
incose.org | 1

Creating Better System Models:
A Method for Using Compositional
Reasoning to Validate Architectures with
Assumption/Guarantee Contracts

MathWorks: Josh Kahn, Vidya Srinivasan

Collins Aerospace: Isaac Amundson,

Gopal Narayan Rai, Janet Liu

International Council on Systems Engineering
A better world through a systems approach

INCOSE International Symposium 2025 | Ottawa, Canada

incose.org | 2

Formal methods have proved to be a

valuable tool for early identification of

defects in safety-critical systems so why

aren’t they being broadly used in the

systems engineering community?

The Motivation

• Lack of Commercial Tools

• Poor Integration with Existing MBSE

Tools

• Cryptic Results

incose.org | 3

Why this
Matters

incose.org | 3

incose.org | 4

Integration Issues Happen

1. PATRIOT MISSILE DEFENSE: Software Problem Led to System Failure at Dhahran, Saudi Arabia, https://apps.dtic.mil/sti/citations/ADA344865

2. Mars Program Independent Assessment Team Report, https://ntrs.nasa.gov/citations/20000032458

3. Three Mile Island Accident, https://world-nuclear.org/information-library/safety-and-security/safety-of-plants/three-mile-island-accident

4. Summary of the FAA’s Review of the Boeing 737 MAX, https://www.faa.gov/sites/faa.gov/files/2022-08/737_RTS_Summary.pdf

Sometimes they are caught during integration testing, and sometimes…

• Patriot Defense System – Inaccurate Tracking System1

• Mars Climate Orbiter – Data Unit Mismatch2

• Three Mile Island – Indicator Lights Based on Command, Not Feedback3

• Boeing 737 Max – MCAS Reliance on a Single AOA Sensor4

All. The. Time.

https://apps.dtic.mil/sti/citations/ADA344865
https://ntrs.nasa.gov/citations/20000032458
https://world-nuclear.org/information-library/safety-and-security/safety-of-plants/three-mile-island-accident
https://www.faa.gov/sites/faa.gov/files/2022-08/737_RTS_Summary.pdf

incose.org | 5

“It is often the case that many of the errors in

system development manifest themselves in

integration; each of the leaf-level components

meets its requirements, but these are not

sufficient to establish the satisfaction of the

system requirements.”

Whalen et al., 2013

1. Your “What” Is My “How”: Iteration and Hierarchy in System Designm, Whalen et al, https://doi.org/10.1109/MS.2012.173

https://doi.org/10.1109/MS.2012.173

incose.org | 6

Hello. Josh Kahn
Principal Systems Engineering Strategist

• Customer Problem Solving

• Industry Engagement and Feedback

• Strategic Direction Setting

• Internal Leadership and Guidance

2009

B.S Mechanical

Engineering

linkedin.com/in/josh-kahn-mbse

joshkahn@mathworks.com

M.Eng Space Systems

Engineering

2011

Project Manager,

Test Engineer

2010

System Integration

Product Team Lead

2012

Advanced Lead

System Engineer

2015

2020

Best in Conference

2022

incose.org | 7

Today’s
Agenda

• AADL and AGREE:
The Blueprint

• Enabling Broader Adoption
with Commercially-Available Tools

• Making Sense of the Data
Creating Actionable Results

• Where Do We Go from Here?
Key Takeaways & Next Steps

incose.org | 8 incose.org | 8

AADL and
AGREE

The Blueprint

incose.org | 8

AADL and AGREE / Enabling Broader Adoption / Making Sense of the Data / Where Do We Go from Here?

incose.org | 9

Architecture
Analysis and
Design
Language
(AADL)

SAE AS5506

Open Source Tooling Supported by

Carnegie Mellon Software

Engineering Institute (CMU SEI)

Open Source AADL Tool

Environment (OSATE)

Textual and graphical language for modeling

embedded, real-time, distributed systems

incose.org | 9

Physical Hardware
• processor

• bus

• memory

• device

Application Software
• process

• thread

• subprogram

• data

Basic Building

Blocks of the

Language

Rigorous Semantics for Formal Analysis

Extendable Syntax (Annexes)

Planned Support for SysML v2

incose.org | 10

Sys_out

Sys_in

C
C_in2

C_out

C_in1

BB_in B_outAA_in A_out

top_level.Impl

Compositional
Reasoning with AGREE
Assume Guarantee Reasoning Environment

A: A_in < 20 G: A_out < 2 x A_in A: B_in < 20 G: B_out < B_in + 15

G: C_out = if mode = 3 then (C_in1 + C_in2) else 0

G: mode >= 0 > mode < pre(mode)

G: mode >= 0

G: Sys_out < 50

A: Sys_in < 10

To prove correctness of
✓ Component Interfaces

component assumptions are satisfied by
upstream guarantees

✓ Component Implementations
component assumptions and subcomponent
guarantees satisfy guarantees

Assumptions describe the expectations that a

component has on the environment

Guarantees describe bounds on the behavior of

the component when assumptions are valid

A_in < 20Sys_in < 10 < 20< 20

incose.org | 11

Enabling
Broader
Adoption
with Commercially-
Available Tools

AADL and AGREE / Enabling Broader Adoption / Making Sense of the Data / Where Do We Go from Here?

incose.org | 12
Interoperability and

Extensibility

…to address barriers to adoption of existing formal methods tools

Things We Needed

• IT departments shy

away from open-

source

• Homegrown tools

require local

expertise and

upkeep/support

• Non-commercial

options have limited

support, examples,

and documentation

Commercially

Available Tool(s)

• Model Architectures

of Systems

• Associate AGREE-

style contracts with

them

• Graphical Editing

An Architecture

Modeling Tool

• Property Proving

Capability

• Reduce complexity

• Crunch the numbers

• Results Visualization

An Analytical

Engine

incose.org | 13

the tools we

chose to

implement our

proof-of-concept

MATLAB®

• most engineers already have it

• well-supported with public doc and examples

• powerful

• toolboxes

System Composer

• intuitive architecture modeling and diagramming

• profiles and stereotypes for extensibility

• API access

Requirements Toolbox

• assume/guarantee contracts as

verifiable requirements

• native integration with MATLAB and

System Composer

Simulink Design Verifier

• mature formal methods tool

• native integration with MATLAB and

System Composer

The
Stack

incose.org | 14

Architecture
Element

Putting
 It
 All
 Together

Linked
Requirement

Proof

Model

in out

component

Contract
Class

incose.org | 15

In
Practice

Architecture
Model

Linked
Requirements

Assume
 Guarantee
Contract

/

incose.org | 16

classdef Constraint_B < agree.AbstractContstraint

 % This class defines the AGREE contract for System B

 methods

 function this = Constraint_B()

 this.Description = 'Constraint for system B’;

 end

 end

 methods

 function tf = getAssumption(~, Input)

 tf = Input < int32(20);

 end

 function tf = getGuarantee(~, Input, Output)

 tf = Output < Input + int32(15);

 end

 end

end

The
Contract

Using a generalized

MATLAB class for

the contract gave us
• syntax highlighting

• linting

• reusability

• access to other toolboxes

incose.org | 16

incose.org | 17

classdef Constraint_B < agree.AbstractContstraint

 % This class defines the AGREE contract for System B

 methods

 function this = Constraint_B()

 this.Description = 'Constraint for system B’;

 end

 end

 methods

 function tf = getAssumption(~, Input)

 tf = Input < int32(20);

 end

 function tf = getGuarantee(~, Input, Output)

 tf = Output < Input + int32(15);

 end

 end

end

Input Output

B_sub

We correlated class

method arguments

to ports by name

incose.org | 18

Making Sense
of the Data
Creating Actionable Results

incose.org | 18

AADL and AGREE / Enabling Broader Adoption / Making Sense of the Data / Where Do We Go from Here?

incose.org | 19

Lack of a Scalable
Solution

OSATE (Original)

How can we make
this better?

Simulink Design Verifier

Counter-Examples from Existing Tool
Outputs are Difficult to Interpret

incose.org | 20

Sequence
Diagrams!
Sequence Diagrams provided the perfect medium for

conveying human-readable Assume/Guarantee Counter-

Examples

incose.org | 20

incose.org | 21

Where Do
We Go from
Here?
Key Takeaways and Next Steps

AADL and AGREE / Enabling Broader Adoption / Making Sense of the Data / Where Do We Go from Here?

incose.org | 21

incose.org | 22

What
We Did
The primary goal of this work was to

make MBSE-based formal analysis

more accessible to the systems

engineering community.

• Demonstrated how to tag system components

with formal behavioral contracts traced to

system requirements

• Presented our approach for explainable

counterexamples from the analysis results

• Applied AGREE-like compositional reasoning to

a widely-used MBSE tool, System Composer

• Provided case studies demonstrating

compositional reasoning and compared our

results with semantically equivalent

AADL/AGREE models

• Made our contribution available to the

community through a MATLAB toolbox

incose.org | 23

Next
Steps Scale Up Model Complexity

Explore Hybrid Contract-

Behavioral Models

Use the Generated

Sequence Diagrams for

System Verification

SysML v2.0 Support

incose.org | 23

incose.org | 24

Contact the authors to request a copy of

this MATLAB toolbox to give it a try

yourself!

Questions?

incose.org | 24

Josh Kahn
Principal Systems Engineering Strategist

linkedin.com/in/josh-kahn-mbse

joshkahn@mathworks.com

	Intro
	Slide 1: Creating Better System Models: A Method for Using Compositional Reasoning to Validate Architectures with Assumption/Guarantee Contracts
	Slide 2

	WhyThisMatters
	Slide 3: Why this Matters
	Slide 4
	Slide 5

	Start
	Slide 6
	Slide 7: Today’s Agenda

	AADL and AGREE
	Slide 8
	Slide 9: Architecture Analysis and Design Language (AADL)
	Slide 10

	Enabling Broader Adoption
	Slide 11: Enabling Broader Adoption with Commercially-Available Tools
	Slide 12
	Slide 13: The
	Slide 14: Putting It All Together
	Slide 15
	Slide 16
	Slide 17

	Making Sense
	Slide 18: Making Sense of the Data Creating Actionable Results
	Slide 19
	Slide 20: Sequence Diagrams!

	Conclusion
	Slide 21: Where Do We Go from Here? Key Takeaways and Next Steps
	Slide 22: What We Did
	Slide 23: Next Steps
	Slide 24: Questions?

