International Council on Systems Engineering
A better world through a systems approach

Creating Better System Models:
A Method for Using Compositional
Reasoning to Validate Architectures with
Assumption/Guarantee Contracts

MathWorks: Josh Kahn, Vidya Srinivasan
Collins Aerospace: Isaac Amundson,
Gopal Narayan Rai, Janet Liu

INCOSE International Symposium 2025 | Ottawa, Canada d.w

The Motivation

Formal methods have proved to be a
valuable tool for early identification of
defects in safety-critical systems so why
aren’t they being broadly used in the
systems engineering community?

* Lack of Commercial Tools

* Poor Integration with Existing MBSE
Tools

* Cryptic Results

incose.org | 2

@

incose.org | 3

“
s | f

.

I@E

Integration Issues Happen
All. The. Time.

Sometimes they are caught during integration testing, and sometimes...

* Patriot Defense System — Inaccurate Tracking System’

* Mars Climate Orbiter — Data Unit Mismatch?

* Three Mile Island — Indicator Lights Based on Command, Not Feedback?
* Boeing 737 Max — MCAS Reliance on a Single AOA Sensor*

PATRIOT MISSILE DEFENSE: Software Problem Led to System Failure at Dhahran, Saudi Arabia, https://apps.dtic.mil/sti/citations/ADA344865
Mars Program Independent Assessment Team Report, https://ntrs.nasa.gov/citations/20000032458

Three Mile Island Accident, https://world-nuclear.org/information-library/safety-and-security/safety-of-plants/three-mile-island-accident
Summary of the FAA’s Review of the Boeing 737 MAX, https://www.faa.gov/sites/faa.gov/files/2022-08/737_RTS_Summary.pdf

SIS

i

&

https://apps.dtic.mil/sti/citations/ADA344865
https://ntrs.nasa.gov/citations/20000032458
https://world-nuclear.org/information-library/safety-and-security/safety-of-plants/three-mile-island-accident
https://www.faa.gov/sites/faa.gov/files/2022-08/737_RTS_Summary.pdf

@

“It is often the case that many of the errors in
system development manifest themselves in
integration; each of the leaf-level components
meets its requirements, but these are not
sufficient to establish the satisfaction of the
system requirements.”

Whalen et al., 2013

1. Your “What” Is My “How”: Iteration and Hierarchy in System Designm, Whalen et al, https://doi.ora/10.1109/MS.2012.173

https://doi.org/10.1109/MS.2012.173

B.S Mechanical Project Manager,
Engineering Test Engineer

2011 2012
®

=

M.Eng Space Systems System Integration
Engineering Product Team Lead

Josh Kahn

Principal Systems Engineering Strategist

Nuework sad o
““h e oy

* Customer Problem Solving
* Industry Engagement and Feedback
» Strategic Direction Setting

* Internal Leadership and Guidance

DK joshkahn@mathworks.com

E’ linkedin.com/in/josh-kahn-mbse

Advanced Lead
System Engineer

2020]
° ° ® PR ma
2015 2022 s, (‘ &)
Best in Conference 'A)M.E
ZAIAA

incose.org | 6

INCOSE

Today’s
Agenda

* AADL and AGREE:
The Blueprint

* Enabling Broader Adoption

with Commercially-Available Tools

* Making Sense of the Data

Creating Actionable Results

* Where Do We Go from Here?
Key Takeaways & Next Steps

3

-

AADL and
AGREE

The Blueprint

incose.org | 8

AADL and AGREE / Enabling Broader Adoption / Making Sense of the Data / Where Do We Go from Here?

INCOSE

Architecture
Analysis and
Design

Engineering
wiﬂ;g AADL

Language
(AADL)

Textual and graphical language for modeling
embedded, real-time, distributed systems

SAE AS5506

Basic Building
Blocks of the
Language

Open Source Tooling Supported by
Carnegie Mellon Software
Engineering Institute (CMU SEI)

Open Source AADL Tool
Environment (OSATE)

Physical Hardware

° processor

* bus

° memory

* device
Application Software
process
thread
subprogram
data

Rigorous Semantics for Formal Analysis

Extendable Syntax (Annexes)

Planned Support for SysML v2

Compositional -
Reasoning with AGREE

Assume Guarantee Reasoning Environment

top_level.Impl

A_in A A _out B_in B B_out [C
AAiN<20 G A out<2xA | A:B_in < 20 G:B_out<B_in+ 15 o ou
: Sys_in < cAin< :A_out<2xA_in :B_in< :B_out<B_in + >

G: mode >= 0 > mode < pre(mode) G: Sys_out <50

Sys_out

G: C_out = if mode = 3 then (C_in1 + C_in2) else 0 G: mode >=0

Sys in<10<20

To prove correctness of Assumptions describe the expectations that a
component has on the environment

v Component Interfaces
component assumptions are satisfied by . .
upstream guarantees Guarantees describe bounds on the behavior of

v Component Implementations the component when assumptions are valid

component assumptions and subcomponent
guarantees satisfy guarantees

INCOSE

Enabling
Broader
Adoption

with Commercially-
Available Tools

)

z
{

:ﬁ:

Things We Needed

...to address barriers to adoption of existing formal methods tools

Commercially An Architecture An Analytical
Available Tool(s) Modeling Tool Engine
* |IT departments shy * Model Architectures * Property Proving
away from open- of Systems Capability
source . .
* Associate AGREE- * Reduce complexity
* Homegrown tools style contracts with
require local them * Crunch the numbers
expertise and . , " + Results Visualization
upkeep/support Graphical Editing

¢ Non-commercial
options have limited
support, examples, -
and documentation Interoperability and

Extensibility

incose.org | 12

&/

&

MATLAB®

* most engineers already have it

* well-supported with public doc and examples
* powerful

* toolboxes

System Composer™

* intuitive architecture modeling and diagramming
* profiles and stereotypes for extensibility

* APl access

Requirements Toolbox™
* assume/guarantee contracts as
verifiable requirements

* native integration with MATLAB and
System Composer

Simulink Design Verifier™
* mature formal methods tool

* native integration with MATLAB and
System Composer

incose.org | 13

Architecture
component Element

CTin outib)
N\

Contract Linked
Class ‘ »” Requirement

&% Together T, proo

H \viodel

/_\

Architecture —
v.oge . AggUME /
cxm2 (Guarantee
S Contract

§
ap
L

ﬁ ik At
B gl Ol -
—
E_subs
b Nzt Cutpr =)
!

A0 HE®
T
|

e e e e e - Lo * Roui irfarmation:
Winwe [Reuirerments a] .H 'l"_-l n] E i£] _: .Ii E} [Fillor Vigw | © v =an informat]
. = Sterentype Attributes
Index 0 sumrmary ¥
; Camract: f::n:lrairltj |
i t A
Reguiresment Tor System B

S

Constraint_B < agree.AbstractContstraint
% This class defines the AGREE contract for System B

this = Constraint_B()
this.Description = 'Constraint for system B’;

Using a generalized

MATLAB class for .
tf = getAssumption(~, Input)

the contract gave us 1= Input < int32(20);

. . . .
s-yr?tax hlgh“ghtmg tf = getGuarantee(~, Input, Output)
. ||nt|ng tf = Output < Input + int32(15);

* reusability
access to other toolboxes

incose.org | 16

Constraint_B < agree.AbstractContstraint
% This class defines the AGREE contract for System B

this = Constraint_B()

this.Description = 'Constraint for system B’;

tf = getAssumption(~, Input)

tf = Input < int32(20);

tf = getGuarantee(~, Input, Output)
tf = Output < Input + int32(15);

We correlated class
method arguments
to ports by name

B sub
D Input Output D>

®: @

r’_

Making !
of the

Creating A tic

———— = “ incose.org | 18

i AU

Lack of a Scalable
Solution

Counter-Examples from Existing Tool

Outputs are Difficult to Interpret

OSATE (Original) Simulink Design Verifier

Snetasine te the v arbes compmemt fea meerearlon Objectives Falsified with Counterexamples

0 ‘Type Model Item

Summary.

Model Item: proof
Property:

‘onstraint_Car2_inst. Target_Speed,Tar-
get_Tire_Pitch, Actual_Speed,Actual_Tire_Pitch,State_Signal))
Status: Falsified

Counterexample.

Time 0

Step 1

Actual_Speed 1095116277755
Target_Speed 1.9846

incose.org | 19

Falsified_objective_5

)

ey
Speed_Control El | | Axle = ‘ [
'} Actual Speed val = 40
equence =
y Actual_Tire_Pitch val = 0
D = ' !.Etl.lal Tire_Pitch Actual_Tire_Pitch
lagrams!)
Stale_Signal
Sequence Diagrams provided the perfect medium for Actuator_Input val = 400
conveying human-readable Assume/Guarantee Counter- Actuator_Input

Examples

The AGREE confract that failed is:
sldv.prove({Constraint_Car_inst. getGuarantee|Targel_Speed, Targef
Actual_Speed.Actual_Tire_Pilch, Stafe_Signal])

incose.org | 20

INCOSE

What
We Did

The primary goal of this work was to
make MBSE-based formal analysis
more accessible to the systems
engineering community.

s
Demonstrated how to tag system components
with formal behavioral contracts traced to
system requirements

Presented our approach for explainable
counterexamples from the analysis results

Applied AGREE-like compositional reasoning to
a widely-used MBSE tool, System Composer

Provided case studies demonstrating
compositional reasoning and compared our
results with semantically equivalent
AADL/AGREE models

Made our contribution available to the
community through a MATLAB toolbox

_.}.';.“
|
| il
e
| T
W e :
| .
e nw. F
o e
ae Eﬁlm —‘qv"—-

=) 8
.

PRSS _amp "0t '

L [* GUNR WERVAEi |0 ~u
Wy e o 4 _ saamy |
W ERR e ; o3 o o i
R 3 WEEE AR !
o e 3 ’ {;
i -~ :
/ ; A ™ sy

- A5 ‘ ‘)]
=y u !)

Scale Up Model Complexity

Explore Hybrid Contract-
Behavioral Models

Use the Generated
Sequence Diagrams for
System Verification

SysML v2.0 Support

incose.org | 23

INCOSE

Questions?

Josh Kahn @ .;'_I:“u'l- ’ ,l, :. @

Principal Systems Engineering Strategist "L * i | n, .~
et

i

y
't

DX joshkahn@mathworks.com

linkedin.com/in/josh-kahn-mbse -l
E’ : ||i||") _4 e
l" O 1 My I.:|||"
Contact the authors to request a copy of @ lm :i. "I'I:I -
this MATLAB toolbox to give it a try I~ . |-'I

yourself!

	Intro
	Slide 1: Creating Better System Models: A Method for Using Compositional Reasoning to Validate Architectures with Assumption/Guarantee Contracts
	Slide 2

	WhyThisMatters
	Slide 3: Why this Matters
	Slide 4
	Slide 5

	Start
	Slide 6
	Slide 7: Today’s Agenda

	AADL and AGREE
	Slide 8
	Slide 9: Architecture Analysis and Design Language (AADL)
	Slide 10

	Enabling Broader Adoption
	Slide 11: Enabling Broader Adoption with Commercially-Available Tools
	Slide 12
	Slide 13: The
	Slide 14: Putting It All Together
	Slide 15
	Slide 16
	Slide 17

	Making Sense
	Slide 18: Making Sense of the Data Creating Actionable Results
	Slide 19
	Slide 20: Sequence Diagrams!

	Conclusion
	Slide 21: Where Do We Go from Here? Key Takeaways and Next Steps
	Slide 22: What We Did
	Slide 23: Next Steps
	Slide 24: Questions?

