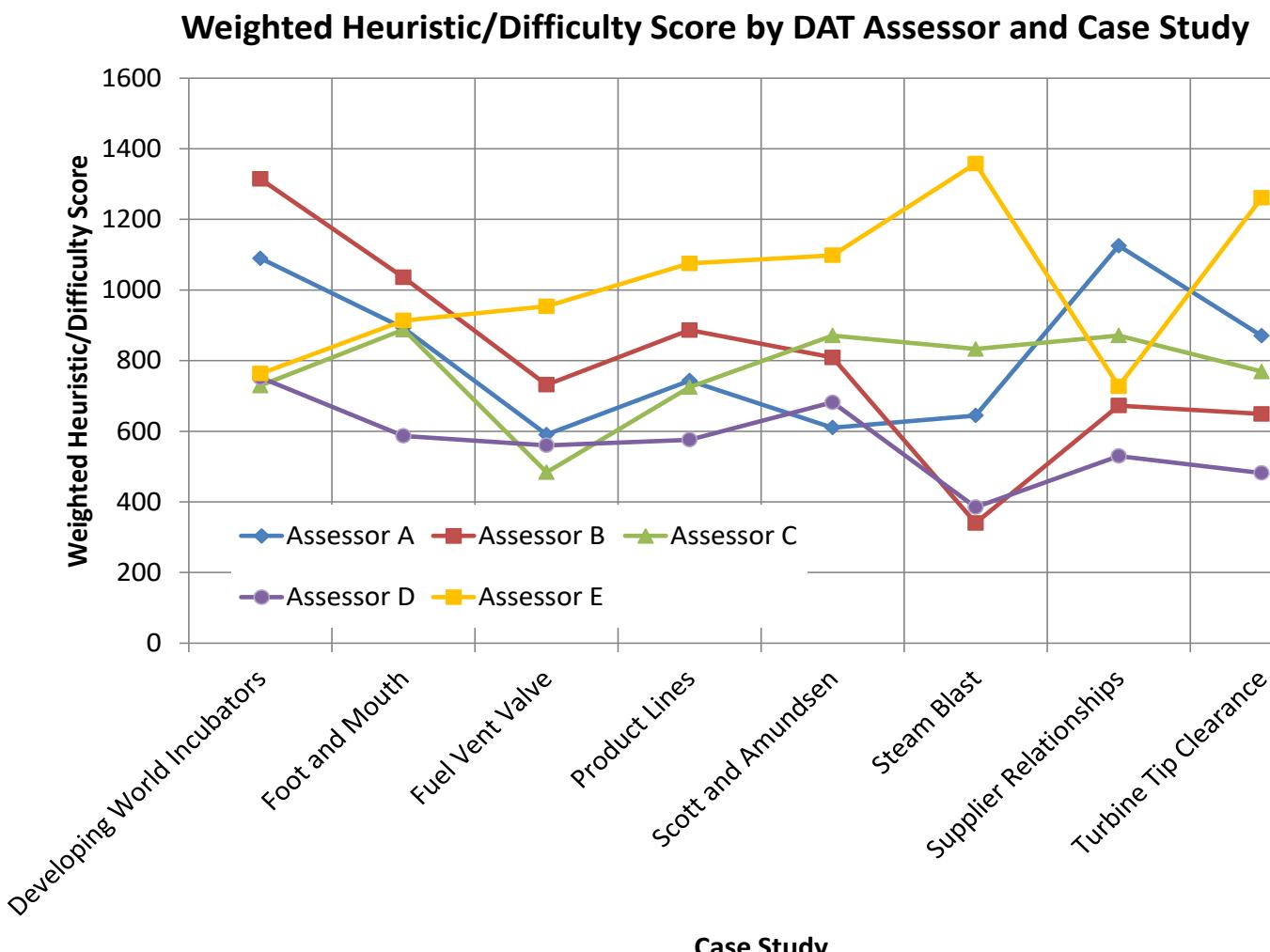
Case Studies

“Speak softly and carry a big stick; you will go far.”

Theodore Roosevelt

Supplier Relationships


Turbine Tip Clearance

Limitations of the Analysis

Limitation	Impact	Opportunity
# of Assessments	Only 5 assessments of each Case Study	Perform additional assessments. Capture rationale for scoring of the DAT elements and add this to the analysis
# in Assessment Team	Only 2 team assessments; 3 were individual assessments. Too few to be able to separate out the impact of assessment team size	Encourage more multi-participant teams to perform assessments
Familiarity	One team was more familiar with the case studies and was working with hindsight	Encourage more teams and individuals to perform assessments
Interpretation	Two of the case studies are reflections of events rather than classic Systems Engineering activities; the questions in the DAT had to be interpreted	Potential to update the DAT to address “event” based assessments
Bias	Bias in the case studies selected based on the ability to describe them	Add more Case Studies to assess (see Addendum B for an example)

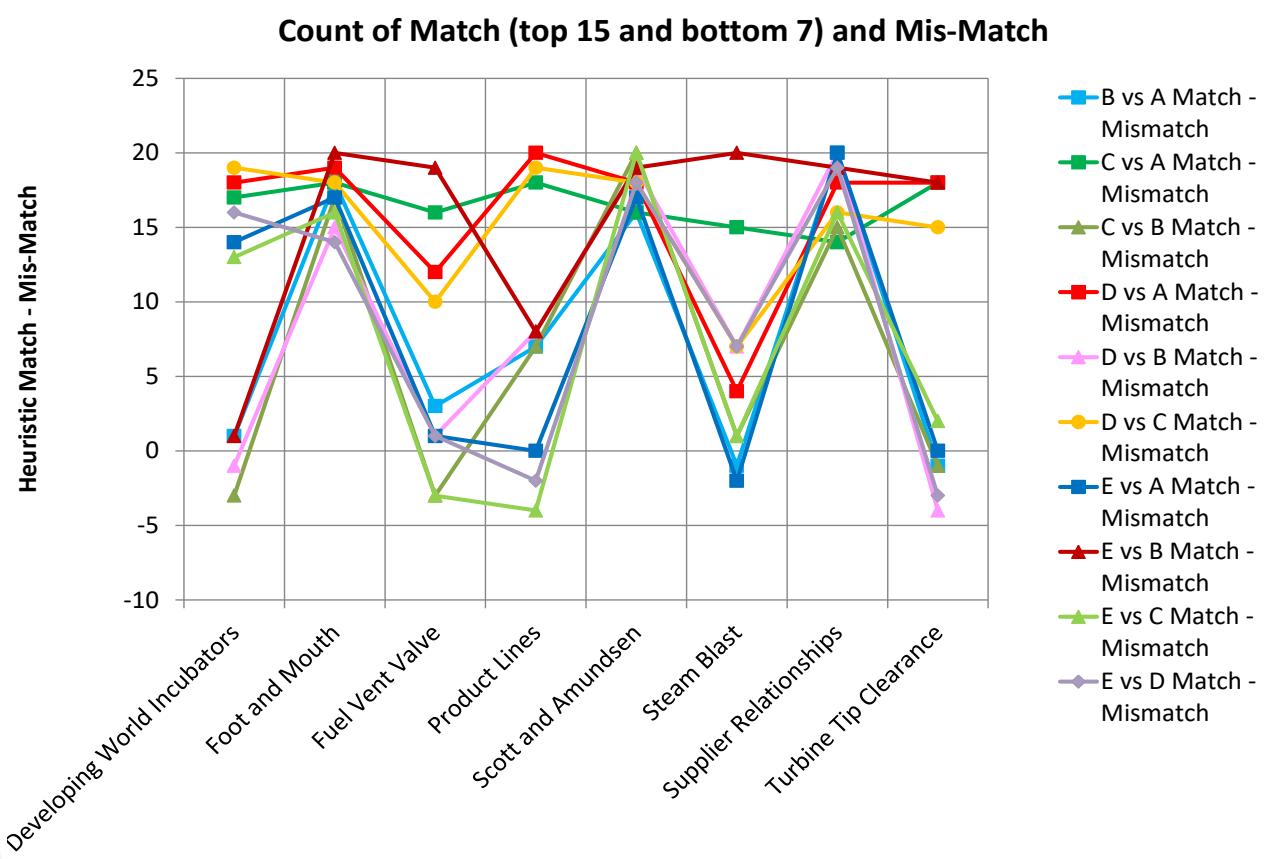
Assessment Method 1: Comparison of the sum of the weightings

A	A	B	B	C	C	D	D	E	E
13	26.1158	C5	15.607	19	21.5429	Principle 1	12.8755	Principle 1	17.167
Principle 1	25.2145	Principle 1	15.0214	8	21.4592	Principle 10	12.8755	Principle 10	17.167
Principle 10	25.2145	Principle 10	15.0214	21	20.8515	Principle 2	12.8755	Principle 2	17.167
Principle 2	25.2145	Principle 2	15.0214	33	20.6861	Principle 3	12.8755	Principle 3	17.167
Principle 3	25.2145	Principle 3	15.0214	12	20.5718	Principle 6	12.8755	Principle 6	17.167
Principle 6	25.2145	Principle 6	15.0214	10	19.9670	Principle 7	12.8755	Principle 7	17.167
Principle 7	25.2145	Principle 7	15.0214	24	19.9670	Principle 8	12.8755	Principle 8	17.167
Principle 8	25.2145	Principle 8	15.0214	16	19.7837	Principle 9	12.8755	Principle 9	17.167
Principle 9	25.2145	Principle 9	15.0214	34	19.7678	22	11.6083	21	16.932
16	24.3629	G	14.827	9	19.3133	2	11.5842	9	16.738
C1	24.2532	22	14.7056	2	18.9603	G	11.5823	16	16.702
9	23.8197	12	14.2916	5	18.7444	19	11.536	12	16.531
12	23.8099	9	14.1631	Principle 1	18.5085	33	11.4888	33	15.979
21	23.6938	33	14.1722	Principle 10	18.5085	12	11.0534	13	15.951
22	23.4929	16	13.8456	Principle 2	18.5085	9	10.9442	19	15.65
33	23.2108	2	13.8307	Principle 3	18.5085	10	10.8842	10	15.1
F	23.0266	21	13.6219	Principle 6	18.5085	24	10.8842	24	15.1
10	22.8156	19	13.5001	Principle 7	18.5085	21	10.7554	8	15.021
24	22.8156	13	13.3862	Principle 8	18.5085	34	10.7024	10	15.013
B	22.729	10	13.2987	Principle 9	18.5085	C3	10.5649	11	14.987
G	22.4412	24	13.2987	22	18.1686	C11	10.3813	G	14.972
19	22.0262	34	12.8826	F	17.8559	16	10.3764	22	14.291
11	21.9969	28	12.7487	B	17.3394	28	10.1278	F	14.129
34	21.8306	C15	12.6465	28	16.2991	B	9.7453	B	13.788
8	21.4592	B	12.5972	C15	16.2751	C4	9.7434	C15	13.725
C1	21.2987	C2	12.5792	6	16.0944	C15	9.7053	2	13.205
C15	21.0482	C1	12.4063	11	16.0876	8	9.6566	C3	13.058
C12	20.6922	F	12.0992	C14	15.1302	Principle 4	9.2849	Principle 4	12.876
26	20.6071	C12	11.9514	20	14.6052	C2	9.2849	Principle 4	12.876
2	20.074	11	11.9306	17	14.5994	C16	9.2082	C14	12.639
C16	19.9926	8	11.8025	C16	14.4664	C12	9.0895	28	12.615
C2	19.3042	C16	11.6125	26	14.4284	6	8.8519	14	12.482
C4	19.1645	Principle 4	11.2661	29	14.4284	C1	8.8001	6	12.473
Principle 4	18.9109	C14	11.1461	A	14.4284	F	8.6452	20	12.454
6	18.1062	C11	11.053	C11	14.3928	C7	8.5031	C1	11.342
14	18.0873	6	10.8637	D	14.2897	26	8.3893	20	11.335
C11	17.7246	C4	10.7113	C12	13.9151	29	8.3893	29	11.335
25	17.0125	17	10.4979	Principle 4	13.9814	A	8.3893	A	11.335
26	16.9942	C5	10.3293	1	13.7420	17	8.3783	17	11.297
29	16.9942	26	10.3199	25	13.5085	11	8.0674	C12	11.184
A	16.9942	29	10.3199	13	12.6356	D	7.9986	25	10.747
20	16.9146	A	10.3199	C3	12.0605	20	7.8421	D	10.109
17	16.8982	C7	10.2759	14	11.4452	13	7.7461	C4	9.8711
C5	16.7862	C9	10.2357	C2	11.0360	C9	7.4515	C11	9.8645
C7	16.7846	20	10.1447	C7	10.3515	C8	7.3101	C5	9.8519
C9	16.5236	C6	10.0447	C4	10.3498	C6	6.9099	C2	9.1638
C8	16.1437	C8	9.6021	C9	10.3419	C4	6.7843	C6	8.8255
D	15.6731	D	9.4498	C5	10.1030	C5	6.7079	C9	8.5187
C14	15.2764	14	9.2634	30	9.7453	25	6.6721	30	8.206
C6	14.7638	15	9.0056	C6	9.6972	30	5.5631	C7	8.0228
15	11.3843	30	7.1024	C8	9.5478	32	5.522	15	7.7323
C13	11.3717	15	7.048	32	9.5436	15	5.5061	32	7.5906
30	11.2222	C13	6.9824	15	9.4937	14	5.4007	C8	7.3364
32	11.023	32	6.9154	1	9.0870	C13	5.1046	1	6.8743
1	10.7047	1	6.1248	C13	8.4084	4	4.9553	C13	6.8193
C	5.66	18	3.4815	18	5.3459	18	2.9379	18	4.0193
18	5.5715	C	3.4243	C	4.9484	C	2.7768	C	3.8498
23	5.1304	23	3.1987	27	4.8275	27	2.7147	23	3.5152
27	4.7106	27	3.0041	23	4.5706	23	2.5792	27	3.2987
C10	4.0246	C10	2.7652	C10	3.5856	C10	2.3724	C10	2.5651
3	0	3	0	3	0	3	0	3	0
31	0	31	0	31	0	31	0	31	0
4	0	4	0	4	0	4	0	4	0
5	0	5	0	5	0	5	0	5	0
7	0	7	0	7	0	7	0	7	0
E	0	E	0	E	0	E	0	E	0
Principle 5	0	Principle 5	0						
Total	1125.19	Total	672.82	Total	870.64	Total	530.83	Total	727.4

Assessment Method 2: Comparison of the Highest Weightings

	A	B	C	D	E
13	26.1158	C3	15.607	19	21.5429
Principle 1	17.167		12.0755	12.0755	Principle 10 17.167
Principle 10	17.167		12.0755	12.0755	Principle 10 17.167
Principle 2	17.167		12.0755	12.0755	Principle 3 17.167
Principle 3	17.167		12.0755	12.0755	Principle 6 17.167
Principle 6	17.167		12.0755	12.0755	Principle 7 17.167
Principle 7	17.167		12.0755	12.0755	Principle 8 17.167
Principle 8	17.167		12.0755	12.0755	Principle 9 17.167
Principle 9	17.167		12.0755	12.0755	Principle 5 17.167
Principle 5	17.167		12.0755	12.0755	
16	24.3629	G	14.827	9	19.3133
C3	24.2532	22	14.7055	2	18.8603
9	23.8197	12	14.2916	G	18.7444
12	23.8099	9	14.1631	Principle 1 18.5085	33
21	23.6938	33	14.1222	Principle 10 18.5085	12
22	23.4928	16	13.8458	Principle 2 18.5085	9
33	23.2108	2	13.8307	Principle 3 18.5085	10
F	23.0266	21	13.6219	Principle 6 18.5085	24
10	22.8156	19	13.5001	Principle 7 18.5085	21
24	22.8156	13	13.3862	Principle 8 18.5085	34
B	22.7279	10	13.2887	Principle 9 18.5085	C3
G	22.4412	24	13.2887	22	18.1686
19	22.0262	34	12.8826	F	17.9559
11	21.9969	28	12.7487	B	17.3394
34	21.8306	C15	12.6465	28	16.9025
8	21.4592	B	12.5972	C15	16.2751
C1	21.2987	C2	12.5792	6	16.0944
C15	21.0482	C1	12.4063	11	16.0876
C12	20.6922	F	12.0992	C14 15.1302	Principle 4
26	20.6071	C12	11.9514	20	14.6052
2	20.074	11	11.9306	17	14.5994
C16	19.9928	8	11.8025	C16	14.4664
C2	19.3042	C16	11.6125	28	14.4284
C4	19.1645	Principle 4	11.2661	29	14.4284
Principle 4	18.9109	C1	11.1461	A	14.4284
6	18.1062	C11	11.065	C11 14.3926	C7
14	18.0873	6	10.8637	D	14.2897
C11	17.7246	C4	10.713	C12 13.9151	29
25	17.0125	17	10.4979	Principle 4 13.8814	A
26	16.9942	C5	10.3293	C1 13.7420	17
29	16.9942	26	10.3199	25	13.5085
A	16.9942	29	10.3199	13	12.6356
20	16.9146	A	10.3199	C3 12.0605	20
17	16.8982	C7	10.2759	14	11.4452
C5	16.7862	C9	10.2357	C2 11.0360	C9
C7	16.7846	20	10.1447	C7 10.3515	C8
C8	16.5236	C8	10.0447	C4 10.3498	C6
C8	16.1437	C8	9.6021	C9 10.3479	C4
D	15.6731	D	9.4498	C5 10.1030	C5
C14	15.2764	14	9.2634	C30 9.7453	25
C6	14.7638	15	9.0056	C6 9.6972	30
15	11.3843	30	7.1024	C8 9.5478	32
C13	13.7171	15	7.048	32	9.5436
30	11.2222	C13	6.9824	15	9.4937
32	11.023	32	6.9154	1	9.0870
1	10.7047	1	6.1248	C13 8.4084	1
C	5.66	18	3.4815	18	5.3459
18	5.5715	C	3.4243	C 4.9484	C
23	5.1304	23	3.1987	27	4.8275
27	4.7108	27	3.0041	23	4.5706
C10	4.0246	C10	2.7652	C10 3.5856	C10 2.3724
3	0	3	0	3	0
31	0	31	0	31	0
4	0	4	0	4	0
5	0	5	0	5	0
7	0	7	0	7	0
E	0	E	0	E	0
Principle 5	0	Principle 5	0	Principle 5	0
Principle 5	0	Principle 5	0	Principle 5	0
Total	1125.19	Total	672.82	Total	870.64
				Total	530.83
					727.4

Maximum Heuristic/Difficulty Score by DAT Assessor and Case Study


Assessment Method 3: Match – Mismatch Analysis

Example Match – Mismatch Matrix for Developing World Incubators
The score is $\Sigma(\text{matches}) - \Sigma(\text{mismatches})$

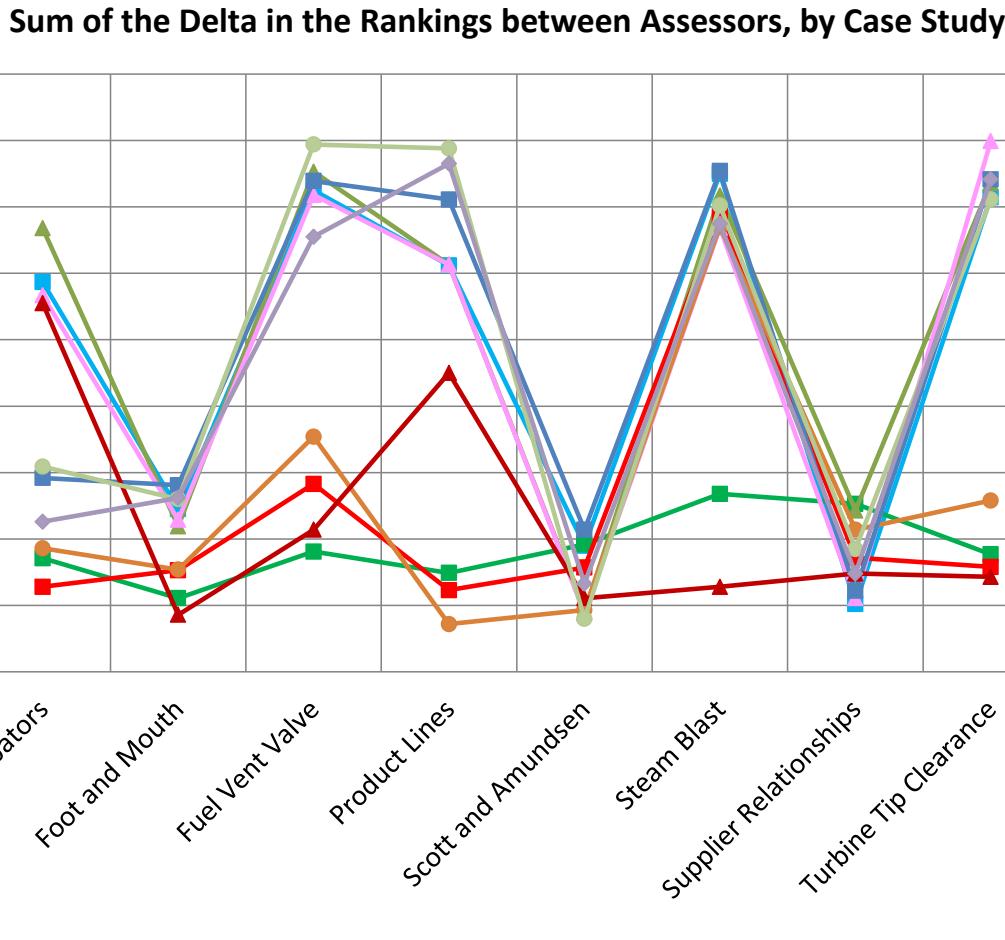
A	A-B	B	B-A	C	A-C	C-A	B-C	C-B	D	A-D	D-A	B-D	D-B	C-D	D-C	E	A-E	E-A	B-E	E-B	C-E	E-C	D-E	E-D
13	A-B	E	B-A	Principle 1	A-C	C-A	B-C	C-B	8	A-D	D-A	B-D	D-B	C-D	D-C	12	A-E	E-A	B-E	E-B	C-E	E-C	D-E	E-D
Principle 1	A-B	C4	B-A	Principle 10	A-C	C-A	B-C	C-B	F	A-D	D-A	B-D	D-B	C-D	D-C	10	A-E	E-A	B-E	E-B	C-E	E-C	D-E	E-D
Principle 10	A-B	13	B-A	Principle 2	A-C	C-A	B-C	C-B	21	A-D	D-A	B-D	D-B	C-D	D-C	24	A-E	E-A	B-E	E-B	C-E	E-C	D-E	E-D
Principle 2	A-B	14	B-A	Principle 3	A-C	C-A	B-C	C-B	16	A-D	D-A	B-D	D-B	C-D	D-C	33	A-E	E-A	B-E	E-B	C-E	E-C	D-E	E-D
Principle 3	A-B	16	B-A	Principle 6	A-C	C-A	B-C	C-B	12	A-D	D-A	B-D	D-B	C-D	D-C	19	A-E	E-A	B-E	E-B	C-E	E-C	D-E	E-D
Principle 6	A-B	F	B-A	Principle 7	A-C	C-A	B-C	C-B	Principle 1	A-D	D-A	B-D	D-B	C-D	D-C	9	A-E	E-A	B-E	E-B	C-E	E-C	D-E	E-D
Principle 7	A-B	3	B-A	Principle 8	A-C	C-A	B-C	C-B	Principle 10	A-D	D-A	B-D	D-B	C-D	D-C	16	A-E	E-A	B-E	E-B	C-E	E-C	D-E	E-D
Principle 8	A-B	4	B-A	Principle 9	A-C	C-A	B-C	C-B	Principle 2	A-D	D-A	B-D	D-B	C-D	D-C	21	A-E	E-A	B-E	E-B	C-E	E-C	D-E	E-D
Principle 9	A-B	9	B-A	8	A-C	C-A	B-C	C-B	Principle 3	A-D	D-A	B-D	D-B	C-D	D-C	F	A-E	E-A	B-E	E-B	C-E	E-C	D-E	E-D
F	A-B	6	B-A	21	A-C	C-A	B-C	C-B	Principle 6	A-D	D-A	B-D	D-B	C-D	D-C	11	A-E	E-A	B-E	E-B	C-E	E-C	D-E	E-D
16	A-B	7	B-A	19	A-C	C-A	B-C	C-B	Principle 7	A-D	D-A	B-D	D-B	C-D	D-C	34	A-E	E-A	B-E	E-B	C-E	E-C	D-E	E-D
12	A-B	12	B-A	16	A-C	C-A	B-C	C-B	Principle 8	A-D	D-A	B-D	D-B	C-D	D-C	8	A-E	E-A	B-E	E-B	C-E	E-C	D-E	E-D
9	A-B	25	B-A	G	A-C	C-A	B-C	C-B	Principle 9	A-D	D-A	B-D	D-B	C-D	D-C	B	A-E	E-A	B-E	E-B	C-E	E-C	D-E	E-D
22	A-B	31	B-A	12	A-C	C-A	B-C	C-B	10	A-D	D-A	B-D	D-B	C-D	D-C	Principle 1	A-E	E-A	B-E	E-B	C-E	E-C	D-E	E-D
11	A-B	Principle 1	B-A	22	A-C	C-A	B-C	C-B	24	A-D	D-A	B-D	D-B	C-D	D-C	Principle 10	A-E	E-A	B-E	E-B	C-E	E-C	D-E	E-D

A	A-B	B	B-A	C	A-C	C-A	B-C	C-B	D	A-D	D-A	B-D	D-B	C-D	D-C	E	A-E	E-A	B-E	E-B	C-E	E-C	D-E	E-D
3	A-B	Principle 3	B-A	3	A-C	C-A	B-C	C-B	3	A-D	D-A	B-D	D-B	C-D	D-C	3	A-E	E-A	B-E	E-B	C-E	E-C	D-E	E-D
31	A-B	Principle 4	B-A	31	A-C	C-A	B-C	C-B	31	A-D	D-A	B-D	D-B	C-D	D-C	31	A-E	E-A	B-E	E-B	C-E	E-C	D-E	E-D
4	A-B	C13	B-A	4	A-C	C-A	B-C	C-B	4	A-D	D-A	B-D	D-B	C-D	D-C	4	A-E	E-A	B-E	E-B	C-E	E-C	D-E	E-D
5	A-B	C10	B-A	5	A-C	C-A	B-C	C-B	5	A-D	D-A	B-D	D-B	C-D	D-C	5	A-E	E-A	B-E	E-B	C-E	E-C	D-E	E-D
7	A-B	C11	B-A	7	A-C	C-A	B-C	C-B	7	A-D	D-A	B-D	D-B	C-D	D-C	7	A-E	E-A	B-E	E-B	C-E	E-C	D-E	E-D
E	A-B	C9	B-A	E	A-C	C-A	B-C	C-B	E	A-D	D-A	B-D	D-B	C-D	D-C	E	A-E	E-A	B-E	E-B	C-E	E-C	D-E	E-D
Principle 5	A-B	Principle 5	B-A	Principle 5	A-C	C-A	B-C	C-B	Principle 5	A-D	D-A	B-D	D-B	C-D	D-C	Principle 5	A-E	E-A	B-E	E-B	C-E	E-C	D-E	E-D

A vs B	A vs C	B vs C	A vs D	B vs D	C vs D	A vs E	B vs E	C vs E	D vs E	
Top	6	10	2	11	4	12	7	5	6	9
Bottom	1	7	1	7	1	7	7	1	7	7
Contra	6	0	6	0	6	0	0	5	0	0
No Match	9	5	13	4	11	3	8	11	9	6
Total	22	22	22	22	22	22	22	22	22	22
Score	1	17	-3	18	-1	19	14	1	13	16

Assessment Method 4: Sum of Delta (Rankings) between Assessor Pairs

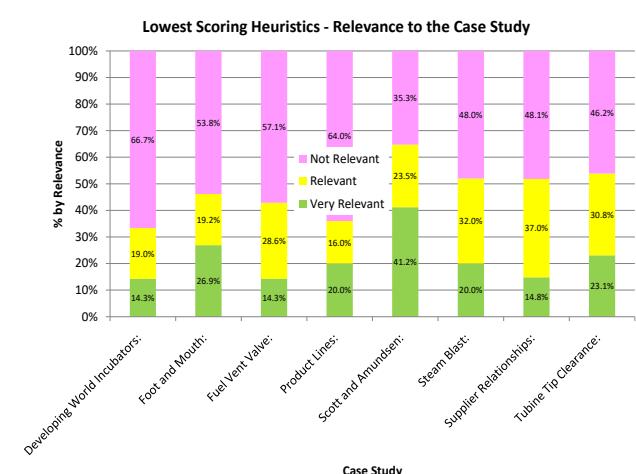
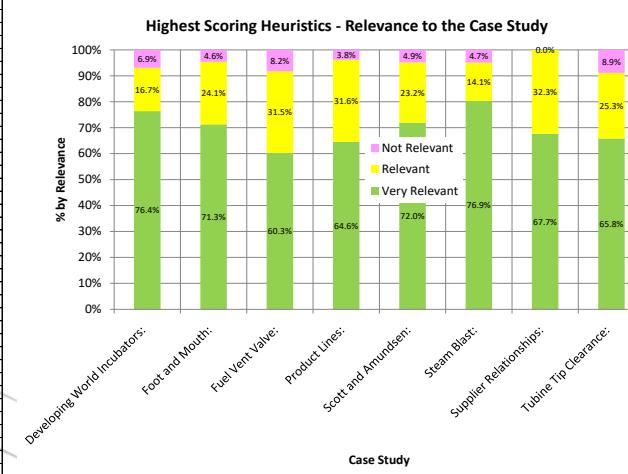
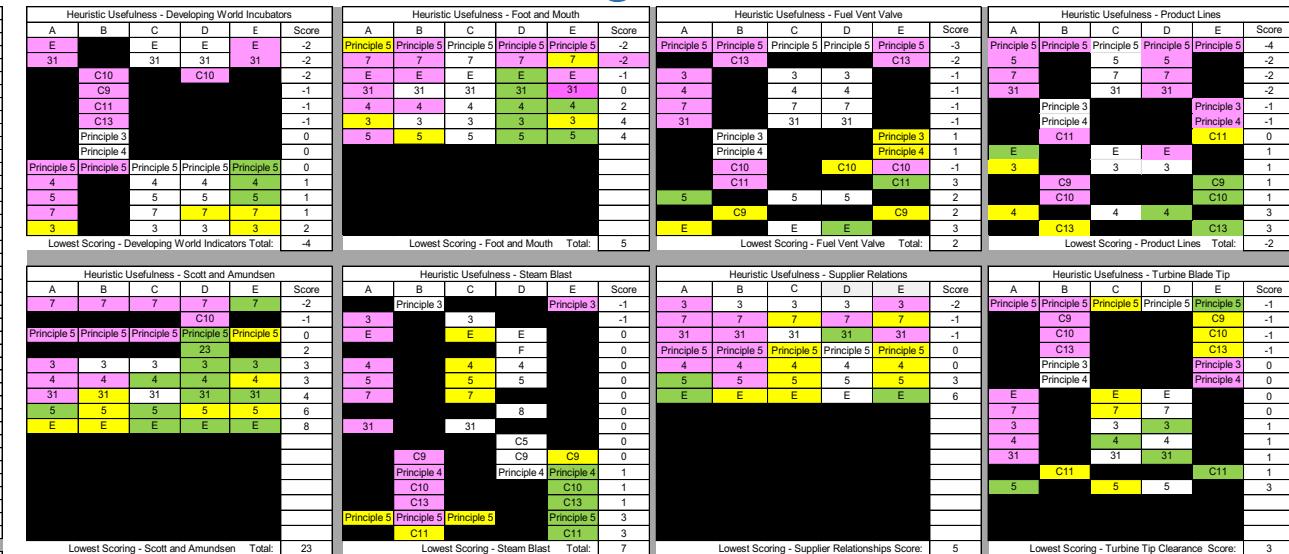
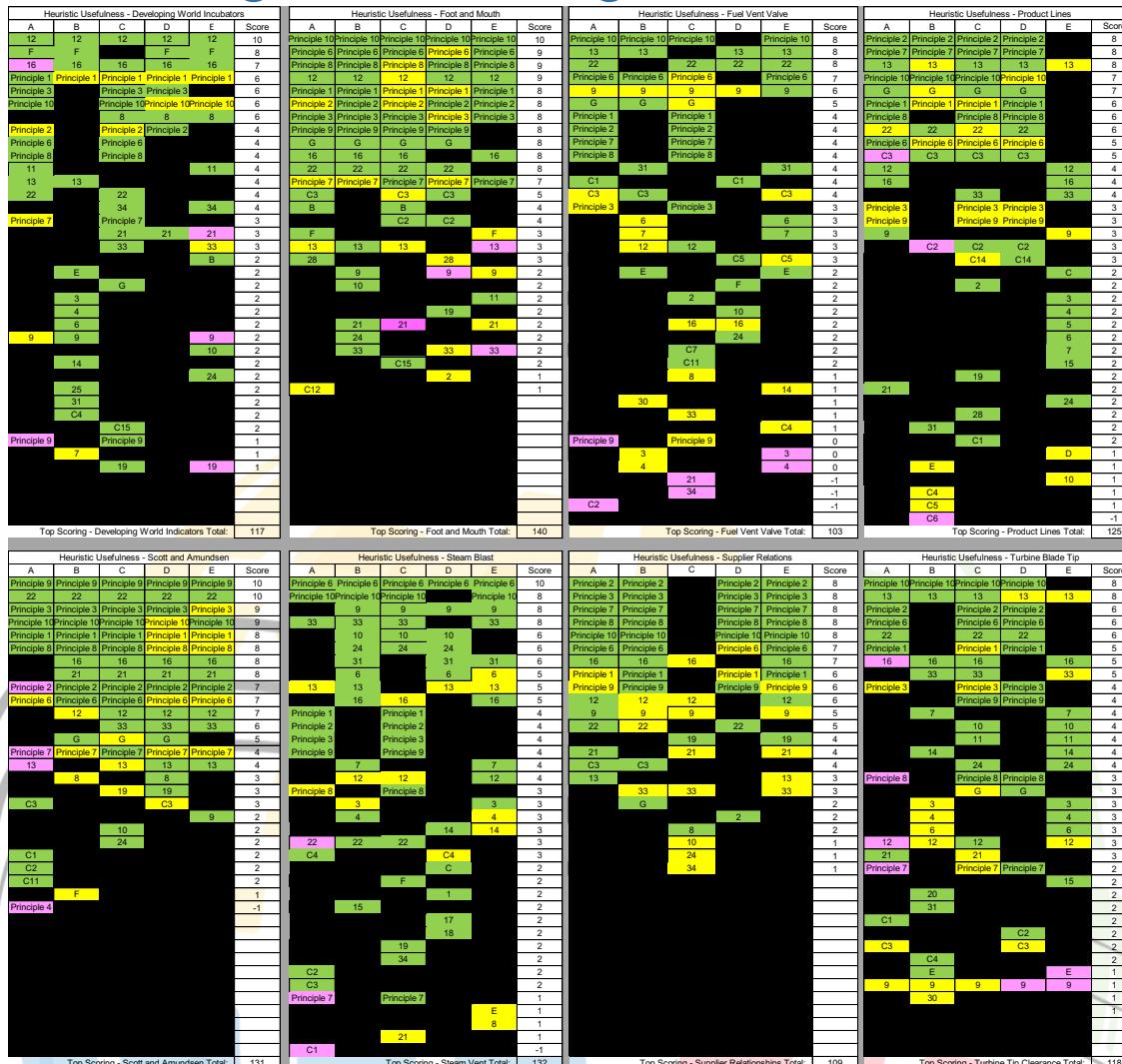
AP


Foot and Mouth				
A	B	C	D	E
Principle 1	1	9	1	5
Principle 10	2	16	2	13
Principle 2	3	12	3	22
Principle 3	4	13	4	Principle 1
Principle 6	5	33	5	Principle 10
Principle 7	6	21	6	Principle 2
Principle 8	7	Principle 1	7	Principle 7
Principle 9	8	Principle 10	8	Principle 8
Principle 13	9	Principle 2	9	Principle 9
Principle 22	10	Principle 10	10	Principle 1
G	11	Principle 6	11	Principle 9
Principle 12	12	Principle 7	12	2
Principle 16	13	Principle 8	13	28
Principle 28	14	Principle 9	14	19
Principle 12	15	10	15	Principle 5
F	16	24	16	12
B	17	G	17	9
C12	18	22	21	18
C2	19	11	19	Principle 9
Principle 33	20	F	20	33
Principle 2	21	34	21	C12
C1	22	19	22	Principle 4
Principle 9	23	8	23	28
Principle 16	24	B	24	Principle 5
Principle 4	25	2	25	34
Principle 21	26	C3	26	25
Principle 11	27	C1	27	Principle 4
Principle 10	28	C15	28	2
Principle 24	29	C12	29	10
C11	30	28	30	24
Principle 21	31	C16	31	9
Principle 34	32	6	32	8
C4	33	14	33	11
Principle 9	34	C2	34	C11
Principle 8	35	20	35	C5
Principle 5	36	Principle 4	36	Principle 4
Principle 14	37	37	37	11
Principle 19	38	17	38	6
C7	39	25	39	39
Principle 6	40	29	40	14
Principle 6	41	A	41	6
Principle 8	42	C9	42	26
Principle 26	43	C4	43	29
Principle 29	44	25	44	A
A	45	D	45	20
C14	46	C11	46	45
Principle 17	47	C9	47	17
Principle 25	48	C7	48	47
Principle 20	49	C6	49	25
D	50	C8	50	49
Principle 51	51	30	51	29
Principle 30	52	15	52	30
Principle 15	53	32	53	15
Principle 32	54	1	54	32
Principle 1	55	C13	55	1
C	56	18	56	18
Principle 57	57	C	57	56
Principle 18	58	23	58	23
Principle 23	59	27	59	27
Principle 27	60	C10	60	60
Principle 3	61	3	61	3
Principle 31	62	31	62	31
Principle 4	63	4	63	4
Principle 5	64	5	64	5
Principle 7	65	7	65	7
E	66	E	66	E
Principle 5	67	Principle 5	67	Principle 5

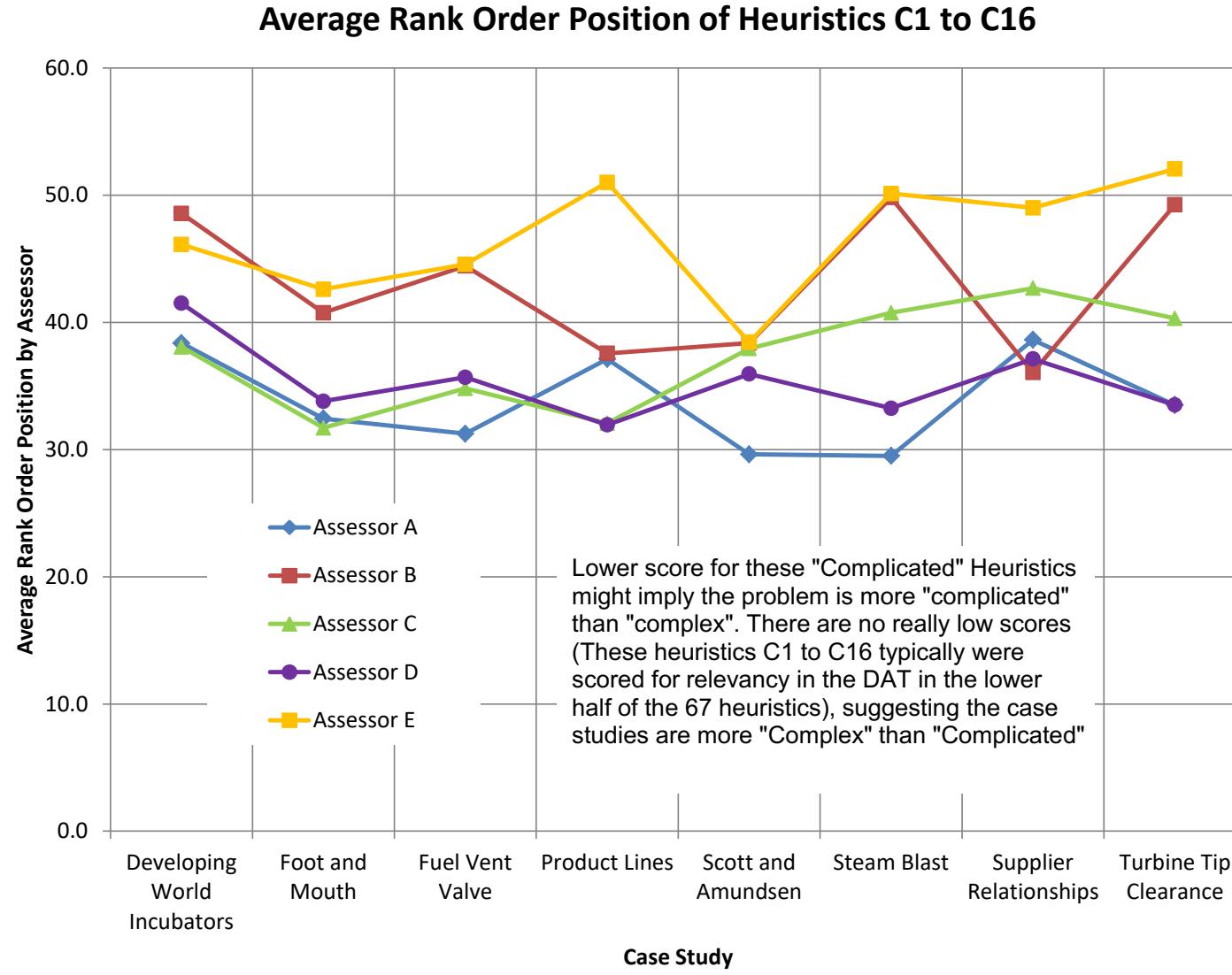
B to A Gap				
Vlookup	B - A Gap	Abs	Vlookup	C - A Gap
23	22	22	9	8
13	11	11	10	8
15	12	12	11	8
10	6	6	1	-3
20	15	15	2	-3
31	25	25	3	-3
1	6	6	4	-3
2	6	6	5	-3
3	6	6	6	-3
4	6	6	7	-3
5	6	6	8	-3
6	6	6	19	7
7	6	6	12	-1
8	6	6	13	-1
28	13	13	26	11
29	13	13	15	-1
12	5	5	0	0
11	7	7	31	13
27	8	8	22	3
16	4	4	20	0
32	11	11	18	-3
38	16	16	38	16
42	19	19	14	-9
17	7	7	24	0
21	4	4	32	7
9	-17	17	16	-10
22	-5	5	33	6
26	-2	2	21	-7
18	-11	11	28	-1
14	-16	16	29	-1
24	-7	7	23	-8
41	9	9	42	10
37	4	4	27	-6
19	-15	15	30	-4
49	14	14	36	1
25	-11	11	25	-11
46	9	9	35	-2
47	9	9	39	1
43	4	4	40	1
44	4	4	37	-3
45	4	4	41	0
34	-8	8	43	1
33	-10	10	44	1
48	4	4	45	1
50	5	5	49	4
30	-16	16	34	-12
36	-11	11	47	0
39	-9	9	46	-2
40	-9	9	48	-1
35	-15	15	50	0
52	1	1	51	0
53	1	1	52	0
54	1	1	53	0
55	1	1	54	0
51	-4	4	55	0
58	2	2	58	2
56	-1	1	56	-1
60	1	1	60	1
57	-3	3	57	-3
61	0	0	61	0
62	0	0	62	0
63	0	0	63	0
64	0	0	64	0
65	0	0	65	0
66	0	0	66	0
67	0	0	67	0

B to A	C to A	C to B
490	222	438

Sum of Delta (Ranks) of 67 Heuristics





Case Study

Heuristics Relevance Assessment


Highest Scoring Heuristics

Lowest Scoring Heuristics

Case Studies – Complex or Complicated?

Heuristics C1 to C16 were selected for their applicability to both Complex and Complicated Systems. The DAT results showed that the scatter between assessments did not allow the rank order of these heuristics to distinguish between “complex” and “complicated” case studies

Observations

Observation

You have to be careful in interpreting the DAT – there seems to be an inbuilt assumption that change is bad, but there are situations where the inability to change is the problem.

Fixing or avoiding problems can require significant change (to Organization, Process or Technology), but change is hard, and it is difficult to assess the impact of changes, but if you do not change, you continue with the problem.

Definition of Stupidity – Knowing what to do but not doing it (vs Definition of Madness – doing the same thing and expecting a different result).

DAT questions cannot cover everything, particularly different perspectives on the system.

Difficulty in doing the case studies is the timeline, mainly what was known when looking with the benefit of hindsight.

Note the issue of a change in one part of a system affecting the assumptions made elsewhere, e.g. both Foot and Mouth (changes to abattoir locations and size invalidated transmission assumptions), and Turbine Tip Clearance (change in turbine component changed the key attribute concern in the interface between combustor and turbine sub-systems).

Principle 5 applies to the DAT itself - because in the end, this model is only recommending, and reality tells you which heuristics apply.

Conclusions

- “Match – Mismatch Analysis” and “Sum of Delta between Ranking by Assessors” seem to show the most promise for differentiating between types of system issues, but further investigation is needed.
- Team Assessments (Assessors A and C) seem to show more consistency than Individual Assessments (Assessors B, D and E). The study has insufficient assessments to draw a statistically relevant view of Team vs. Individual assessments, but it is hypothesized that the discussion and rationale development in a team environment should produce a more consistent outcome. Just using the tool in a team discussion may be more valuable than the output of the tool!
- There is some consistency in the identification of the most relevant heuristics for all case studies for the five assessments. This gives support to the use of the DAT to provide good recommendations at the start of the development of a complex system
- There is less consistency in the identification of the least relevant heuristics. This may not be an issue in the relevance or applicability of the DAT

Conclusions – Future Work

- To arrange for other teams of various sizes to assess the eight case studies to see if team size is a differentiator.
- To identify additional Case Studies (Appendix B is Problem Statement for an additional example).
- To investigate the nature of the situation (Simple, Complicated, Complex or Chaotic) for each of the Case Studies to see if this has any bearing on the different assessment scores and the consistency of the scores. For example, the Foot and Mouth case study has previously been reported as being a Chaotic situation (Kemp et al, 2015, Table 13, F12)
- Apply the DAT tool to new, real-life problems, apply the recommended Heuristics, and upon completion of the work, assess how useful and applicable the recommended Heuristics were (there is activity in the Working Group looking at this).
- To apply additional analytical approaches (e.g. Large Language Models and Big Data Analytics) to address the subjectivity associated with humans using the DAT tool (in itself a complex system) and/or to improve the DAT tool.

Questions?

Please contact us if you would be prepared to assess the eight case studies, either as an individual assessor or (preferred) to perform a team assessment. We need your help!!!

Please let us know if you have case studies that you would like to add to the analysis. This is not a heavy burden – just a description of the problem (background) and outcome. The hard part is summarizing the case study in an understandable form in a couple of pages. Remember the Churchill story – that was a long speech – yes, I didn't have time to make it shorter!

Please also let us know if you would like to use the DAT GNOSIS tool to assess a current problem, receive Heuristics advice and provide feedback about the value of the advice provided by the tool.

34th Annual **INCOSE**
international symposium

hybrid event

Dublin, Ireland
July 2 - 6, 2024

www.incos.org/symp2024
#INCOSEIS