& 34th Annual INCOSE
international symposium
hybrid event
!'u RN

7 Dublin, Ireland
vy July 2 - 6, 2024

Validation Framework of a Digital Twin: A System
ldentification Approach

2-6 July 2024 www.incose.org/symp2024 #INCOSEIS 1



Iloukun Phillips, ASEP
PhD Candidate

Industrial Engineering, Purdue University

2-6 July 2024

[ |
Authors S

Dr. Robert Kenley, ESEP, FINCOSE
Professor of Practice
Industrial Engineering, Purdue University

27

PURDUE

UNIVERSITY.

www.incose.org/symp2024 #INCOSEIS 2



Overview of our Approach

System
Background Identification: A Case study

& Concepts Validation
Framework

2-6 July 2024 Www.incose.org/Symp2024 #INCOSEIS 3



ey

Background and Concepts

2-6 July 2024 www.incose.org/symp2024 #INCOSEIS 4



Problem Statement

= Recent developments in Machine Learning (ML) algorithms and increasing
computational power — Al-Enabled systems

= Can we say that the right system has been built?

= Validation is a critical Systems Engineering (SE) process in answering the
question above

= Need to validate system models for Al-Enabled systems wherein their
Intrinsic dimensions of conceptual, operational and data validity must also be
addressed.
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Digital Twin as an Al-Enabled System

= Al-enabled systems

o Consists of software & hardware components, but “also ——

Al algorithms, models, and data” (Pons & Ozkaya, 2019) g
o “cyber-physical systems” exhibiting artificial eligence m Sensars
intelligence (AI) capabilities. (Shadab et al., 2021) i:) : . (((0)))
. Dlgl tal Twin e "Digital Twin" i Pnys::al.Asset
o "high-fidelity model" of a physical asset Analcs ! N Aclualors
o mimics the actual behavior and operating conditions CI‘B y)
inherent in the physical asset (Giachetti, 2022) ﬁ@j &"
o Physical & Virtual assets are linked by sensors Prodtve < >
exchanging data e Lo
o Data can be analyzed by applying Al techniques o wally
[

and big data analytics (BeSinovi¢, et al., 2021) | / &
= An Intelligent digital twin comprising of a virtual system \/
model of the physical asset with supporting adaptive Ul and Al e

techniques can be classified as an Al-enabled system. Features of a digital twin (Bhatti, Mohan, & Singh, 2021)
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System validation approaches for Al-Enabled Systems

System Validation methods
(Myllyaho et al., 2021)

Quantitative Qualitative

Continuous validation systems
Failure monitoring (Haris et al., 2017; Jha et al., 2019)
Safety channel (Portugal & Rocha, 2013)
Redundancy (Yan et al., 2018)

Trial Model-centered Expert opinion

Simulation
(Bourque et al., 2014) (Kachamas et al., 2019) (Begum et al., 2012)

(Jhaetal., 2019;
Dominguez et al., 2019)
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System validation approaches for Al-Enabled Systems

System Validation methods
(Myllyaho et al_, 2021)

! l

Qualitative
m Continuous validation systems
*  Failure monitoring (Haris et al., 2017, Jha et al., 2019)

+  Safety channel (Portugal & Rocha, 2013}
+  Redundancy (Yan et al, 2018)

Quantitative

Simulation

{Jha etal., 2019,
Dominguez et al_, 2019)

(Bourque et al., 2014) (Kachamas et al., 2019) (Begum et al., 2012)
‘ = System validation (complete Al-enabled system) is different
. from model validation (Al/ML algorithm validation)

= A quantitative method for system validation that aims to
sustain the appropriate functioning of the Al model engine
concerning the whole Al-enabled system

= Validation type is justified when the system validation
process is data-centered and is critical for achieving trust in
the system when the model works (Myllyaho et al., 2021)
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Research Objectives

This work aims to use the system identification technique (model-centric validation
approach) to validate a digital twin of a heat-pipe article (an Al-enabled system) at the
system level.

At this level, the digital twin has been successfully built and with one of the
stakeholders needs generally concerned with monitoring the physical system towards
predicting future failures in the system.

The exploratory system identification approach helps evaluate historical data from the
heat pipe (physical asset) by uncovering unknown system dynamics and mathematical
relationships captured within the historical data to understand the asset behavior
better.

Validating the digital twin helps drive the process of validating stakeholders'
requirements for the digital twin to mimic the behavior of the heat pipe article.

The goal of this work is a departure from similar predictive efforts that rely on curve-
fitting for extrapolating and making predictions but do not model the system
dynamics of the historical data

2-6 July 2024 www.incose.org/symp2024 #INCOSEIS 9



ey

System Identification: A Validation Framework
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Validation framework for a digital twin

\/

%+ Challenges to digital twin validation framework development:
= Model realism :

* highly dependent on model fidelity
= Input data uncertainty:

* arises from sensors taking measurements to range tolerance in specification
elements of the product requirements documentation e.g. missing data, and
inherent data noise

= Physical asset system dynamics :
+ (Capturing inherent system parameters from data

N/

% Need for a model-centric system validation framework that handles the
three challenges identified above

= Differs from an AI/ML model validation as it is focused on enhancing the ability of
the digital twin model to mimic, monitor, and update the physical asset.

*  System identification technique
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Validation framework for a digital twin

Model-centric system validation

Adequate historical data
from physical asset

/ Input-Output Transformation

N

Digital Twin
predicted I/O data

Historical

1/0O data for
identification

/’//’
data \

e

System Identification

~

Real input/Output | W Digital Twin /O data

(1/0) data

\

# lCompare

I/O data model | —— 9| Identified real I/O data

structure

-

Enterprise Decision-making

N

Accuracy requirement/validation criteria, data quality

\

\

Offline vs Online Validation

Model-centric validation framework
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The System ldentification technique

% A data-driven approach that involves
building mathematical models of
dynamic systems from observed
input-output data (Ljung, 2010)

\/

% Digital twin technology is closely
related to System Identification

=  Application in online identification
capabilities

=  Forecast future states and
optimize/adapt/control

=  Physical processes are measured and
compared to virtual models for validation
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Parametric
|dentification

Mon-Parametric
Identification

I

» Kermnel Methods
# Local Polymomial Methods
# Dhirect Weight Optimization

 J

Linear Models
+ Auto Regressive (AR)

+ Auto Regressive with exogenows
[ARX)

* Box-lenkins (BJ)
+ Linear State Space [L55)
+ Laplace Transfer Function [LTF)

+ Qutput Regeressive Moving with
exogenaus output [ARMAX)

Monlinear Models

+ Monlinear Output Error (NOE)
+ MNonlinear Box-Jenkins (MEJ)

* MNonlinear Auto Regressive with
exogenaus (NARAX]

= Monlinear State Space Model [N55]

+ Hammerstein -winner

= Monlinear Auto Regressive Moving
Average with exogenous (NARMAX)

+ Vaolterra Series, ANMN, DINN,
Gaussian Process

Digital twin technology models in System Identification.

Source: Pattanaik & Mohanty (2024)




System ldentification process

No
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| Start I

Experiment and/or
data collection

—"

Input & output data
Data pre-processing
Estimation & validation data

Model Structure
selection

Model
Identification

Model Validation

Meet
Criteria

N\

* White-box vs. black-box

vs. gray-box models
* Linear vs nonlinear models
* Disturbances

« Offline vs online

n
J = min Z(predictiﬂni — dﬂtai)z
i=1

Flowchart for the System ldentification technique
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Case study: Digital Twin of a Heat-pipe article for
a Microreactor Testbed
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Case study

= Case study is a digital twin of a single-heat-pipe test article with predictive, self-
adjusting capability (Wilsdon et al., 2023)

o Demonstrated in the Microreactor AGile Non-nuclear Experimental Testbed (MAGNET) at a
National laboratory

o Sodium/stainless steel heat pipe with a mesh screen wick and an unknown quantity of argon gas

o The heat-pipe article consists of a hexagonal, stainless steel core block containing six cartridge
heaters surrounding a single, central heat pipe.

o Heat pipe is 200 cm long, while the hexagonal block containing the cartridge heaters is 48 cm

long.
CB
TW10 TW9 TWS TWT7 TWE TWS5 TW4 TW3 TW?2 TW1 |
Heat Pipe
Core Block
Insulation

Axial cross-section of the single-heat-pipe assembly. Source: (Wilsdon et al., 2023)
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Experiment/Data Collection

= |nput-Output Data (Experimental dataset):

o Sample size: 5130; start time = 3799 seconds; sample time = 1 second; end time = 8928
seconds

= temperature = f(ul,...,ul0) for the thermocouples in heat pipe assembly

o Output data (single variable) = temperature ; input data (10 variables) = u1,...,ul0

= Data pre-processing:

o detrended the data to remove offsets from the data by subtracting the mean values of the input
and the output

o dataset of 5130 samples is split into two, with the first half set aside for model estimation while
the other half is used as the model validation dataset.
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Method: System ldentification

= Multiple Input Single Output (MISO) system Identification
o 10 input variables (temperature for ten thermocouples)

o 1output variable (heater temperature)

= Black-box modeling

o Goal: derive insights from the dataset without prior knowledge of the heat pipe behavior

= Tool/Software: MATLAB System Identification Toolbox

o MATLAB toolbox for processing system identification technique

o Experimental data is loaded into the system identification toolbox in MATLAB
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System ldentification: Data Collection

Input and output signals
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Plots of the ul-temperature channel. The left side shows detrending. The right side shows the estimation and validation data
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System ldentification: Model Selection

= Check if input-output data model is linear:

O Quick Start feature in the System Identification app (4 available linear models)
» arxgs: Fourth-order autoregressive (ARX) model
y(t)+ay(t-1)+--+a, y(t-n,)=bu(t-n,)+-+b, u(t-n,-n,, )+e(t)
where y(t) represents the output at time t
u(t) represents the input at time t,
n, is the number of poles,
n is the number of b parameters (equal to the number of zeros plus 1)

n, is the number of samples before the input affects the output of the system,
e(t) is the white-noise disturbance.

» imp: Finite impulse response (FIR) model

» spad: Frequency response using spa algorithm

» n4si: State-space model model
dy/dx=Ax(t)+Bu(t)+Ke(t); y(t) = Cx(t)+Du(t)+e(t)
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System ldentification: Model selection

Frequency response

2 0t 1
25 Step Respanse 2 MODELS
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Plots of the ul-temperature channel. The left side is the step response plot. The right side
Is the frequency response plot
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Both step response and
frequency response plots
confirm the lack of agreement
among the other model
structures and the measured
data
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System ldentification: Model selection

Measured (datval) and simulated model output

150
Best Fits
100 arx221: 92.87
arxqgs: 91.2
B arxd441: 90 67 = Shows that a linear model sufficiently
tf1- 86.84 represents the system's dynamics
nds1: 85.56 » Fourth-order autoregressive (ARX)
ol tf2: 80.66 model provides the best-fit value (91.2)
of the model response to the input in
imp: 62.92 the validation data compared to the
other QuickStart models.

) 6000 6500 7000 7500 8000 8500 9000
Time

Model output-plot
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System ldentification: Model identification

Measured (datval) and simulated model output

150
Best Fits

100

arxgs: 91.2
arx441: 90.67

tf1: 86.84

= The fourth-order autoregressive (ARX) models provide the best fit from the model
structure selection step

50

) tf2: 80.66

imp: 62.92

-50
6000 6500 7000 7500 8000 8500 9000
Time

= More complex ARX model structures with varying poles (order), zeros, and delays to get
more accurate parametric models were explored

= Also, different linear polynomials, state-space, transfer function, and process models with
the number of poles, n, = 2, number of zeros, and n,, = 1, were analyzed

=  The process model (P2DZ) from the model output-data plot in the previous slide provides
the best fit with a value of 99.39
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System ldentification: Model validation

= Model fitting

o Validate the best candidate models that perform best in terms of fit (P2DZ, arx221, and
arxi) and select the best,

o Helps uncover if models selected from the model structure selection process are wrong,
or the data is influenced by a random disturbance process or a combination of the two.

= (Correlation analysis

o of the residual function was done to ascertain if the errors in our models are random or
autocorrelated in some way.

o Whiteness and Independence test
o Residual analysis plots for autocorrelation & cross-correlation plots
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System ldentification: Model validation

LEGEND

arx221

arx111

PZD2

Residual analysis plot for the three best models
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V| p2DZ (Process model)

Possesses the best-fit value (99.39)
of the three candidate models

Only model (of the 3) passing the
whiteness and independence test
criteria for both autocorrelation and
cross-correlation plots.

Only model (of the 3) satisfying both
model fitting and correlation analysis
tests.
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System ldentification: Results

= A linear model like the process model (P2DZ) best represents the experimental data
from the heat pipe compared to our initially assumed linear models

Process model with 10 inputs: y = Gll(s)ul + ...+ G110(s)ul0
From input "[ul" to output "temperature":
1+Tz*s
Gll(s) = Kp * ———————————————- - * exp(-Td*s)
(1+Tpl*s) (14Tp2*s)

Mathematical equation output for the Process model (P2D2)

= Any machine learning algorithm making future predictions for the digital twin can
utilize the process model as its prediction model for multivariable forecasting.
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Conclusions

= System Identification - model-centric system validation framework can

identify the best mathematical model that represents the system dynamics of

a physical asset such as a microreactor testbed's heat pipe.

= Model-centric validation helps engineers better understand how well their

digital twin model's predictions mirror that of the physical system.

= Digital twin prediction failures (such as in Wilsdon et al. (2023)) can be
mitigated by linear and nonlinear models from a model-centric validation

approach that accurately captured the dynamics of the physical asset.
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¢ Conclusion
= Study could not fully validate the Digital Twin of the heat pipe
article due to the lack of input-output data for the predicted
ML data from Digital Twin's ML model.

I: t W k o Previous digital twin development only provided ML-
u u re Or forecasted data for the ten thermocouples (input data),

not the overall heater temperature (output data)

+» Future Work

= Need for not just experimental data but also ML-predicted
data to conduct extensive system identification and evaluate
its predictive ability.

= Current study was more of offline identification. Online
identification will provide ‘live’ validation of the digital twin.

f-'h_ 5 i\

Y
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Validation Framework of a Digital
Twin: A System Identification
Approach
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