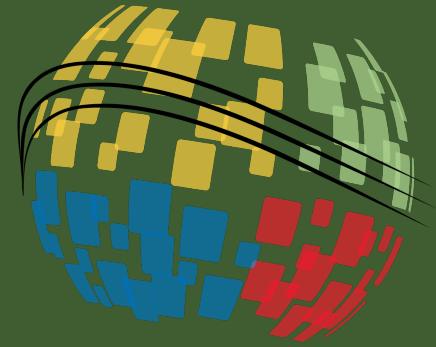




34<sup>th</sup> Annual **INCOSE**  
international symposium  
hybrid event  
Dublin, Ireland  
July 2 - 6, 2024

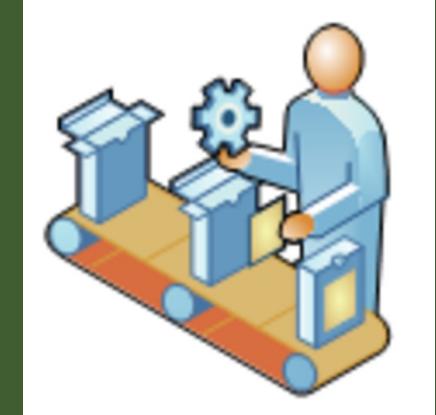



Quantifying Hardware Needs Prior to Production

# Spares Strategy for Programs in Development Phases

Copyright © 2024 by Davinia Rizzo, Aerospace Corporation. Permission granted to INCOSE to publish and use.

# Outline


- Problem Context
- Spares Strategies
- Proposed Approach
- Case Study
- Observations
- Future Work



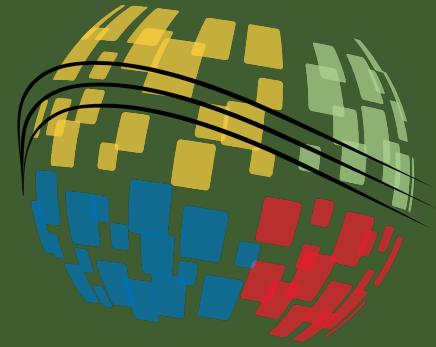
# Problem Context

# Identification of Spares

- Sparing strategies
  - Ensure spare parts are available for unplanned failures
  - But no surplus of unneeded parts
- Systems in **production or operation**
- Procured in advance
  - Available for use in the event of a failure
- Overhead of procurement and storage offsets the risk of down time if no spare is available



# How are Development Programs Different?


- Design in progress
  - Failures
  - Changes in design of parts
- Program delays due to lack of parts can be significant
  - Too few or wrong parts can delay activities crucial to finalizing design
  - However
    - Difficult to know which parts will be needed
    - Spares may become outdated or never be used
    - Use of parts that are of incorrect pedigree (design version) can compromise results





# Challenges in Defining Spares for Development Programs

- What parts are needed?
  - How to determine how many parts of each version of the design and when?
  - Ensure ability to continue activities when expected failures occur
  - Reduce waste and inventory management cost
- Limited data to make decisions
  - Lack of guidance to make informed assumptions and decisions
  - Many programs choose spares based on experience of individuals working program
    - Varying degrees of success
  - Difficult to justify budget and/or schedule requests



Current Approaches

# Spares Strategies

# Production Sparing Strategy

## Well Defined

- Tied to reliability analyses
- Considers:
  - Delivery time
  - Cost
  - Downtime
  - Lost production costs
  - Failure and repair data
- Calculates the quantity of spare parts needed at any specific time

## Calculated as Cost VS Risk

The goal: reduce risk to an acceptable level with an acceptable cost.

$$\text{Cost} = \sum_{i=1} S_i + O_{Si} \quad (1)$$

$$\text{Risk} = \sum_{i=1} P_{fi} * C_{fi} \quad (2)$$

- $S$ , Cost of the spare(s)
- $O_S$ , Associated overhead for the spares (inventory, maintenance and personnel costs), for each spare (i).
- $P_f$  is the probability of failure
- $C_f$  the consequences of the unwanted event



# Proposed Approach

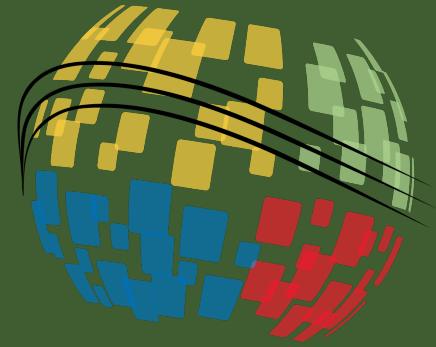
# Development Sparing Strategy

## Proposed Definition

- Calculation of cost and risk is more difficult
- Cost
  - Cost of part – may include Non- recurring engineering
  - No long-term inventory or overhead
  - Potential cost to modify spare
  - Spares may not be used
- Risk
  - Probability of failure is based on design maturity
  - Consequence of a failure is related to impact on design progress if a spare is not available

## Calculated as Cost VS Risk

$$\text{Cost} = \sum_{i=1} = S_i + M_{fi} \quad (3)$$


$$\text{Risk} = \sum_{i=1} P_{fc i} * C_{fd i} \quad (4)$$

- $S$ , Cost of the procurement of the spare
- $M_f$ , Potential cost to modify the spare,
- $P_{fd}$ , is the probability of failure in development system
- $C_{fd}$ , Consequence of failure in development system

# Calculation of the Cost of Consequence

$$C_{fd} = (D+D_p)*E*R*N*/I$$

- $D$  - duration of the delay (to replace the part if no spare), Program daily execution cost \* number of days delay + any retest costs (facilities, etc)
- $D_p$  - the potential damage to system (dollars for repair/rework – estimate)
- $E$  - a factor representing the criticality or essential nature of the part (can tests continue without the part?). 0 for a part that is rarely used. 1 for all other modules/cables except for security essential and 2 for security essential modules/cables.
- $R$  - factor representing the redundancy in the system (are there other parts that can be used while a replacement is found?). 0 for more than 3 modules/cables redundancy, 1 for 2 modules/cables redundancy, 2 for 1 or less modules/cables redundancy.
- $N$  - the state of the design of the part reflecting the necessity (are there factors indicating the part cannot or will not change and a representative can replace the part such as a load or an emulator?). 0 for not necessary or a replacement emulator or load is sufficient and 1 for necessary.
- $I$  - factor representing the resulting impact on major program milestones as the result of a failure (specifically the First Production Unit (FPU) or the Initial Operating Capability (IOC)). 1 for no push of FPU or IOC, 2 for push of FPU or IOC.



# Case Study

---

# Case Study

- Well Defined Program Plan/Schedule
  - Two prototype builds before final design for production
  - Environmental test can be at system or subsystem level
  - System and subsystem functional test beds
  - Testers available for subsystem and system test
  - Full system level test with each prototype build
  - Normal environments and destructive abnormal environments
  - Schedule defined - No spares allocated

# Case Study

- Well Defined Program Plan/Schedule

- Two
  - Env
  - Sys
  - Tes

**Defined budget**

**Defined schedule**

**Defined # of parts**

- Full system level test with each prototype build
  - Normal environments and destructive abnormal environments
  - Schedule defined - No spares allocated

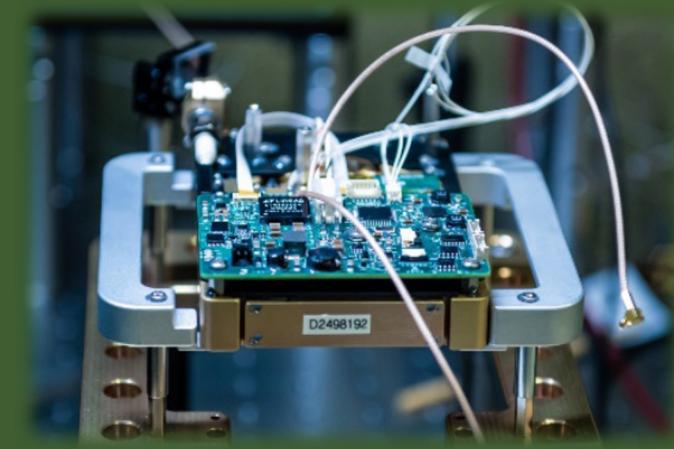
# Case Study

- Well Defined Program Plan/Schedule
  - Two week lead time
  - Environmental testing
  - System level testing
  - Test plan
  - Full system
  - No environmental
  - Schedule defined - No spares allocated

**Defined budget**

**Defined schedule**

**Defined # of parts**


**?? Spares ??**

# Case Study

- Calculation of Cost VS Risk needed to be narrowed down
- Program had defined risks and risk contingency funds
  - Some risks related to failures in development schedule
  - Delayed or repeated tests
  - Re-spin on designs
  - Alternate designs
  - Focus on electronic design and cables; mechanical structure design mature

# Case Study

- General Rules to narrow problem space
  - Readily available COTs = no spares
  - Mass mocks for subsystems available
  - Quantities for environmental qualification = 3
  - Cables – connectors/wires can be spares but don't build cables
  - PWBs – parts versus populated boards
  - One of a kind items priority for spares
  - Critical parts priority for spares
  - Assume 20% failure rate\*\*
  - Consequence can affect schedule, damage to system if part fails, cost, technical integrity of data, etc. – converted to dollars



# Case Study

- **Development activities:**
  - Subsystem functional tests, Prototype 1 and Prototype 2
  - Subsystem environmental tests, Prototype 1 and Prototype 2
  - System functional tests, Prototype 1 and Prototype 2
  - System destructive environmental tests, Prototype 1 and Prototype 2



# Case Study

## Example: System Level Destructive Test

- Cost: 40 subsystems at \$55k each + \$10k modification cost for each = \$2.6M
- Risk:
  - Parts may fail and need to be replaced – with no spares, there is a 6 month delay to procure, checkout and install spare. Test results required to move to next phase.
  - 20% probability of a single subsystem failing
  - 6 months (at \$50M yr burn rate = \$25M + cost of spare \$55k) = \$25.06M
  - Risk = \$5M

### Cost < Risk

- Residual opportunity – spares not used would be available for other activities



# Calculation of the Cost of Consequence

$$C_{fd} = (D+D_p)*E*R*N*I$$

- $D$  - duration of the delay. Program daily execution cost \* number of days delay + any retest costs (facilities, etc)
- $D_p$  - the potential damage to system (dollars for repair/rework – estimate)
- $E$  - a factor representing the criticality of the part (can tests continue without the part?). 0 for a part that is rarely used. 1 for all other parts except for critical and 2 for critical parts.
- $R$  – Redundancy factor (are there other parts that can be used while a replacement is found?). 0 for more than 3 part redundancy, 1 for 2 part redundancy, 2 for 1 or less part redundancy.
- $N$  - Necessity of part (a representative can replace the part such as a load or an emulator). 0 for not necessary or a replacement emulator or load is sufficient and 1 for necessary.
- $I$  – Impact factor - impact on major program milestones as the result of a failure (specifically the First Production Unit (FPU) or the Initial Operating Capability (IOC)). 1 for no push of FPU or IOC, 2 for push of FPU or IOC.

# Case Study


## Example: Subsystem Environmental Tests

- Cost: 1 subsystem at \$55k each + \$10k modification cost for each = \$65K
- Risk:
  - Parts may fail and need to be replaced – there are 3 units, one may be repurposed from a different environment while a spare is obtained (6 months or part is repaired/modified 1 month).
  - 20% probability of a single subsystem failing
  - Consequence is delay of information to next design spin – margin in schedule. No schedule impact, added expense of repair or spare (\$55k +10k mod) = \$65k
  - Risk = \$13K

### Risk < Cost

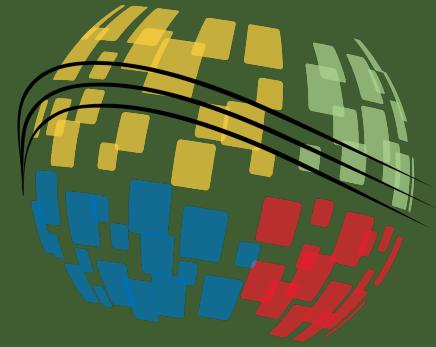
- Residual Risk – prototype unit may be exposed to more environmental testing than planned – consider impact to later testing





# Observations

---


# Process Flow

Development Program  
Sparing Strategy.



# Observations

- Effectiveness of Process
  - Must work within constraints of program (HW plans, schedule, design needs)
  - Program plan changes = spares strategy must be revisited
  - Most effective when assessing each planned activity separately, then revisit total number of spares for sharing opportunities
  - Provided basis for allocating risk funds or management reserve
  - Drove decisions on order of activities
  - Could not account for every possible failure
- Ease of Process
  - Required great familiarity with HW, Schedule, and design assessment activities
  - Required Program cost data or estimates
  - Required understanding of typical types of failures
  - Would require a chief engineer or lead Systems Engineer to execute



# Future Work

---

# Future Work

- Additional Areas of investigation
  - Capturing residual risk/opportunity
  - Predictive failure rates based on common technology
  - Criteria for ideal ratio of Risk to Cost
  - Leveraging technology readiness assessments (TRL/MRL) in calculations
  - Decision tree/process flow chart/automated application
- Industry case studies
  - Transportation
  - Aircraft
  - Industrial equipment
  - Medical
  - Satellites

# Questions?

Contact Info

Davinia Rizzo, Ph.D.

Aerospace Corporation

[davinia.rizzo@aero.org](mailto:davinia.rizzo@aero.org)





34<sup>th</sup> Annual **INCOSE**  
international symposium

hybrid event

Dublin, Ireland  
July 2 - 6, 2024

[www.incos.org/symp2024](http://www.incos.org/symp2024)  
#INCOSEIS