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Background and Concepts

www.incose.org/symp2024 #INCOSEIS 42-6 July 2024



Problem Statement
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▪ Recent developments in Machine Learning (ML) algorithms and increasing 

computational power → AI-Enabled systems 

▪ Can we say that the right system has been built?

▪ Validation is a critical Systems Engineering (SE) process in answering the 

question above

▪ Need to validate system models for AI-Enabled systems wherein their 

intrinsic dimensions of conceptual, operational and data validity must also be 

addressed.



Digital Twin as an AI-Enabled System
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▪ AI-enabled systems
o Consists of software & hardware components, but “also              

AI algorithms, models, and data” (Pons & Ozkaya, 2019)
o “cyber-physical systems” exhibiting artificial                 

intelligence (AI) capabilities. (Shadab et al., 2021)

▪ Digital Twin
o "high-fidelity model" of a physical asset
o mimics the actual behavior and operating conditions       

inherent in the physical asset (Giachetti, 2022)
o Physical & Virtual assets are linked by sensors              

exchanging data
o Data can be analyzed by applying AI techniques                         

and big data analytics (Bešinović, et al., 2021)

▪ An Intelligent digital twin comprising of a virtual system          
model of the physical asset with supporting adaptive UI and AI  
techniques can be classified as an AI-enabled system.  Features of a digital twin (Bhatti, Mohan, & Singh, 2021)



System validation approaches for AI-Enabled Systems
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System Validation methods
(Myllyaho et al., 2021)

QualitativeQuantitative

Trial
(Bourque et al., 2014)

Simulation
(Jha et al., 2019; 

Domínguez et al., 2019)

Model-centered
(Kachamas et al., 2019)

Expert opinion
(Begum et al., 2012)

Continuous validation systems
• Failure monitoring (Haris et al., 2017; Jha et al., 2019)

• Safety channel (Portugal & Rocha, 2013)

• Redundancy (Yan et al., 2018)

Monitoring



System validation approaches for AI-Enabled Systems
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▪ System validation (complete AI-enabled system) is different 

from model validation (AI/ML algorithm validation)

▪ A quantitative method for system validation that aims to 

sustain the appropriate functioning of the AI model engine 

concerning the whole AI-enabled system

▪ Validation type is justified when the system validation 

process is data-centered and is critical for achieving trust in 

the system when the model works (Myllyaho et al., 2021)



Research Objectives
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▪ This work aims to use the system identification technique (model-centric validation 
approach) to validate a digital twin of a heat-pipe article (an AI-enabled system) at the 
system level. 

▪ At this level, the digital twin has been successfully built and with one of the 
stakeholders needs generally concerned with monitoring the physical system towards 
predicting future failures in the system. 

▪ The exploratory system identification approach helps evaluate historical data from the 
heat pipe (physical asset) by uncovering unknown system dynamics and mathematical 
relationships captured within the historical data to understand the asset behavior 
better. 

▪ Validating the digital twin helps drive the process of validating stakeholders' 
requirements for the digital twin to mimic the behavior of the heat pipe article.

▪ The goal of this work is a departure from similar predictive efforts that rely on curve-
fitting for extrapolating and making predictions but do not model the system 
dynamics of the historical data



System Identification: A Validation Framework 
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Validation framework for a digital twin
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❖ Challenges to digital twin validation framework development:
▪ Model realism : 

• highly dependent on model fidelity

▪ Input data uncertainty: 

• arises from sensors taking measurements to range tolerance in specification 
elements of the product requirements documentation e.g. missing data, and 
inherent data noise

▪ Physical asset system dynamics : 

• Capturing inherent system parameters from data 

❖ Need for a model-centric system validation framework that handles the 
three challenges identified above
▪ Differs from an AI/ML model validation as it is focused on enhancing the ability of 

the digital twin model to mimic, monitor, and update the physical asset.

• System identification technique



Validation framework for a digital twin
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Model-centric validation framework



The System Identification technique
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❖ A data-driven approach that involves 
building mathematical models of 
dynamic systems from observed 
input-output data (Ljung, 2010) 

❖ Digital twin technology is closely 
related to System Identification
▪ Application in online identification 

capabilities

▪ Forecast future states and 
optimize/adapt/control

▪ Physical processes are measured and 
compared to virtual models for validation

Digital twin technology models in System Identification.  

Source: Pattanaik & Mohanty (2024) 



System Identification process
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Flowchart for the System Identification technique



Case study: Digital Twin of a Heat-pipe article for 

a Microreactor Testbed
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Case study
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▪ Case study is a digital twin of a single-heat-pipe test article with predictive, self-

adjusting capability (Wilsdon et al., 2023)

o Demonstrated in the Microreactor AGile Non-nuclear Experimental Testbed (MAGNET) at a 

National laboratory

o Sodium/stainless steel heat pipe with a mesh screen wick and an unknown quantity of argon gas

o The heat-pipe article consists of a hexagonal, stainless steel core block containing six cartridge 

heaters surrounding a single, central heat pipe. 

o Heat pipe is 200 cm long, while the hexagonal block containing the cartridge heaters is 48 cm 

long. 

Axial cross-section of the single-heat-pipe assembly.    Source: (Wilsdon et al., 2023)



Experiment/Data Collection
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▪ Input-Output Data (Experimental dataset): 

o Sample size: 5130; start time = 3799 seconds; sample time = 1 second; end time = 8928 

seconds

▪ 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 𝑓(𝑢1,…,𝑢10) for the thermocouples in heat pipe assembly

o Output data (single variable) = 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒  ; input data (10 variables) = 𝑢1,…,𝑢10

▪ Data pre-processing:

o detrended the data to remove offsets from the data by subtracting the mean values of the input 

and the output

o dataset of 5130 samples is split into two, with the first half set aside for model estimation while 

the other half is used as the model validation dataset.



Method: System Identification
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▪ Multiple Input Single Output (MISO) system Identification

o 10 input variables (temperature for ten thermocouples)

o 1 output variable (heater temperature)

▪ Black-box modeling

o Goal: derive insights from the dataset without prior knowledge of the heat pipe behavior

▪ Tool/Software: MATLAB System Identification Toolbox 

o MATLAB toolbox for processing system identification technique

o Experimental data is loaded into the system identification toolbox in MATLAB



System Identification: Data Collection
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Plots of the u1-temperature channel. The left side shows detrending. The right side shows the estimation and validation data



System Identification: Model Selection
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▪ Check if input-output data model is linear:

o  Quick Start feature in the System Identification app (4 available linear models)

➢ arxqs: Fourth-order autoregressive (ARX) model

  𝑦(𝑡)+𝑎1𝑦(𝑡−1)+⋯+𝑎𝑛𝑎𝑦(𝑡−𝑛𝑎)=𝑏1𝑢(𝑡−𝑛𝑘)+⋯+𝑏𝑛𝑏𝑢(𝑡−𝑛𝑘−𝑛𝑏+1)+𝑒(𝑡)

where y(t) represents the output at time t

u(t) represents the input at time t, 

na is the number of poles, 

nb is the number of b parameters (equal to the number of zeros plus 1)

nk is the number of samples before the input affects the output of the system, 

e(t) is the white-noise disturbance.

➢ imp: Finite impulse response (FIR) model

➢ spad: Frequency response using spa algorithm

➢ n4s1: State-space model model

𝑑𝑦/𝑑𝑥=𝐴𝑥(𝑡)+𝐵𝑢(𝑡)+𝐾𝑒(𝑡);            𝑦(𝑡) = 𝐶𝑥(𝑡)+𝐷𝑢(𝑡)+𝑒(𝑡)



System Identification: Model selection
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Plots of the u1-temperature channel. The left side is the step response plot. The right side 

is the frequency response plot

▪ Both step response and 

frequency response plots 

confirm the lack of agreement 

among the other model 

structures and the measured 

data 



System Identification: Model selection
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Model output-plot

▪ Shows that a linear model sufficiently 

represents the system's dynamics

▪ Fourth-order autoregressive (ARX) 

model provides the best-fit value (91.2) 

of the model response to the input in 

the validation data compared to the 

other QuickStart models.



System Identification: Model identification
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▪ The fourth-order autoregressive (ARX) models provide the best fit from the model 
structure selection step

▪ More complex ARX model structures with varying poles (order), zeros, and delays to get 
more accurate parametric models were explored

▪ Also, different linear polynomials, state-space, transfer function, and process models with 
the number of poles, na = 2, number of zeros, and nb = 1, were analyzed

▪ The process model (P2DZ) from the model output-data plot in the previous slide provides 
the best fit with a value of 99.39



System Identification: Model validation
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▪ Model fitting
o Validate the best candidate models that perform best in terms of fit (P2DZ, arx221, and 

arx111) and select the best, 

o Helps uncover if models selected from the model structure selection process are wrong, 
or the data is influenced by a random disturbance process or a combination of the two.  

▪ Correlation analysis 
o of the residual function was done to ascertain if the errors in our models are random or 

autocorrelated in some way. 

o Whiteness and Independence test

o Residual analysis plots for autocorrelation & cross-correlation plots



System Identification: Model validation
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 P2DZ (Process model)

▪ Possesses the best-fit value (99.39) 

of the three candidate models

▪ Only model (of the 3) passing the 

whiteness and independence test 

criteria for both autocorrelation and 

cross-correlation plots.

▪ Only model (of the 3) satisfying both 

model fitting and correlation analysis 

tests.

Residual analysis plot for the three best models



System Identification: Results

2-6 July 2024 www.incose.org/symp2024 #INCOSEIS 26

▪ A linear model like the process model (P2DZ) best represents the experimental data 
from the heat pipe compared to our initially assumed linear models

▪ Any machine learning algorithm making future predictions for the digital twin can 
utilize the process model as its prediction model for multivariable forecasting.

Mathematical equation output for the Process model (P2DZ)



Conclusions
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▪ System Identification - model-centric system validation framework can 

identify the best mathematical model that represents the system dynamics of 

a physical asset such as a microreactor testbed's heat pipe. 

▪ Model-centric validation helps engineers better understand how well their 

digital twin model's predictions mirror that of the physical system.

▪ Digital twin prediction failures (such as in Wilsdon et al. (2023)) can be 

mitigated by linear and nonlinear models from a model-centric validation 

approach that accurately captured the dynamics of the physical asset.
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Limitations 

& 

Future Work

❖ Conclusion
▪ Study could not fully validate the Digital Twin of the heat pipe 

article due to the lack of input-output data for the predicted 

ML data from Digital Twin's ML model. 

o Previous digital twin development only provided ML-

forecasted data for the ten thermocouples (input data), 

not the overall heater temperature (output data)

❖ Future Work
▪ Need for not just experimental data but also ML-predicted 

data to conduct extensive system identification and evaluate 

its predictive ability.

▪ Current study was more of offline identification. Online 

identification will provide ‘live’ validation of the digital twin.
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Questions
Validation Framework of a Digital 

Twin: A System Identification 

Approach
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