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Formal methods have proved to be a 

valuable tool for early identification of 

defects in safety-critical systems so why 

aren’t they being broadly used in the 

systems engineering community?

The Motivation

• Lack of Commercial Tools

• Poor Integration with Existing MBSE 

Tools

• Cryptic Results
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Why this 
Matters
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Integration Issues Happen

1. PATRIOT MISSILE DEFENSE: Software Problem Led to System Failure at Dhahran, Saudi Arabia, https://apps.dtic.mil/sti/citations/ADA344865

2. Mars Program Independent Assessment Team Report, https://ntrs.nasa.gov/citations/20000032458

3. Three Mile Island Accident, https://world-nuclear.org/information-library/safety-and-security/safety-of-plants/three-mile-island-accident

4. Summary of the FAA’s Review of the Boeing 737 MAX, https://www.faa.gov/sites/faa.gov/files/2022-08/737_RTS_Summary.pdf

Sometimes they are caught during integration testing, and sometimes…

• Patriot Defense System – Inaccurate Tracking System1

• Mars Climate Orbiter – Data Unit Mismatch2

• Three Mile Island – Indicator Lights Based on Command, Not Feedback3

•  Boeing 737 Max – MCAS Reliance on a Single AOA Sensor4

All. The. Time.

https://apps.dtic.mil/sti/citations/ADA344865
https://ntrs.nasa.gov/citations/20000032458
https://world-nuclear.org/information-library/safety-and-security/safety-of-plants/three-mile-island-accident
https://www.faa.gov/sites/faa.gov/files/2022-08/737_RTS_Summary.pdf
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“It is often the case that many of the errors in 

system development manifest themselves in 

integration; each of the leaf-level components 

meets its requirements, but these are not 

sufficient to establish the satisfaction of the 

system requirements.”

Whalen et al., 2013

1. Your “What” Is My “How”: Iteration and Hierarchy in System Designm, Whalen et al, https://doi.org/10.1109/MS.2012.173 

https://doi.org/10.1109/MS.2012.173
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Today’s 
Agenda

• AADL and AGREE: 
The Blueprint

• Enabling Broader Adoption
with Commercially-Available Tools

• Making Sense of the Data
Creating Actionable Results

• Where Do We Go from Here?
Key Takeaways & Next Steps
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AADL and 
AGREE 

The Blueprint
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AADL and AGREE / Enabling Broader Adoption / Making Sense of the Data / Where Do We Go from Here?
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Architecture 
Analysis and 
Design 
Language 
(AADL)

SAE AS5506

Open Source Tooling Supported by 

Carnegie Mellon Software 

Engineering Institute (CMU SEI)

Open Source AADL Tool 

Environment (OSATE)

Textual and graphical language for modeling 

embedded, real-time, distributed systems
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Physical Hardware
• processor

• bus

• memory

• device

Application Software
• process

• thread

• subprogram

• data

Basic Building 

Blocks of the 

Language

Rigorous Semantics for Formal Analysis

Extendable Syntax (Annexes)

Planned Support for SysML v2
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Sys_out

Sys_in

C
C_in2

C_out

C_in1

BB_in B_outAA_in A_out

top_level.Impl

Compositional 
Reasoning with AGREE
Assume Guarantee Reasoning Environment

A: A_in < 20 G: A_out < 2 x A_in A: B_in < 20 G: B_out < B_in + 15

G: C_out = if mode = 3 then (C_in1 + C_in2) else 0

G: mode >= 0 > mode < pre(mode)

G: mode >= 0

G: Sys_out < 50

A: Sys_in < 10

To prove correctness of
✓ Component Interfaces

component assumptions are satisfied by 
upstream guarantees

✓ Component Implementations 
component assumptions and subcomponent 
guarantees satisfy guarantees

Assumptions describe the expectations that a

component has on the environment

Guarantees describe bounds on the behavior of

the component when assumptions are valid

A_in < 20Sys_in < 10 < 20< 20
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Enabling 
Broader 
Adoption
with Commercially-
Available Tools

AADL and AGREE / Enabling Broader Adoption / Making Sense of the Data / Where Do We Go from Here?
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Interoperability and 

Extensibility

…to address barriers to adoption of existing formal methods tools

Things We Needed

• IT departments shy 

away from open-

source

• Homegrown tools 

require local 

expertise and 

upkeep/support

• Non-commercial 

options have limited 

support, examples, 

and documentation

Commercially 

Available Tool(s)

• Model Architectures 

of Systems

• Associate AGREE-

style contracts with 

them

• Graphical Editing

An Architecture 

Modeling Tool

• Property Proving 

Capability

• Reduce complexity

• Crunch the numbers

• Results Visualization

An Analytical 

Engine
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the tools we 

chose to 

implement our 

proof-of-concept

MATLAB®

• most engineers already have it

• well-supported with public doc and examples

• powerful

• toolboxes

System Composer

• intuitive architecture modeling and diagramming

• profiles and stereotypes for extensibility

• API access

Requirements Toolbox

• assume/guarantee contracts as 

verifiable requirements

• native integration with MATLAB and 

System Composer

Simulink Design Verifier

• mature formal methods tool

• native integration with MATLAB and 

System Composer

The
Stack
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Architecture 
Element

Putting
          It 
  All
     Together

Linked
Requirement

Proof

Model

in out

component

Contract 
Class
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In
Practice

Architecture 
Model

Linked
Requirements

Assume  
   Guarantee 
Contract

/
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classdef Constraint_B < agree.AbstractContstraint

    % This class defines the AGREE contract for System B

    methods

        function this = Constraint_B()

            this.Description = 'Constraint for system B’;

        end

    end

    methods

        function tf =  getAssumption(~, Input)

            tf = Input < int32(20);

        end

        function tf = getGuarantee(~, Input, Output)

            tf = Output < Input + int32(15);

        end

    end

end

The 
Contract

Using a generalized 

MATLAB class for 

the contract gave us
• syntax highlighting

• linting

• reusability 

• access to other toolboxes
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classdef Constraint_B < agree.AbstractContstraint

    % This class defines the AGREE contract for System B

    methods

        function this = Constraint_B()

            this.Description = 'Constraint for system B’;

        end

    end

    methods

        function tf =  getAssumption(~, Input)

            tf = Input < int32(20);

        end

        function tf = getGuarantee(~, Input, Output)

            tf = Output < Input + int32(15);

        end

    end

end

Input Output

B_sub

We correlated class 

method arguments 

to ports by name
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Making Sense 
of the Data
Creating Actionable Results
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AADL and AGREE / Enabling Broader Adoption / Making Sense of the Data / Where Do We Go from Here?
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Lack of a Scalable 
Solution

OSATE (Original)

How can we make 
this better?

Simulink Design Verifier

Counter-Examples from Existing Tool 
Outputs are Difficult to Interpret
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Sequence 
Diagrams!
Sequence Diagrams provided the perfect medium for 

conveying human-readable Assume/Guarantee Counter-

Examples
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Where Do 
We Go from 
Here? 
Key Takeaways and Next Steps

AADL and AGREE / Enabling Broader Adoption / Making Sense of the Data / Where Do We Go from Here?
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What 
We Did
The primary goal of this work was to 

make MBSE-based formal analysis 

more accessible to the systems 

engineering community.

• Demonstrated how to tag system components 

with formal behavioral contracts traced to 

system requirements

• Presented our approach for explainable 

counterexamples from the analysis results

• Applied AGREE-like compositional reasoning to 

a widely-used MBSE tool, System Composer

• Provided case studies demonstrating 

compositional reasoning and compared our 

results with semantically equivalent 

AADL/AGREE models

• Made our contribution available to the 

community through a MATLAB toolbox
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Next 
Steps Scale Up Model Complexity

Explore Hybrid Contract-

Behavioral Models

Use the Generated 

Sequence Diagrams for 

System Verification

SysML v2.0 Support
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Contact the authors to request a copy of 

this MATLAB toolbox to give it a try 

yourself!

Questions?
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Josh Kahn
Principal Systems Engineering Strategist

linkedin.com/in/josh-kahn-mbse

joshkahn@mathworks.com
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