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Abstract and Introduction

* Context: Space exploration faces significant challenges
from cosmic and solar radiation, threatening equipment
and astronaut health.

* Solution Proposed: Develop an artificial magnetic field
generator to mimic Earth’s protection mechanism.

* _Objective: Demonstrate how MBSE can optimize the
design and integration of advanced radiation protection
systems.
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Challenges of Traditional Methods

* Limitations of Passive Shielding: Heavy materials increase
launch costs, limited effectiveness against high-energy particles.

* Need for Innovation: Exploring artificial magnetic fields as
dynamic, adjustable protection against varied radiation threats.
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MBSE Approach

* Definition: MBSE uses integrated models
instead of traditional document-centric
approaches, facilitating comprehensive
system analysis.

 Tools Used: Employing Cameo Systems
Modeler and Systems Modeling Language
(SysML) to enhance design precision and
stakeholder.communication.

e _Benefits: Unified visualization of complex
systems, enhanced communication among
stakeholders, streamlined validation and
verification processes.
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MBSE lifecycle, from requirements gathering through
to system validation and operation. (Wasserman, 2014)

MBSE organizes and visualizes system requirements
and components.
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Functional and Performance Re

req [Model] Requirements [ Artificial Magnetic Field ])

Requirement diagrams
illustrate how MBSE organizes
and visualizes system
requirements and components.

The full listing of Functional and
Performance requirements for this
project are listed in the backup
section.
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System Components and Functionality

Main Components: Includes o
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. th n h MBSE illustrates how different system components like
SerVI.CeS. €Y PragCESuTeS Radiation Monitoring, Magnetic Shielding, and Power
monitoring and power Management are interconnected.

management.
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Methodology

User Interface (Ul) Control Module Power Management Radiation Sensor ‘ Coll System

{0 ms}

Modeling Techniques: Application of
SysML for creating detailed block

definitions, activity diagrames,

sequence diagrams, and internal

block diagrams.

Operational Flow: lllustrates system o)

operations under varying radiation

{TBDms}

conditions-and power scenarios,
ensuring adaptive performance.
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1: Initiate Shielding 2: Process Command

- {10 ms}

3: Check Power Levels

>

4: Activate Coil System

{25 ms}

5: Request Radiation Levels

{30 ms}

6: Send Radiation Data

{35 ms}

7: Adjust Magnetic Field
{40 ms}

8: Field Generation Command

| 9: Field Generation

{45 ms}
10: Display Status

11: Terminate Shielding

12: Deactivate Coil System

{TBD+10 ms} 13: Field Termination

{TBD*15 ms}

This sequence diagram highlights the interactions
between system components over time, and is especially
useful for showing dynamic behavior in response to
changing radiation levels or power statuses.
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Relevance to Proiect

Specific Application: Focus
on designing electromagnetic /
coil systems capable of e
generating protective
magnetic fields around ==
spacecraft.

\_ Magnetic Shield Spacecraft Crew

\_ Magnetic Shield
\9

7" Adjust Magnetic

System Diagnostic

Predictive Capability: System e

simulations.help refine SR

designs preemptively,

identifying potentialissues Use case diagrams show how different users (like

before they arise in real- astronauts and ground control personnel) will interact with
world applications the system, highlighting the system’s functionality and user

interfaces.
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Results and Validation
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result in a decrease in the magnetic field strength.
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Adaptability and Scalability: E e
Demonstrates.the system’s Eesn)
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N - Parametric diagrams show how parameters are linked within
and mission-specific the system and how simulations are used to validate system
requirements. performance against requirements.
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Conclusion

 Summarization of Benefits: MBSE offers a systematic approach
to managing complex system designs, improving reliability and
performance in hostile environments.

* Future Applications: Potential expansion of MBSE applications in
other aerospace projects and complex system integrations.

« (MBSE) provides frameworks and methodologies for quantitatively
assessing-the benefits of its application to aerospace projects,
such as-the design of systems like artificial magnetic field
generators.
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Requirements

Functional Requirements:

1. Radiation Protection Effectiveness: The system must generate a
magnetic field strong enough to deflect solar and cosmic radiation
effectively, mimicking Earth’s magnetosphere.

2. System Integration and Compatibility: The magnetic field
generator must integrate seamlessly with existing spacecraft systems
without causing interference or requiring significant modifications to
other systems.

3. Operational Reliability: The system should have high reliability,
maintaining functionality with minimal maintenance over long-duration
missions.

4. Power Efficiency: The generator must operate within the
spacecraft’'s power budget, optimizing energy consumption without
compromising performance.

5. Safety and Redundancy: Safety mechanisms must be in place to
protect the spacecraft andits.crew from system malfunctions or
failures..Redundant systems should ensure continuous operation in
case of component-failures.

6. Weight and Space Constraints: The design must consider the
weight and space limitations of spacecraft, ensuring that.the generator
does not adversely affect launch and operational parameters.

7. Thermal Management: Efficient cooling systems must be-designed
to manage the heat generated by the system, maintaining-eptimal
operating temperatures.
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Performance Requirements:

1. Adaptability to Varying Radiation Conditions: The system must adapt
its protective measures in response to fluctuating radiation levels, providing
dynamic protection based on real-time environmental data.

2. User Interface and Control: An intuitive user interface should allow
crew members and ground control to monitor and control the magnetic field
generator system, adjusting settings as needed for different mission
phases or in response to specific threats.

3. Environmental Compliance: The system must comply with space
environmental standards and regulations, ensuring that it does not
contribute to space debris or interfere with other spacecraft operations.

4. Scalability and Future-proofing: The design should allow for updates
and scalability based on future technological advancements and mission
requirements, supporting a long-term, evolving space program.

5. System Diagnostics and Health Monitoring: Integrated diagnostics
should monitor system health, automatically detecting, reporting, and
addressing potential issues before they lead to system failures.

6. Interoperability with Communication Systems: The magnetic field
generator must not disrupt onboard communication systems; design
considerations must include electromagnetic compatibility (EMC) to prevent
interference with data transmission.

7. Documentation and Traceability: Comprehensive documentation must
be maintained for all system aspects, ensuring traceability from
requirements through to design, implementation, and operation. This
documentation is essential for system certification and future upgrades.
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