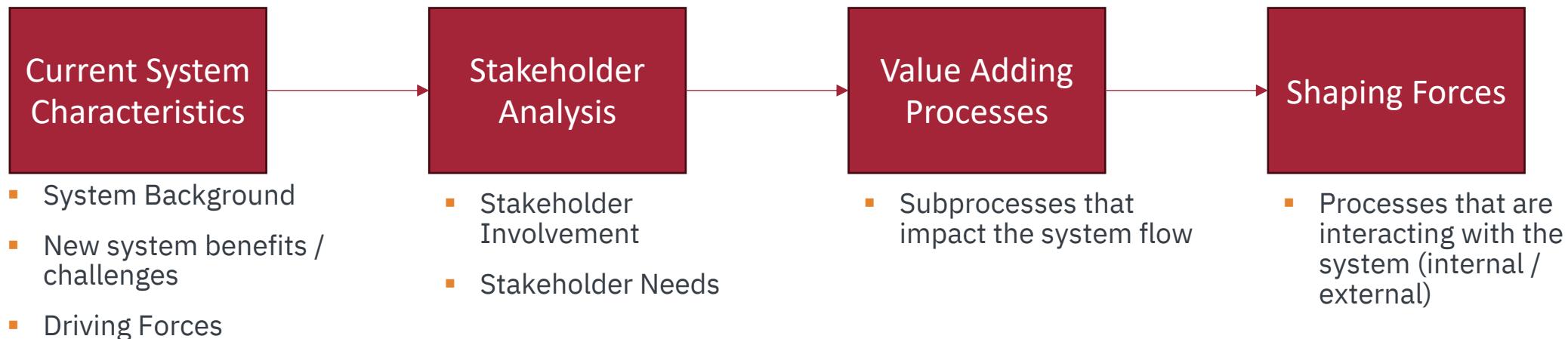


The Electric Revolution: Fully Electric Transportation System on an Urban College Campus


Authors: Zabi Sharifi
Mo Mansouri

Background

- Increase in Global Environmental Consciousness
- Study Focuses on College Universities
- Major University Environmental Impacts:
 - Congestion
 - Pollution
 - Limited Parking
- **Solution:** Implement a Fully Electric Transportation System
 - Use of Electric Vehicles (EVs)
 - Elimination of gas-powered vehicles

Systems Thinking Methodology

- Systems Thinking Approach was Utilized
 - System is overly complex for traditional systems engineering approach
 - Involves many actors, interactions, and subprocesses
 - Provides a framework for solutions to be implemented
 - Better approach for holistically characterizing the system
- Methodology Process Flow:

Benefits

- Carbon-free transportation on a campus
 - Reduces local air and noise pollution
- Incentivizes local businesses to upgrade transportation systems
- Inspires new research opportunities
- Campus public relations are improved – sustainability leader

Challenges

- EV Infrastructure
 - Availability of charging stations
 - Substantial cost to implement EV infrastructure
 - Maintenance plan for continued operations
- Campus Culture and Behavior
 - Large investment costs for off-campus commuters (purchasing EV)
 - Training required for operating and maintaining campus equipment
 - New systems may disrupt current transportation methods

Driving Forces

- Institutional commitment to environmental sustainability
- EVs are becoming a more practical transportation method
 - Improved battery performance
 - Increased charging infrastructure nationally
 - More widespread adoption
- Community attitude shift towards sustainability

Stakeholder Analysis

Stakeholder	Description / Requirements	Active / Passive
Students	<p>Attending the university for advanced degrees.</p> <ul style="list-style-type: none"> Requires reliable & convenient transport between classes and extracurricular activities. 	Active
Faculty	<p>Teach and support students with academic studies.</p> <ul style="list-style-type: none"> Requires efficient and available transportation to classes and research centers 	Active
Campus Administration	Allocate university's financial resources toward strategic investments.	Active
Environmental Advocates	Advocate for projects that reduce carbon emissions and promote sustainability. Seek to ensure project meets sustainability and environmental goals.	Active
Local Community	Residents and local businesses who may be potentially impacted by the transportation network (ie. Traffic noise, traffic flow / management, quality of life)	Passive
Transportation Experts	Support the implementation of EV technology into new networks.	Active
Maintenance and Operations	Teams responsible for the upkeep and continued operation of the transportation network once implemented.	Active
Regulatory Authorities	Policy makers and legal bodies that dictate the requirements for EV and transportation networks.	Passive
Energy Providers	Supply power that will be used to charge the EVs via power stations.	Passive
Future Generations	Prospective students and staff who will be impacted by the implementation of the EV transportation network.	Passive

Value Adding Processes

Sustainable Mobility Facilitation

- **Purpose:** Provides eco-friendly mode of transport for campus community.
- **Value:** Reduces air and noise pollution while contributing to healthier environment.
- **Process:** charging infrastructure, energy consumption, and vehicle utilized.

Energy Infrastructure Management

- **Purpose:** Provide reliable and efficient energy supply to transportation network.
- **Value:** Provides uninterrupted charging and minimizes down-time.
- **Process:** Design and maintenance of charging stations. Optimization of load distribution.

User Experience Enhancement

- **Purpose:** Create convenient transportation experience for system users.
- **Value:** Improves campus accessibility, reduces travel time, and enhances community satisfaction.
- **Process:** Use of mobile apps to make vehicle reservations, check charging stations, and track bus location.

Data-Driven Decision Making

- **Purpose:** Make informed decisions for future enhancements / optimization using data analysis methods.
- **Value:** Efficiency improvement, better maintenance prediction, and adaptation to shifting demands.
- **Process:** Implementation of data collection sensors and development of analytic tools for analysis.

Collaborative Stakeholder Engagement

- **Purpose:** Build and maintain communication among stakeholder groups within transport system.
- **Value:** Creates a supportive network to ensure issues are properly addressed and benefits all groups.
- **Process:** Consultation with various stakeholder groups to collect feedback and provide updates.

Technological Innovation and Adaptation

- **Purpose:** Remain at the forefront of electric transportation technology and advancements.
- **Value:** Staying relevant and efficient as well as being a good model for sustainability and innovation.
- **Process:** Continuous research and collaboration with sustainability and transportation experts.

Shaping Forces

Integration with Multi-Modal Transportation

- **Rationale:** Other modes of transportation exist and must be accounted for (ie. Bicycles and scooters)
- **Shaping Force:** Individuals prefer multiple modes of transport and value seamless transfers.

Long-Term System Scalability

- **Rationale:** Initial implementation may not address future needs with increased campus population growth.
- **Shaping Force:** System must accommodate expansion without significant disruptions or expensive overhauls.

Dynamic Demand Management

- **Rationale:** Transportation services demand fluctuations may cause under- or over-utilization of services.
- **Shaping Force:** Adaptive approaches integrated in the network will be key to managing demand fluctuations.

Sustainability and Long-Term Changes

- **Rationale:** All phases of the lifecycle for products used within the network is not accounted for in the system.
- **Shaping Force:** Increase emphasis on life cycle assessment for environmentally friendly component manufacturing and disposal will be important, especially to certain stakeholder groups.

Conclusion

- A systems thinking framework was used to define EV transportation systems for college campuses.
 - Framework identified key stakeholders, value adding processes, and shaping forces.
- A key factor of this system is intent of creating and maintaining an environmentally friendly transportation network.

Future Work

- Potential Research Projects and Emerging Technologies
 - Advanced EV technology
 - Emerging smart grid solutions
 - Sustainable urban planning
- Data analysis for system efficiency and effectiveness once transportation network has been established on campuses.
 - Comparative analysis based on historical efficiency data collected for existing transportation networks.
 - Identify future modification or upgrade plans to further enhance the system.

Questions?