

34th Annual **INCOSE**
international symposium
hybrid event
Dublin, Ireland
July 2 - 6, 2024

Product Assurance in the Model-Based System Engineering Ecosystem: Learning from Various Vertical Lift Platforms (#347)

Timothy Russell

Not subject to U.S. Export Administration Regulations (EAR), (15 C.F.R. Parts 730-774) or U.S. International Traffic in Arms Regulations (ITAR), (22 C.F.R. Parts 120-130).
Copyright © 2024 Boeing. All rights reserved.

Presentation Outline

- Introduction
 - Series Objective
 - Presentation Objective
- Observations
 - Systems Engineering Fundamentals
 - Centralization
 - External Tool Linkages
- Future Considerations
- Conclusion

Not subject to U.S. Export Administration Regulations (EAR), (15 C.F.R. Parts 730-774) or U.S. International Traffic in Arms Regulations (ITAR), (22 C.F.R. Parts 120-130).

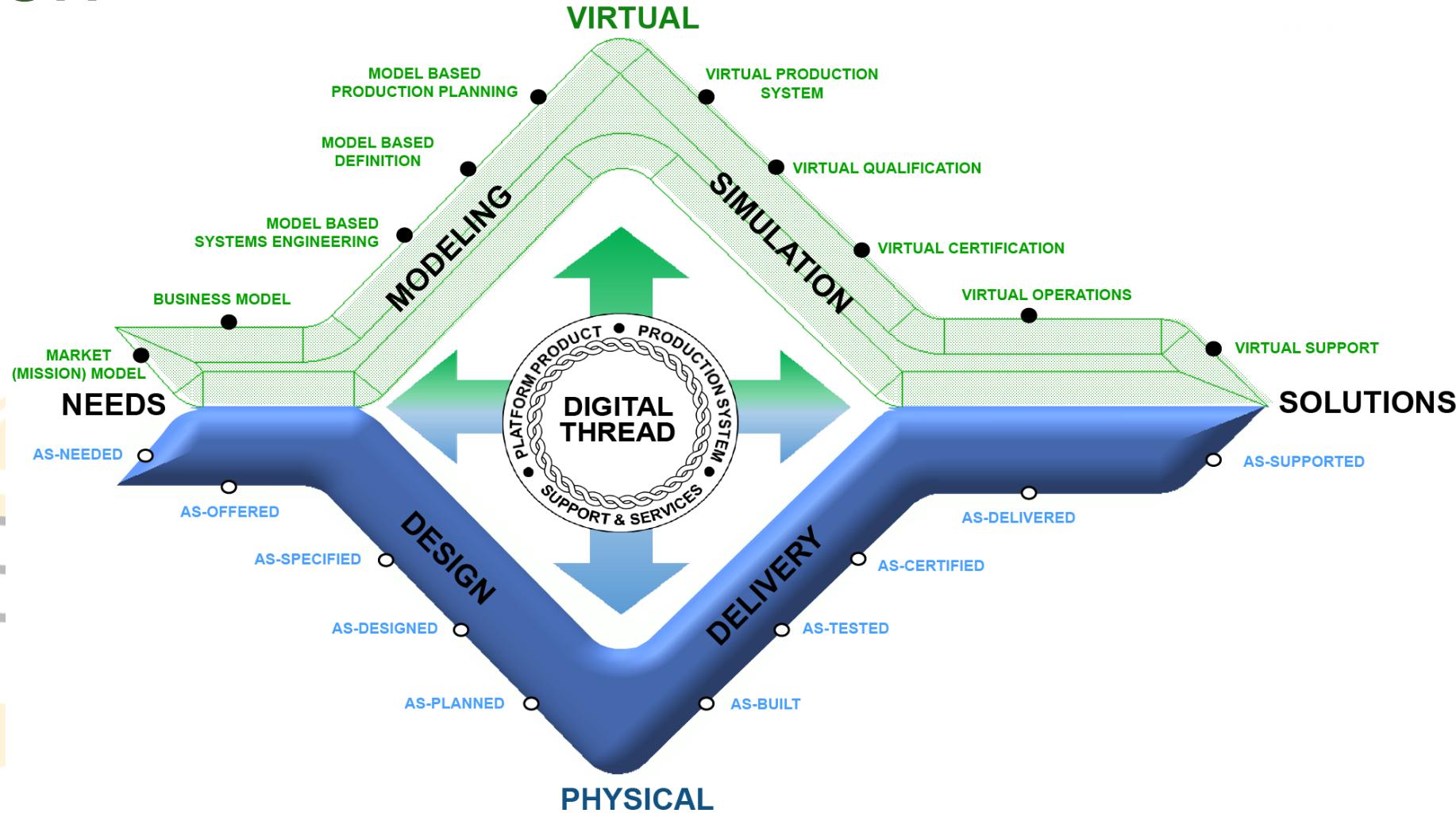
Copyright © 2024 Boeing. All rights reserved.

Introduction

Not subject to U.S. Export Administration Regulations (EAR), (15 C.F.R. Parts 730-774) or U.S. International Traffic in Arms Regulations (ITAR), (22 C.F.R. Parts 120-130).
Copyright © 2024 Boeing. All rights reserved.

Overview

- Boeing is reimagining how we design, build, test, and support its products/services across the full lifecycle
- Central to this reimagination is a comprehensive and unified digital ecosystem, of which MBSE is a crucial foundational element



Not subject to U.S. Export Administration Regulations (EAR), (15 C.F.R. Parts 730-774) or U.S. International Traffic in Arms Regulations (ITAR), (22 C.F.R. Parts 120-130).

Copyright © 2024 Boeing. All rights reserved.

Vision

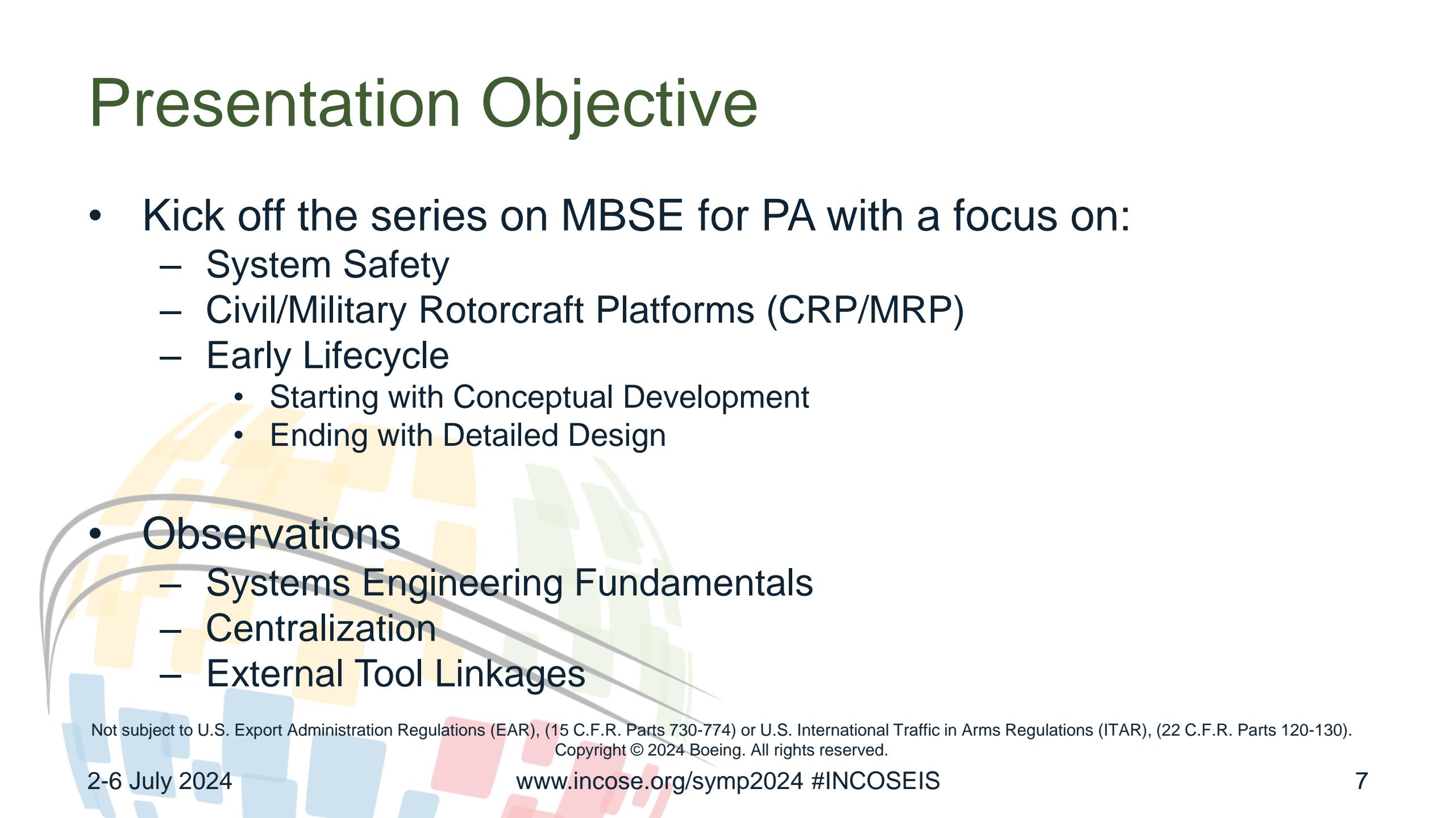
Evolution of System Engineering (SE) to Model Based Engineering (MBE)

Source: <https://www.boeingsuppliers.com/modelbasedengineering.html>

Not subject to U.S. Export Administration Regulations (EAR), (15 C.F.R. Parts 730-774) or U.S. International Traffic in Arms Regulations (ITAR), (22 C.F.R. Parts 120-130).

Copyright © 2024 Boeing. All rights reserved.

Series Objective


- Discuss what can be learned from applying MBSE for Product Assurance (PA) or RAMPSSS
 - Reliability/Availability/Maintainability (RAM)
 - Product Support (PS)
 - System Safety (SS)
- Contexts
 - Products and Services
 - Hardware and Software
 - Military and Civilian
 - Full Lifecycle (Concept Development to Disposal)

Not subject to U.S. Export Administration Regulations (EAR), (15 C.F.R. Parts 730-774) or U.S. International Traffic in Arms Regulations (ITAR), (22 C.F.R. Parts 120-130).

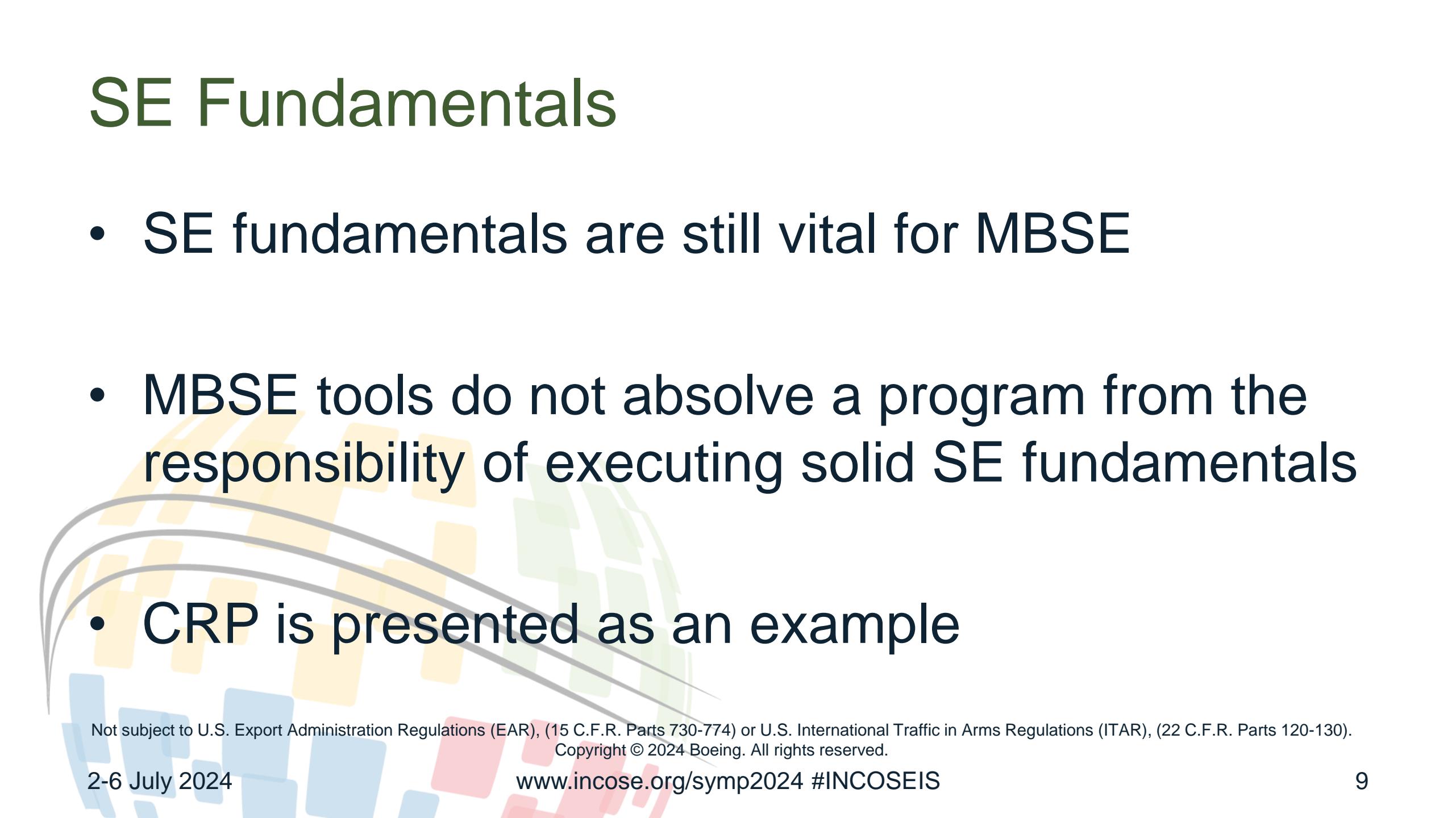
Copyright © 2024 Boeing. All rights reserved.

Presentation Objective

- Kick off the series on MBSE for PA with a focus on:
 - System Safety
 - Civil/Military Rotorcraft Platforms (CRP/MRP)
 - Early Lifecycle
 - Starting with Conceptual Development
 - Ending with Detailed Design
- Observations
 - Systems Engineering Fundamentals
 - Centralization
 - External Tool Linkages

Not subject to U.S. Export Administration Regulations (EAR), (15 C.F.R. Parts 730-774) or U.S. International Traffic in Arms Regulations (ITAR), (22 C.F.R. Parts 120-130).

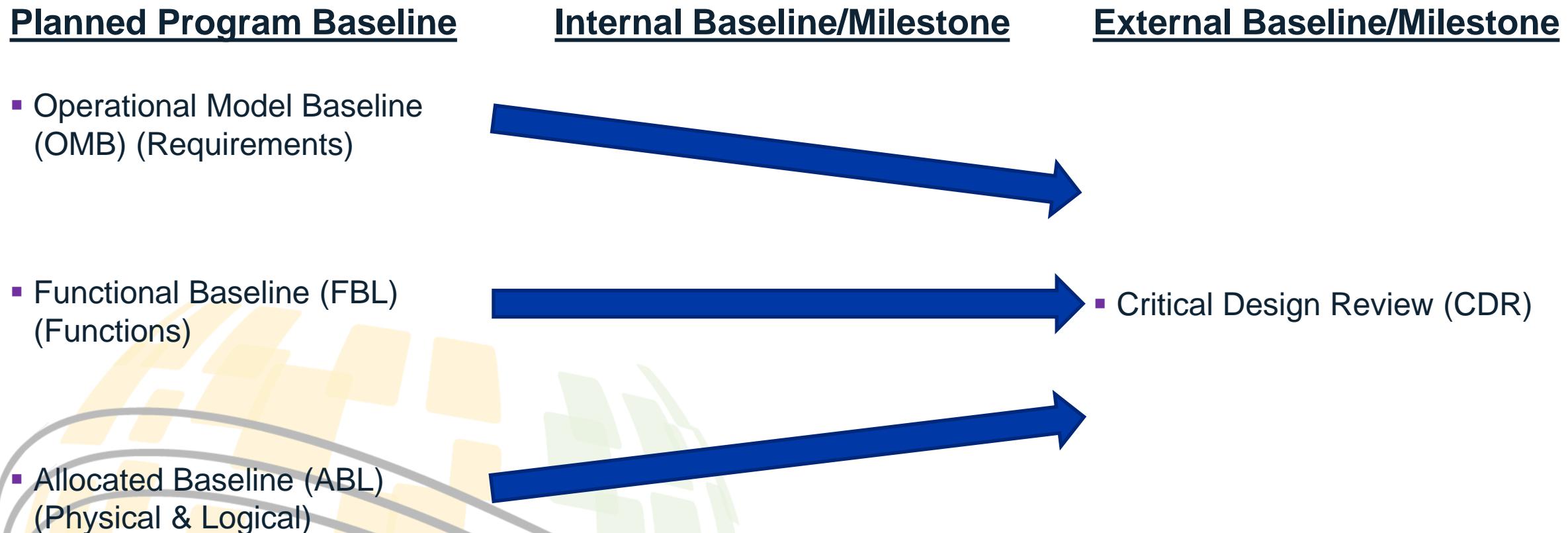
Copyright © 2024 Boeing. All rights reserved.


Systems Engineering Fundamentals

Observations

Not subject to U.S. Export Administration Regulations (EAR), (15 C.F.R. Parts 730-774) or U.S. International Traffic in Arms Regulations (ITAR), (22 C.F.R. Parts 120-130).
Copyright © 2024 Boeing. All rights reserved.

SE Fundamentals


- SE fundamentals are still vital for MBSE
- MBSE tools do not absolve a program from the responsibility of executing solid SE fundamentals
- CRP is presented as an example

Not subject to U.S. Export Administration Regulations (EAR), (15 C.F.R. Parts 730-774) or U.S. International Traffic in Arms Regulations (ITAR), (22 C.F.R. Parts 120-130).

Copyright © 2024 Boeing. All rights reserved.

CRP Initial Plan

Not subject to U.S. Export Administration Regulations (EAR), (15 C.F.R. Parts 730-774) or U.S. International Traffic in Arms Regulations (ITAR), (22 C.F.R. Parts 120-130).

Copyright © 2024 Boeing. All rights reserved.

CRP Early Challenges

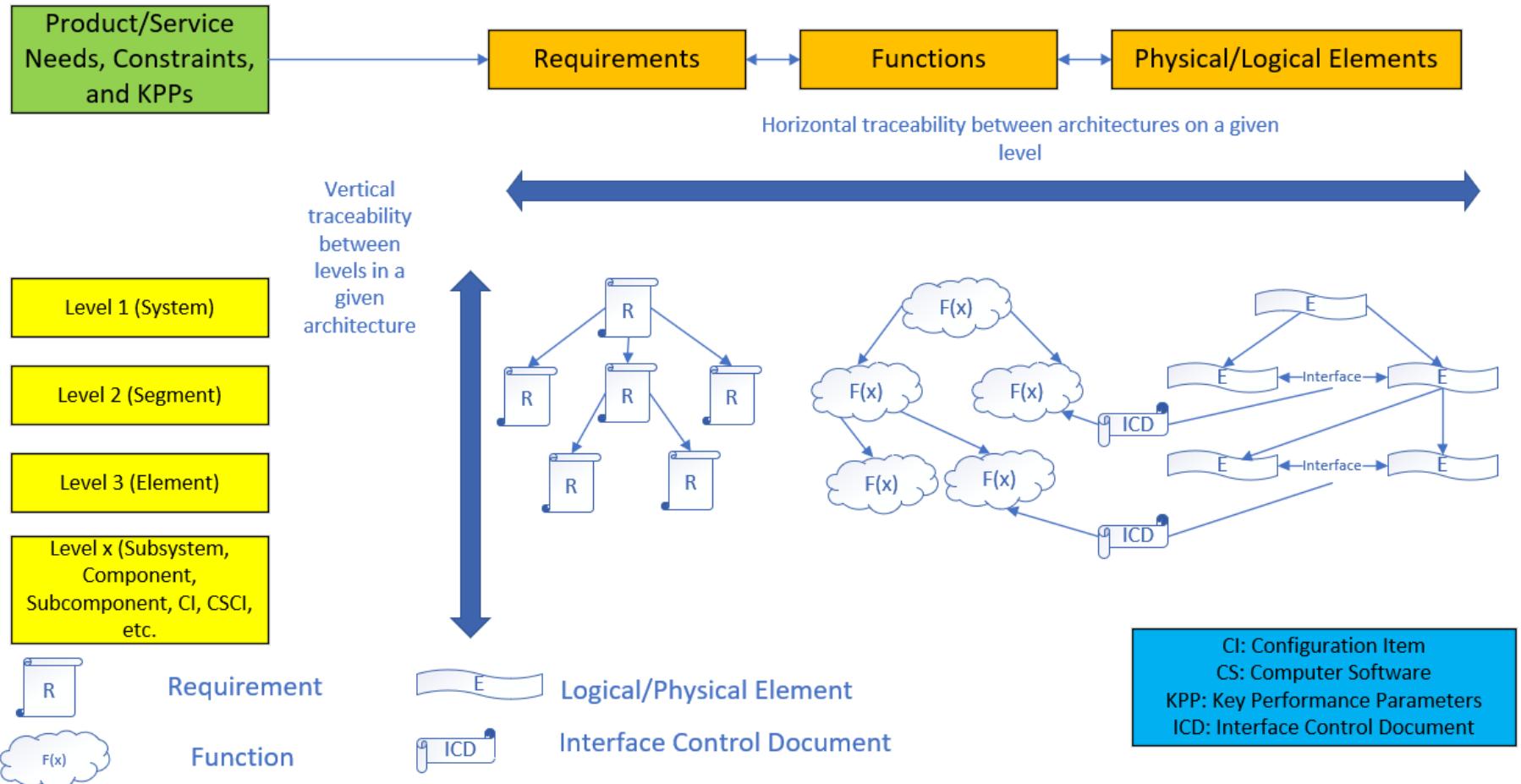
- New, large, and complex system
- Program was in jeopardy due to SE fundamentals
 - Minimal planned baselines/milestones
 - No tree/tier structure
 - Limited synchronization between
 - Requirements
 - Functions
 - Elements (Physical and Logical)

Not subject to U.S. Export Administration Regulations (EAR), (15 C.F.R. Parts 730-774) or U.S. International Traffic in Arms Regulations (ITAR), (22 C.F.R. Parts 120-130).

Copyright © 2024 Boeing. All rights reserved.

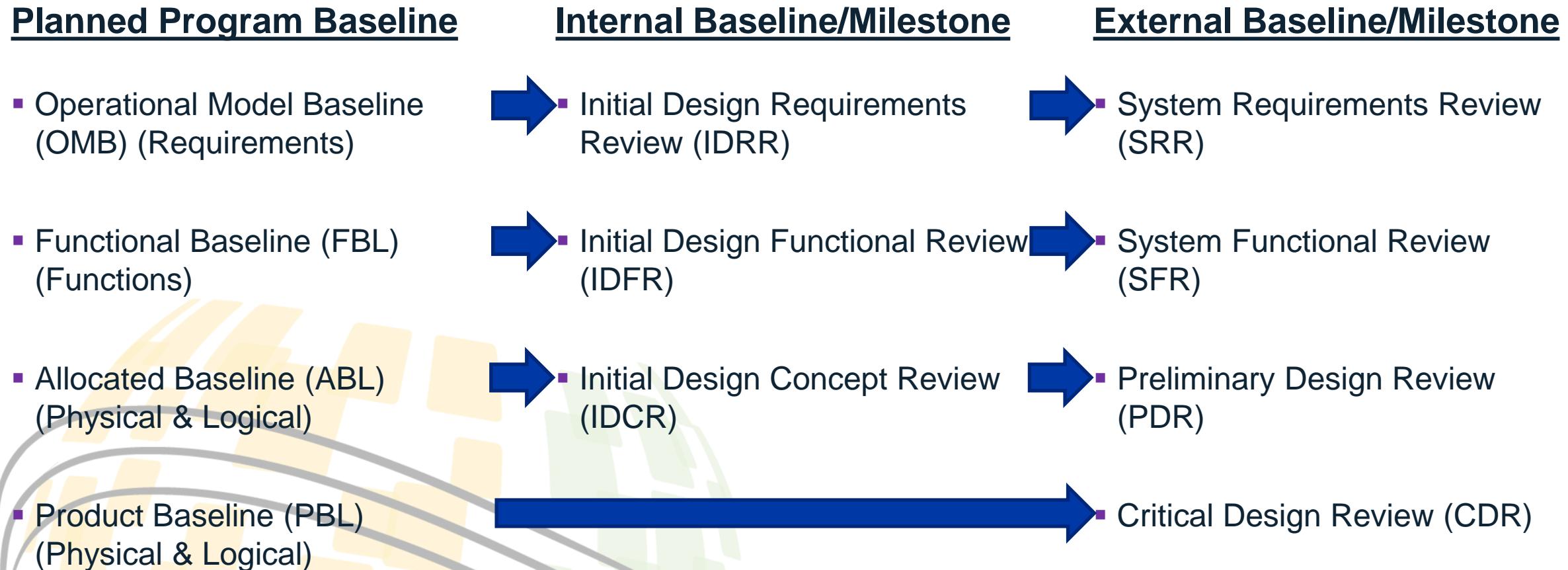
CRP Early Challenges (cont.)

- Requirements
 - Converting excerpts from standards directly into requirements
 - Single tier
- Functions
 - Mixing functions and subfunctions
 - Mixing hardware, software, and hybrid functions
- Physical/Logical Elements
 - Attempted to define architectures without predecessors
 - Attempting make/buy decisions


Not subject to U.S. Export Administration Regulations (EAR), (15 C.F.R. Parts 730-774) or U.S. International Traffic in Arms Regulations (ITAR), (22 C.F.R. Parts 120-130).

Copyright © 2024 Boeing. All rights reserved.

SE Trees & Traceability


Linkages

- Vertical
- Horizontal
- Requirements & Architecture
- Functional, Logical, & Physical Architecture
- Hardware & Software
- Customers, Integrators & Suppliers

Not subject to U.S. Export Administration Regulations (EAR), (15 C.F.R. Parts 730-774) or U.S. International Traffic in Arms Regulations (ITAR), (22 C.F.R. Parts 120-130).
Copyright © 2024 Boeing. All rights reserved.

Program Overview & Baselines

Not subject to U.S. Export Administration Regulations (EAR), (15 C.F.R. Parts 730-774) or U.S. International Traffic in Arms Regulations (ITAR), (22 C.F.R. Parts 120-130).

Copyright © 2024 Boeing. All rights reserved.

CRP Success

- Program restructured and slowed down
- Program is now proceeding on the right path
 - Baselines and milestones added
 - Tiered trees implemented and synchronized between:
 - Requirements
 - Functions
 - Physical Elements
 - Logical Elements

Not subject to U.S. Export Administration Regulations (EAR), (15 C.F.R. Parts 730-774) or U.S. International Traffic in Arms Regulations (ITAR), (22 C.F.R. Parts 120-130).

Copyright © 2024 Boeing. All rights reserved.

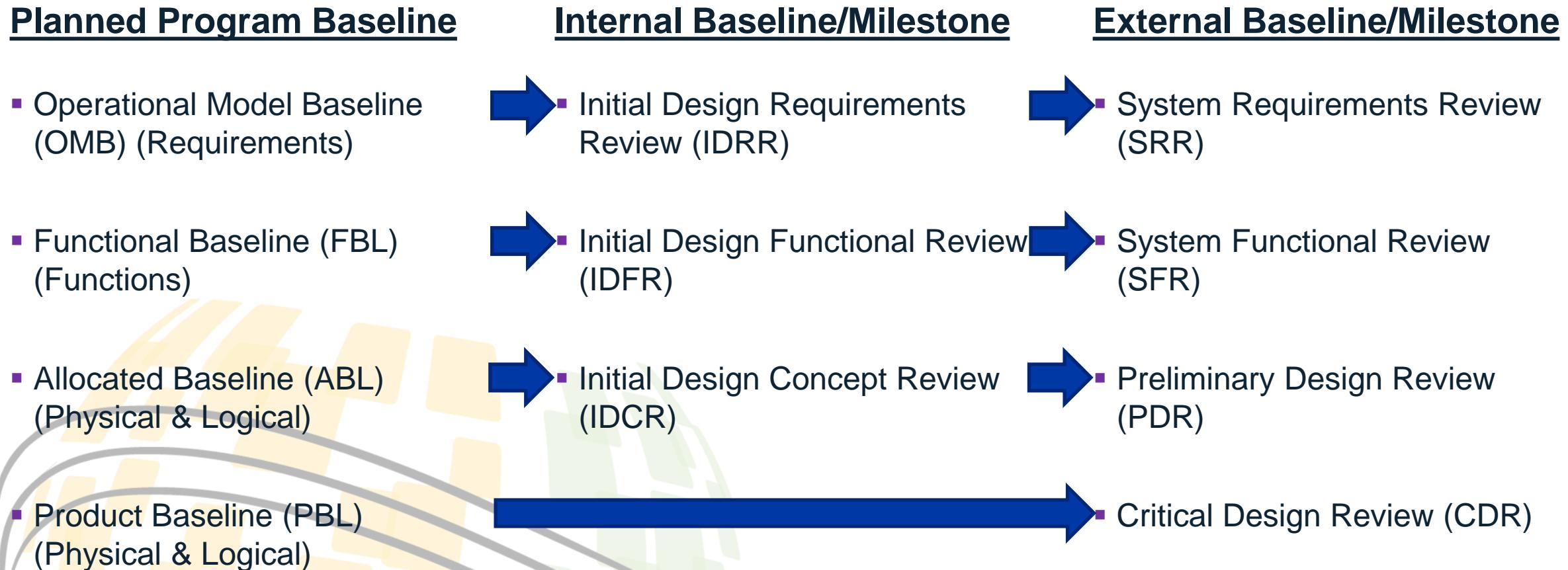
Centralization

Observations

Not subject to U.S. Export Administration Regulations (EAR), (15 C.F.R. Parts 730-774) or U.S. International Traffic in Arms Regulations (ITAR), (22 C.F.R. Parts 120-130).
Copyright © 2024 Boeing. All rights reserved.

Centralization

- MBSE tools enable extremely powerful linkages to be established in a single central repository
- SS on MRP is presented as an example


Processes, Standards, & Tools

- Applicable Standards
 - Common: SAE ARP 4754A & 4761, S1000D Standard Numbering System (SNS)
 - MRP only: MIL-STD-882E, NAS 411 & 411-1 (Hazardous Materials)
 - CRP only: FAA and EASA
- Tools
 - DESE-CAMEO (MBSE)
 - DOORS (Requirements)
 - 3DX or Teamcenter (Design Engineering/Integration)
 - ADO or JIRA (Systems and Software Engineering Management)
 - Fault Tree Analysis
 - Windchill Risk & Reliability (WRR)
 - Reliability Workbench (RWB)
 - CAFTA

Not subject to U.S. Export Administration Regulations (EAR), (15 C.F.R. Parts 730-774) or U.S. International Traffic in Arms Regulations (ITAR), (22 C.F.R. Parts 120-130).

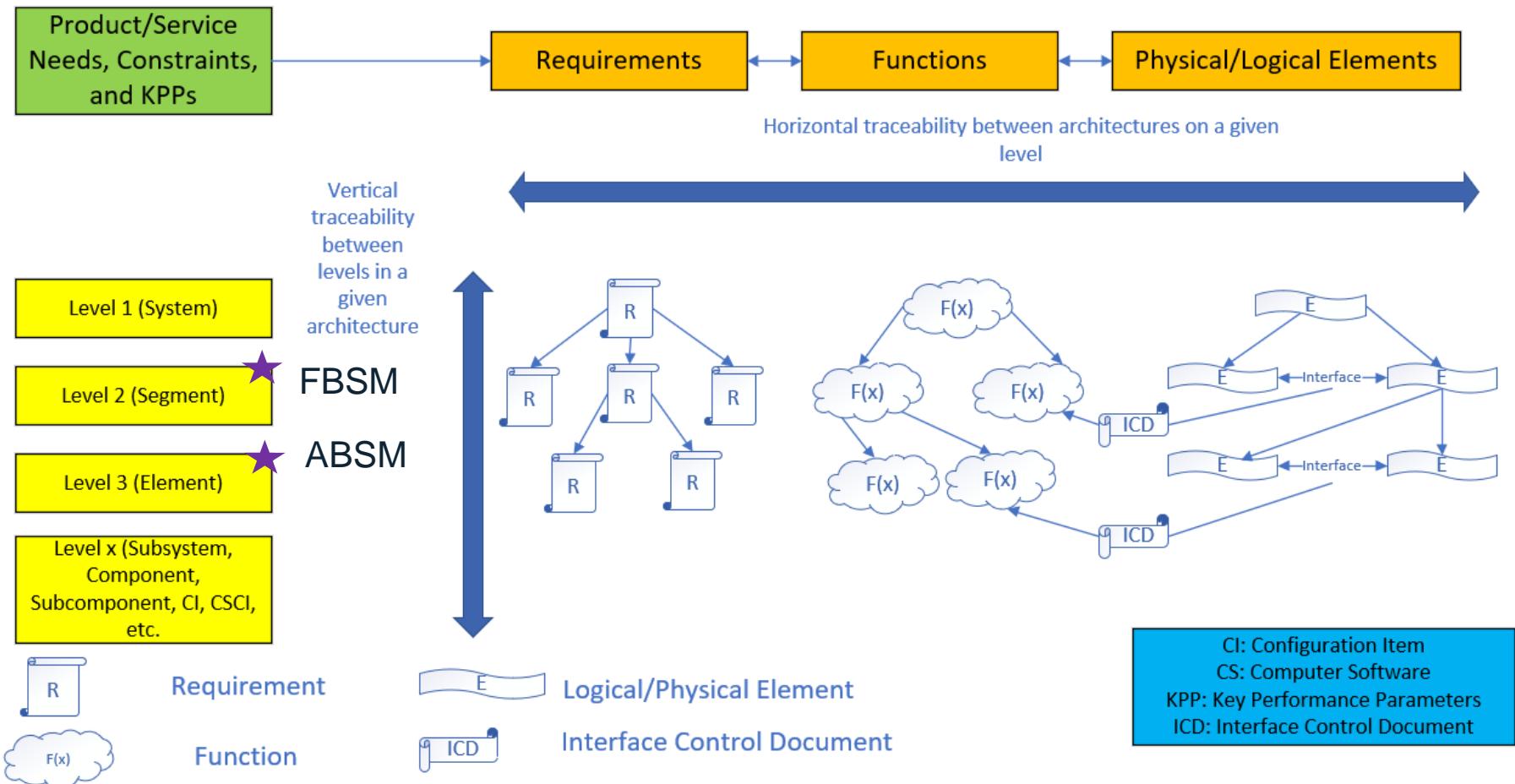
Copyright © 2024 Boeing. All rights reserved.

MRP Overview & Baselines

Not subject to U.S. Export Administration Regulations (EAR), (15 C.F.R. Parts 730-774) or U.S. International Traffic in Arms Regulations (ITAR), (22 C.F.R. Parts 120-130).
Copyright © 2024 Boeing. All rights reserved.

Safety Artifacts

- Functional Baseline System Model (FBSM) in CAMEO for FBL/IDFR/SFR
 - Aircraft Functional Hazard Assessment (AFHA)
 - System-Theoretic Process Analysis (STPA)
 - System Requirements Hazard Analysis (SRHA)
- Allocated Baseline System Model (ABSM) in CAMEO for ABL/IDCR/PDR
 - System Functional Hazard Assessment (SFHA)
 - Preliminary System Safety Assessment (PSSA)
 - System/Subsystem Hazard Analysis (SHA/SSHA)
 - Preliminary Software Safety Critical Functional Analysis (PSSCFA)
- Reports
 - System Safety Program Plan (SSPP)
 - Hazardous Material Management Program Plan/Report (HMMP/HMMPR)
 - Critical Safety Item (CSI) Plan & Preliminary Candidate List
 - Operating & Support Hazard Analysis (O&SHA)
 - Aircraft & System Fault Tree Analysis (AFTA/SFTA)


Not subject to U.S. Export Administration Regulations (EAR), (15 C.F.R. Parts 730-774) or U.S. International Traffic in Arms Regulations (ITAR), (22 C.F.R. Parts 120-130).

Copyright © 2024 Boeing. All rights reserved.

SE Trees & Traceability

Linkages

- Vertical
- Horizontal
- Requirements & Architecture
- Functional, Logical, & Physical Architecture
- Hardware & Software
- Customers, Integrators & Suppliers

Not subject to U.S. Export Administration Regulations (EAR), (15 C.F.R. Parts 730-774) or U.S. International Traffic in Arms Regulations (ITAR), (22 C.F.R. Parts 120-130).
Copyright © 2024 Boeing. All rights reserved.

MBSE/SS Linkages (Hazards)

- Requirements, functions, architectures, & hazards are all in CAMEO
- AFHAs & SFHAs in CAMEO allow direct linkages to requirements, functions, & other safety artifacts
 - Requirements
 - Hazard linkage to requirements goes beyond safety-tagging
 - Provides context about why a specific requirement is safety-tagged & what hazard(s) it is tagged to
 - Shows all of the requirements tagged to a specific hazard
 - Functions
 - Hazard linkage to functions facilitates assignment of initial Functional Development Assurance Levels (FDALs)
 - FDALs captured in PSSCFA based on severities of hazards linked to functions
 - FHAs linked directly to SHAs/SSHAs for assignment of Risk Assessment Codes (RACs) to each individual hazard
- **Powerful linkages in CAMEO make it vital to establish requirements specification trees & a master function library as quickly as possible to feed into FHAs, establish initial FDALs in the PSSCFA, determine preliminary RACs in the SHAs/SSHAs, & minimize rework**

MBSE/SS Linkages (STPA)

- STPA pathfinder was completed
 - Identified in the customer's statement of work
 - Performed in CAMEO with support from Design, Enterprise Safety, Cybersecurity, & select suppliers
 - Delivered in the FBSM
- Findings
 - 44 tier 3 requirements
 - 153 lower-level candidate requirements identified
 - Effort undertaken while the program in general was focusing on tier 1 & tier 2 requirements
 - Requirements could be linked to STPA's Undesirable Control Actions (UCAs) similar to hazards from FHAs
- **STPA effectively supplemented traditional safety approaches by facilitating discovery of lower-level safety requirements earlier than they otherwise may have been identified**

Not subject to U.S. Export Administration Regulations (EAR), (15 C.F.R. Parts 730-774) or U.S. International Traffic in Arms Regulations (ITAR), (22 C.F.R. Parts 120-130).

Copyright © 2024 Boeing. All rights reserved.

External Tool Linkages

Observations

Not subject to U.S. Export Administration Regulations (EAR), (15 C.F.R. Parts 730-774) or U.S. International Traffic in Arms Regulations (ITAR), (22 C.F.R. Parts 120-130).
Copyright © 2024 Boeing. All rights reserved.

External Tool Linkages

- Not everything can be easily captured, analyzed, and delivered via a MBSE model at this time
- Other tools are needed once SS looks beyond itself to additional disciplines
- **SS on MRP is presented as an example**

Not subject to U.S. Export Administration Regulations (EAR), (15 C.F.R. Parts 730-774) or U.S. International Traffic in Arms Regulations (ITAR), (22 C.F.R. Parts 120-130).

Copyright © 2024 Boeing. All rights reserved.

Fault Trees (System Safety)

- Aircraft & system-level fault trees were done in Windchill Risk & Reliability (WRR)
 - AFTAs for aircraft-level functions/hazards (examples: Aviate, Navigate)
 - SFTAs for system-level functions/hazards (example: to provide engine motive force)
 - FTAs for lower-level functions/hazards were not developed unless needed to inform design trade studies
- WRR enabled robust fault tree integration by collecting FTAs into a single model
 - Consolidation into a single model vs a single file for each individual FTA
 - Vertical integration (SFTAs feeding into AFTAs, like loss of single engine feeding into loss of lift)
 - Horizontal integration (SFTAs feeding into each other, like hydraulics feeding into dependent mechanical systems)
 - Updates could propagate through all fault trees simultaneously
 - Proof-of-concept for importing supplier FTAs from other tools into WRR was successfully demonstrated, but not expanded upon (example: engine FTAs from supplier)
- **WRR successfully collected & linked FTAs within a single model to enable vertical & horizontal integration, along with faster update propagation**

Fault Trees (MBSE)

- WRR also enabled robust integration between System Safety, Reliability, & Product Support
 - System Safety, Reliability, & Product Support harmonized artifacts early via common numbering (S1000D SNS)
 - SFTAs functions/hazards were managed with S1000D, linking physical & functional architectures
 - Reliability also planned to use WRR to house & update their Failure Modes Effects & Criticality Analyses (FMECAs)
 - FMECAs failure modes could eventually have been used directly in FTAs (typically SFTAs, but possibly AFTAs)
 - FMECAs feed into Maintainability, Testability, & Publications artifacts, all of which were managed via S1000D
 - FMECAs also feed into Critical Safety Item (CSI) Candidate List
- WRR limited in its abilities to directly integrate with CAMEO
 - Automated feed from WRR into CAMEO was not feasible; FTA results had to be manually entered into SHA/SSHA
 - Proof-of-concept for importing FTAs directly into CAMEO was successfully demonstrated, but was not pursued
- **WRR & S1000D successfully laid the foundation for robust integration between System Safety, Reliability, & Product Support, but WRR was limited in its abilities to integrate with CAMEO**

Fault Trees (Civil-Military Integration)

Non-Military Unique

- Catastrophic:
 - $<1E-09$ per FH (extremely improbable)
 - No single-point failures
- Hazardous: $<1E-07$ per FH (extremely remote)
- Major: $<1E-05$ per FH (remote)
- Minor: no requirement
- Consistent with civil standards & ARP 4761

Risk Matrix

Severity	Catastrophic 1	Critical 2	Marginal 3	Negligible 4
Probability Per FH				
Frequent $>1E-03$ A				
Probable $>1E-04$ but $<1E-03$ B				
Occasional $>1E-05$ but $<1E-04$ C				
Remote $>1E-06$ but $<1E-05$ D				
Improbable $>1E-07$ but $<1E-06$ E				
Very Improbable $<=1E-07$ but $>\text{Baseline}$ F				

Risk Level Key

HIGH RISK SERIOUS RISK MEDIUM RISK LOW RISK

Military Unique

- Catastrophic:
 - $<1E-07$ per FH (very improbable)
 - No single-point failures
- Critical: $<1E-06$ per FH (improbable)
- Marginal: $<1E-05$ per FH (remote)
- Negligible: no requirement
- Consistent with military standards derived from MIL-STD-882E's risk matrix, risk levels, severity criteria, & qualitative probability criteria

Not subject to U.S. Export Administration Regulations (EAR), (15 C.F.R. Parts 730-774) or U.S. International Traffic in Arms Regulations (ITAR), (22 C.F.R. Parts 120-130).

Copyright © 2024 Boeing. All rights reserved.

Future Considerations

Not subject to U.S. Export Administration Regulations (EAR), (15 C.F.R. Parts 730-774) or U.S. International Traffic in Arms Regulations (ITAR), (22 C.F.R. Parts 120-130).
Copyright © 2024 Boeing. All rights reserved.

Future Considerations

- CAMEO experienced major performance issues using the 2019 version due to the volume of data; upgrade to the 2021 version resolved them sufficiently to complete Preliminary Design phase
- Integration of System Safety content into MBE
 - O&SHA hazards into CAMEO (similar to FHA hazards), with linkages to Design & Publications ecosystems, requirements, & artifacts
 - HMMPR content into 3DX and/or Publications ecosystem, requirements, & artifacts
 - CSIs into CAMEO, DOORS, 3DX, and/or Publications ecosystems, requirements, & artifacts
 - Potential viability for CAMEO as part of a hazard tracking database system, safety escalation processes, and/or Safety Management System (SMS), possibly in conjunction with other tools

Future Considerations (cont.)

- Fault trees
 - Windchill Risk & Reliability also experienced major performance issues due to volume of data; Preliminary Design phase was still completed, but tool improvements were insufficient to overcome these issues & issues likely would have worsened as volume of data grew
 - Integration of FMECA failure modes into SFTAs was not feasible during Preliminary Design, but may be feasible during Detailed Design or later
 - If failure modes & hazards can be linked to in-service data once a platform is fielded, then it may be possible to create a loss model with quantified safety metrics that could be monitored as key safety performance indicators
- STPA potential future applications
 - Engine Controls
 - Modular Open Systems Approach (MOSA) or similar concept
 - Embedded Training
 - Manned-Unmanned Teaming
 - Cybersecurity

Future Considerations (cont.)

- Modularity & customization in MBSE capability suites is essential
 - Selecting applicable MIL-STD-882 tasks for military programs
 - Selecting applicable enterprise, civilian, & military frameworks for MBSE, safety, & certification
 - Hybrid software safety processes (example: MIL-STD-882 & SAE ARP 4754/4761)
 - Hybrid/multiple risk matrices
 - Military platform aspiring to civil thresholds for its non-military unique hardware
 - Platform with individual matrices for individual customers
 - Differences between enterprise safety escalation & platform matrices
 - Derivative Aircraft
 - » Base aircraft certified by FAA
 - » Modifications certified by FAA and/or military (depending on program)
 - Multiple simultaneous civil frameworks (i.e. pursuit of parallel FAA & EASA certification)
- Consider possibilities for integration with proprietary tools

Not subject to U.S. Export Administration Regulations (EAR), (15 C.F.R. Parts 730-774) or U.S. International Traffic in Arms Regulations (ITAR), (22 C.F.R. Parts 120-130).

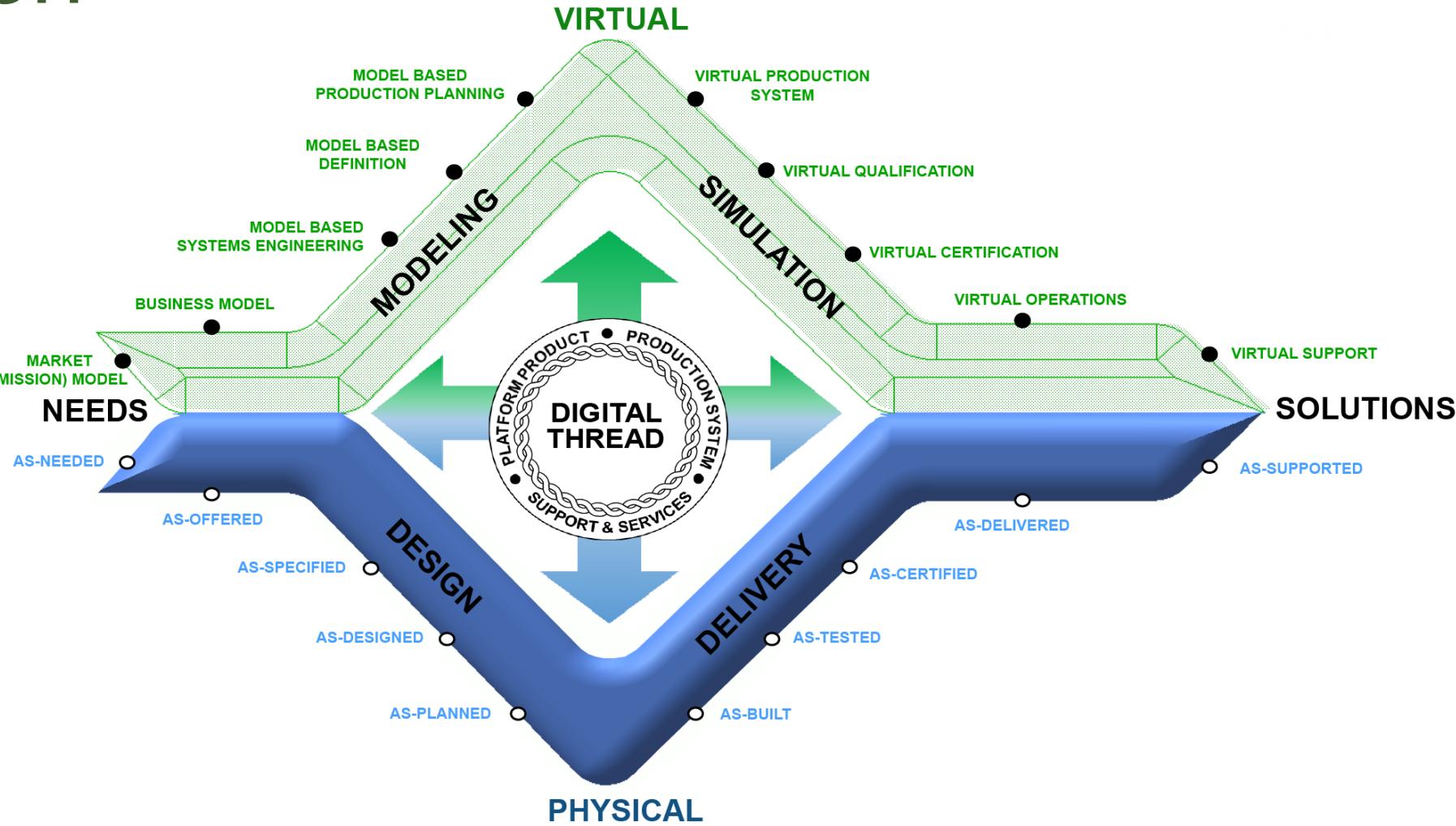
Copyright © 2024 Boeing. All rights reserved.

Future Considerations (cont.)

- Embedding system engineers within the Integrated Product Teams (IPTs) (including System Safety) was a very valuable practice & proved to be a highly effective structure
 - Made tools/processes easier for IPTs
 - Ensured MBSE structure, standardization, & discipline throughout the program
 - Gave IPTs a voice in System Engineering forums
- System Safety teambuilding
 - All experience levels needed & welcomed
 - All traditional system safety skillsets are still needed
 - MBSE skillset is also necessary for the team to succeed
 - Multiple system safety engineers also had MBSE expertise in addition to our embedded system engineer
 - Had organic expertise been absent, there may have been need for multiple embedded system engineers
 - Hybrid skillsets were very helpful (system safety practitioners with prior experience in piloting, handling qualities, design, reliability/availability/maintainability, project management, system engineering, product support, etc.)

Future Considerations (cont.)

- At Boeing, we are iteratively crystallizing our MBSE/PA experiences for inclusion into our digital ecosystem via Solution Kits
- Solution Kits:
 - Updating and linking existing knowledge
 - Processes (what to do)
 - Training (how to do it)
 - Design Practices (reasons why, experience, ‘tribal knowledge’)
 - Creating adaptive MBSE starter kits to use
 - General enough to be applicable to many situations
 - Specific enough to be actionable and ensure enterprise-wide standardization or commonality to the extent practicable
 - Constantly iterating based on feedback



Not subject to U.S. Export Administration Regulations (EAR), (15 C.F.R. Parts 730-774) or U.S. International Traffic in Arms Regulations (ITAR), (22 C.F.R. Parts 120-130).

Copyright © 2024 Boeing. All rights reserved.

Vision

Evolution of System Engineering (SE) to Model Based Engineering (MBE)

Source: <https://www.boeingsuppliers.com/modelbasedengineering.html>

Not subject to U.S. Export Administration Regulations (EAR), (15 C.F.R. Parts 730-774) or U.S. International Traffic in Arms Regulations (ITAR), (22 C.F.R. Parts 120-130).

Copyright © 2024 Boeing. All rights reserved.

Conclusion

Not subject to U.S. Export Administration Regulations (EAR), (15 C.F.R. Parts 730-774) or U.S. International Traffic in Arms Regulations (ITAR), (22 C.F.R. Parts 120-130).
Copyright © 2024 Boeing. All rights reserved.

Presentation Summary

- Kicked off the MBSE for PA Series with a presentation focused on
 - System Safety on CRP and MRP
 - Early Lifecycle (Starting with Conceptual Development and ending with Detailed Design)
- Demonstrated how MBSE & related tools enabled powerful linkages between requirements, functions, architecture, hazards, artifacts, & teams
- Showed MBSE was used for System Safety analyses to great effect, increasing efficiency, fidelity, & interconnectivity (within & between artifacts)
- Discussed what worked well & what lessons were learned while executing programs
- Highlighted future considerations for analytical integration & expansion
- Emphasized key lessons:
 - SE fundamentals are vital for MBSE; MBSE tools do not absolve a program from needing solid SE fundamentals
 - MBSE tools enable extremely powerful linkages to be established in a single central repository
 - Not everything can be easily captured, analyzed, and delivered via a MBSE model at this time
- Connected MBSE and PA to Boeing's ongoing digital transformation via MBSE/PA solution kits

Not subject to U.S. Export Administration Regulations (EAR), (15 C.F.R. Parts 730-774) or U.S. International Traffic in Arms Regulations (ITAR), (22 C.F.R. Parts 120-130).

Copyright © 2024 Boeing. All rights reserved.

Acronyms

- ABL: Allocated Baseline
- ABSM: Allocated Baseline System Model
- AFHA: Aircraft Functional Hazard Assessment
- AFTA/SFTA: Aircraft & System Fault Tree Analysis
- CDR: Critical Design Review
- CRP: Civilian Rotorcraft Platform
- CSI: Critical Safety Item
- DAL: Development Assurance Level
- DD: Detailed Design
- EASA:
- FAA:
- FBL: Functional Baseline
- FBSM: Functional Baseline System Model
- FDAL: Function Development Assurance Level
- FH: Flight Hour
- FMECA: Failure Modes Effects & Criticality Analysis
- FTA: Fault Tree Analysis
- HMMP/R: Hazardous Material Management Program Plan/Report
- IDCR: Initial Design Concept Review
- IDFR: Initial Design Functional Review
- IDRR: Initial Design Requirements Review
- IPT: Integrated Product Team
- MBE: Model-Based Engineering
- MBSE: Model-Based Systems Engineering
- MOSA: Modular Open Systems Approach
- MRP: Military Rotorcraft Platform
- O&SHA: Operating & Support Hazard Analysis
- OMB: Operational Model Baseline
- PA: Product Assurance
- PBL: Product Baseline
- PD: Preliminary Design
- PDR: Preliminary Design Review
- PS: Product Support
- PSSA: Preliminary System Safety Assessment
- PSSCFA: Preliminary Software Safety Critical Functional Analysis
- RAC: Risk Assessment Code
- RAM: Reliability/Availability/Maintainability
- RWB: Reliability Workbench
- SE: Systems Engineering
- SFHA: System Functional Hazard Assessment
- SFR: System Functional Review
- SHA/SSHA: System/Subsystem Hazard Analysis
- SMS: Safety Management System
- SRHA: System Requirements Hazard Analysis
- SRR: System Requirements Review
- SS: System Safety
- SSPP: System Safety Program Plan
- STPA: System-Theoretic Process Analysis
- UCA: Undesirable Control Action
- WRR: Windchill Risk & Reliability

Not subject to U.S. Export Administration Regulations (EAR), (15 C.F.R. Parts 730-774) or U.S. International Traffic in Arms Regulations (ITAR), (22 C.F.R. Parts 120-130).

Copyright © 2024 Boeing. All rights reserved.

34th Annual **INCOSE**
international symposium

hybrid event

Dublin, Ireland
July 2 - 6, 2024

www.incos.org/symp2024
#INCOSEIS