

International Council on Systems Engineering
A better world through a systems approach

Teaching Systems Engineering for Students – Experiences from the Swedish Education System

Johan Cederbladh & Håkan Forsberg

johan.cederbladh@mdu.se
hakan.forsberg@mdu.se

INCOSE International Symposium 2025 | Ottawa, Canada

The INCOSE SE vision

In the INCOSE SE vision a key area identified is education.

Educational opportunities are perceived as lacking for SE.

Previous works discussing SE education find several challenges in the academic setting, but also success stories.

This paper

In this paper we provide our experiences of managing a 5-year systems engineering program.

We specifically focus on the Swedish context and discuss the paper through this lens.

We go through challenges, and success stories of managing a program.

Program website (in Swedish)

Some notes about the program

The title of the program is roughly: “Master of science in **dependable systems**”. We have tried to rename the program to systems engineering but not gotten positive receptions from the university to do this.

Håkan is the strategic program coordinator, while I act as the operative program coordinator.

The program has been active for ~10 years.

I am an alumni of the program!

Swedish national regulations

Higher education in Sweden is nationally regulated, with learning outcomes defined for subjects at the national level (e.g, engineering).

Pre-defined program types, traditional bachelor and master, in addition to Swedish variants with different requirements.

The Swedish “Civilingenjör” (roughly master of science) is a 5-year track, with increased emphasis on societal concerns, independence, creativity, teamwork, etc.

State of education

Swedish higher education is primarily funded through government, and universities are government bodies (i.e., politically steered to a large degree).

Universities are “paid” by the state depending on the performance of students, i.e., passing through courses.

Engineering students are generally more expensive due to labs and equipment, while also being among the lowest graduation rates (around 25-30% of 5-year program students graduate on time).

Engineering education is therefore somewhat unpopular for universities to fund due to high expenses per student, and often low return.

The program

	Year 1		Year 2		Year 3		Year 4		Year 5
Semester 1	Vector algebra 7.5 credits, first cycle	Systems engineering in context, 7.5 credits, first cycle	Measurement engineering 7.5 credits, first cycle	Statistics 7.5 credits, first cycle	Quality engineering 7.5 credits, first cycle	Information security 7.5 credits, first cycle	Embedded systems I 7.5 credits, second cycle	Control theory 7.5 credits, second cycle	
Semester 2	Programming 7.5 credits, first cycle	Basic electronics 7.5 credits, first cycle	Human factors in systems 7.5 credits, first cycle	Architectures and communications for embedded systems 7.5 credits, first cycle	Electrical measuring systems 7.5 credits, first cycle	Material sciences 7.5 credits, first cycle	Embedded systems II 7.5 credits, second cycle	Safety-critical systems 7.5 credits, second cycle	Dependable systems project course, 30 credits, second cycle
Semester 3	Single variable calculus 7.5 credits, first cycle	Applied CAD 7.5 credits, first cycle	Object oriented programming 7.5 credits, first cycle	Physics I 7.5 credits, first cycle	Scientific methods, science and ethics 7.5 credits, first cycle	Autonomous vehicles, 5 credits second cycle	Design of autonomous systems 7.5 credits, second cycle	Programming of dependable embedded systems (DVA494), 7.5 credits, second cycle	
Semester 4	Electronic systems 7.5 credits, first cycle	Embedded systems programming 7.5 credits, first cycle	Multi variable calculus, 7.5 credits, first cycle	Requirements engineering 7.5 credits, first cycle	Development of safety-critical systems 7.5 credits, first cycle	Robust electronics 10 credits, first cycle	Model based development, 7.5 credits, second cycle	Design of fault-tolerant systems 7.5 credits, second cycle	Master Thesis work – Dependable systems, 30 credits, second cycle

 Systems engineering related courses

The program

Some notes;

- Computer science & embedded systems main.
- Originally a 3-year aerospace program.
- Flexible course offering.
- Overlapping with robotics program.

	Year 1		Year 2		Year 3		Year 4		Year 5
Semester 1	Vector algebra 7.5 credits, first cycle	Systems engineering in context, 7.5 credits, first cycle	Measurement engineering 7.5 credits, first cycle	Statistics 7.5 credits, first cycle	Quality engineering 7.5 credits, first cycle	Information security 7.5 credits, first cycle	Embedded systems I 7.5 credits, second cycle	Control theory 7.5 credits, second cycle	
Semester 2	Programming 7.5 credits, first cycle	Basic electronics 7.5 credits, first cycle	Human factors in systems 7.5 credits, first cycle	Architectures and communications for embedded systems 7.5 credits, first cycle	Electrical measuring systems 7.5 credits, first cycle	Material sciences 7.5 credits, first cycle	Embedded systems II 7.5 credits, second cycle	Safety-critical systems 7.5 credits, second cycle	Dependable systems project course, 30 credits, second cycle
Semester 3	Single variable calculus 7.5 credits, first cycle	Applied CAD 7.5 credits, first cycle	Object oriented programming 7.5 credits, first cycle	Physics I 7.5 credits, first cycle	Scientific methods, science and ethics 7.5 credits, first cycle	Autonomous vehicles, 5 credits second cycle	Design of autonomous systems 7.5 credits, second cycle	Programming of dependable embedded systems (DVAA94), 7.5 credits, second cycle	
Semester 4	Electronic systems 7.5 credits, first cycle	Embedded systems programming 7.5 credits, first cycle	Multi variable calculus 7.5 credits, first cycle	Requirements engineering 7.5 credits, first cycle	Development of safety-critical systems 7.5 credits, first cycle	Robust electronics 10 credits, first cycle	Model based development, 7.5 credits, second cycle	Design of fault-tolerant systems 7.5 credits, second cycle	Master Thesis work – Dependable systems, 30 credits, second cycle

 Systems engineering related courses

Input for the program management

The program is developed together with local industry.

We invite industrial partners and alumni for bi-annual strategic meetings.

Due to the overlap with robotics, certain decisions are made in unison.

Some take-aways from the program

Staffing managed by cross-division teaching teams.

One class a year is admitted of ~30 students.

Students' progression is similar to other engineering programs.

All graduated students found relevant employment after graduation, often in roles relating to safety, security, researchers, etc.

Barriers

Learning by doing

The learning by doing paradigm is seen as important but can be challenging to achieve due to the large scope.

Intuitiveness of SE

It can be difficult to get an intuitive feeling for SE among students, leading to some reluctance.

SE requires time to learn

It is usually not until the final year that SE starts to become clear in the student's mind.

Non-tangible aspects of SE

There are rarely definitive answers, but often more soft, abstract, and ill-defined concepts to tackle.

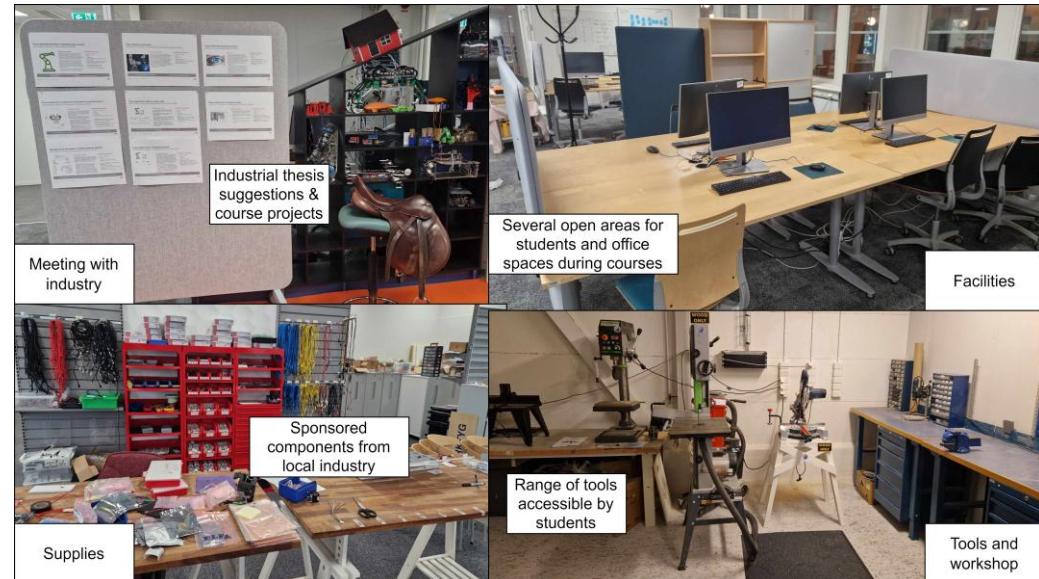
SE is a holistic discipline

We need a large number of disciplines to be involved. Furthermore, courses need to concern larger problems and often group projects.

SE is about decision-making

Instead of solving well-defined problems, students are asked to motivate decisions.

SE is not a widely recognized field of study


Difficult to convey clearly to both students and faculty as there is no previous recognition.

Principle 1: Students ownership of their own learning

We provide facilities where students can have “offices”.

Industrial practitioners often act as owners or stakeholders in projects.

We aim to provide the necessary tools and facilities to enable students to be creative and hands-on.

Principle 1: Students ownership of their own learning

The last year capstone project example;
AutoSail.

Collaboration with other Universities.

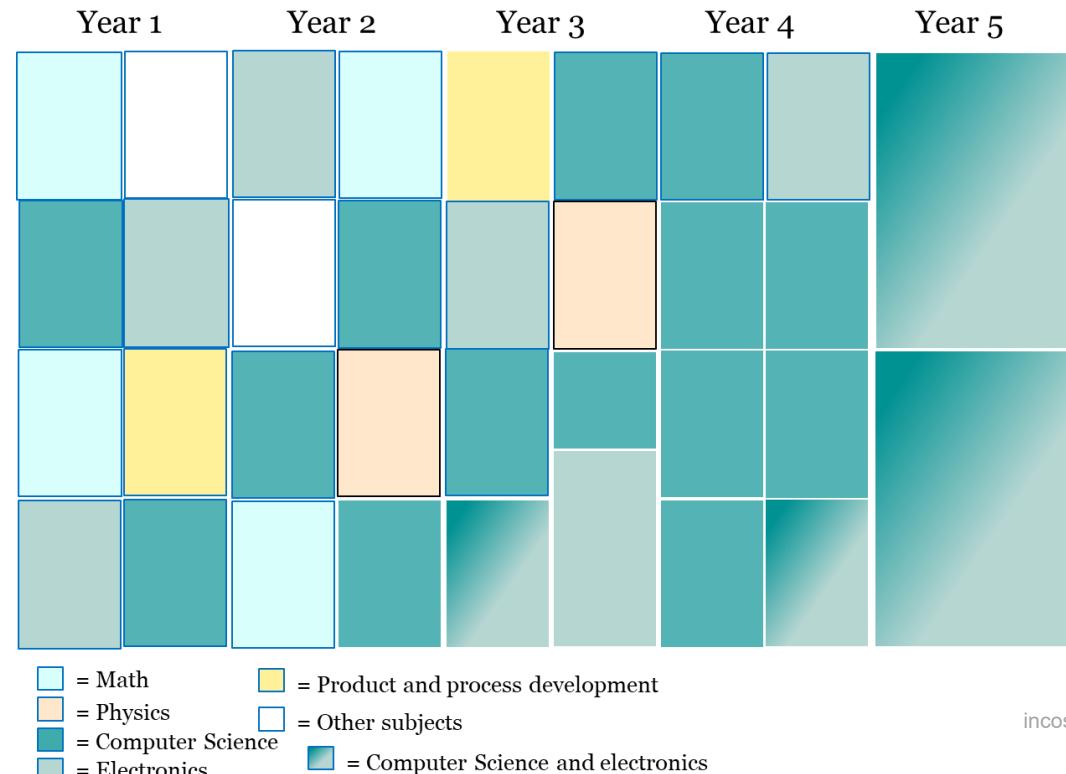
Student-owned and student-driven.

Principle 2: Supporting the T-shaped engineer

Our program follows the principles of a T-shaped engineer, meaning a broad base and focus on a few topics.

To some extent, this view of engineering is enforced via national regulations, but we try to go a step further.

This includes involvement of faculty from other fields, such as psychology, in addition to different engineering disciplines.



Principle 2: Supporting the T-shaped engineer

Flavors of different sciences in each of the courses.

Often several are impacting at once.

SE belongs in the computer science group due to its formal classification.

Principle 3: Industrial presence in education

We aim to include industrial collaboration to the extent possible in courses.

On the basic level, this includes guest lectures, but we encourage and strive for joint projects with students and industry.

In the final year students do a half year collaborative project with industry, in addition to a master thesis which most of the time is done together with a company.

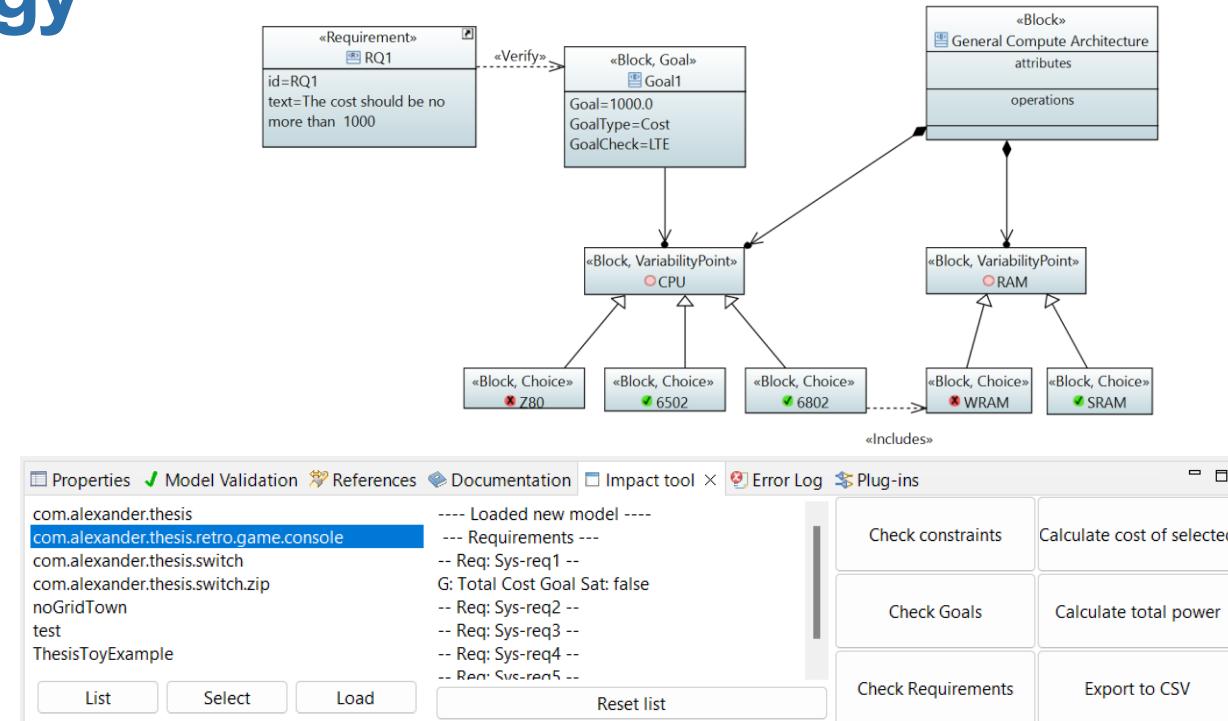
Principle 3: Industrial presence in education

Årskurs 1		HT 2022	Samverkan
Kursnamn Ingenjörsve tenskap för robotik och tillförilitiga system, OAI103	👉		
Kursnamn Vektoralgeb ra, MAA051			
Kursnamn Programme ring, DVA117			
Kursnamn Elektronik grundkurs, ELA105			
Årskurs 2		HT 2023	Samverkan
Kursnamn Mätteknik, ELA213			
Kursnamn Sannolikhet slära och statistisk teori, MAA137			
Kursnamn Mänskliga faktorer i tekniska system, OAI104	👉	👉	
Kursnamn Arkitektur och datakommunikation för inbyggda system, DVA271			
Årskurs 3		HT 2024	Samverkan
Kursnamn Kvalitets-, och underhållsteknik, PPU309 (GCV02)	👉		
Kursnamn Information ssäkerhet, DVA252 (GCV04)			
Kursnamn Elektriska mätsystem, ELA212 (GCV04)			
Kursnamn Farkoststru kturer och materiallära, FYA017	👉	👉	
Årskurs 4		HT 2025	Samverkan
Kursnamn Inbyggda system I, DVA454	👉		
Kursnamn Reglertechni k, ELA410 / ELA415			
Kursnamn Inbyggda system II, DVA482	👉		
Kursnamn Säkerhetskr itiska system, DVA437	👉		
Årskurs 5		HT 2026	Samverkan
Kursnamn Projekt i tillförilitiga system, DVAXXX (GCV04), FLA402 (GCV02)	👉		👉
-			
-			
-			
VT 2023		VT 2024	
Kursnamn Envariabelk alkyl, MAA048	👉		
Kursnamn Tillämpad CAD, MTA103			
Kursnamn Elektroniks ystem, ELA211	👉	👉	
Kursnamn Programme ring för inbyggda system, DVA270	👉	👉	
VT 2025		VT 2026	
Kursnamn Objektorien terad programmering, DVA222			
Kursnamn Mekanik 1, MFY006			
Kursnamn Flervariabel kalkyl, MAA152			
Kursnamn Kravhanteri ng, DVA274	👉		
Kursnamn Autonoma farkoster, DVAXXX, FLA433	👉	👉	
Kursnamn Information , kunskap, vetenskap och etik, DVA305 (GCV04)			
Kursnamn Robust elektronik för tillförilitiga system, ELA305 (GCV02)	👉	👉	
Kursnamn Utveckling av säkerhetskritiska system, DVA344 (GCV04)(FLA310 GCV02)	👉	👉	
Kursnamn Modellbase rad utveckling för tillförilitiga system, DVA484			
Kursnamn Design av fetoleranta system, FLA432	👉	👉	
VT 2027		Examensarbete tillförilitiga system, FLA500	
-			
-			
-			

Principle 4: Connection with research and future technology

To enable connection with research and future technology, we often encourage course owners to include aspects of research in the courses.

We also include academic writing and peer-review processes from the start of the program.

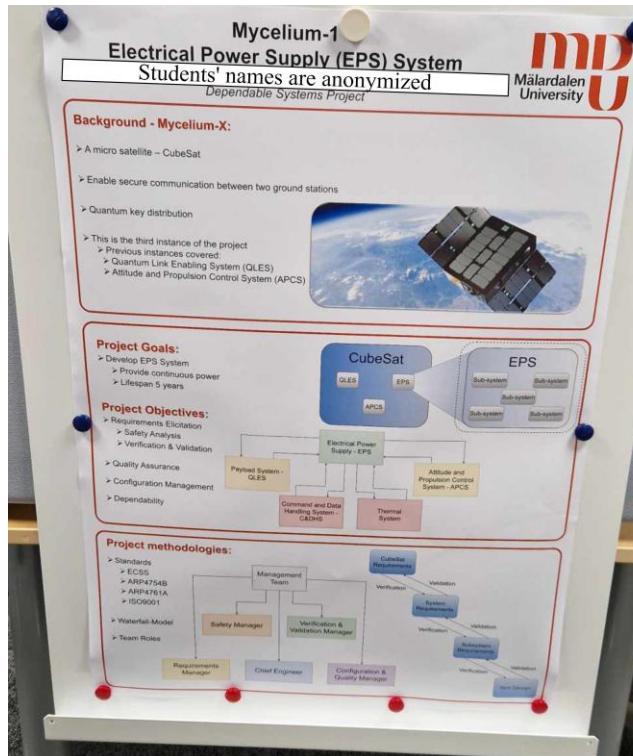

Inclusion of AI, model-based engineering, and other areas of future technology.

Principle 4: Connection with research and future technology

Student thesis example;
Integrating a model-based
approach for variability
management in a company.

Evaluating user receptions
through quantitative
research methods.

Making solution open-
source.



Principle 5: Communication as a core skill

We encourage communication as a core skill, and most courses include some form of oral communication.

Peer-review and seminars among students are employed in many courses to let them train on constructive feedback.

The figure demonstrates a poster for a final year project, presented for invited industrial partners.

Discussion

- Our program is looking for partner programs, please reach out to me or Håkan: hakan.forsberg@mdu.se
- Going forward, the program will continue to change based on input from industrial partners.
- We see a lot of success in the collaboration across other programs and parts of the University.
- The Swedish higher education system limits the ability to construct a SE program freely.

Conclusion

- We have presented our current version of a SE 5-year program in Sweden.
- We see challenges in creating opportunities for SE education but also see that students who graduate appreciate the education.
- We hope to continue to develop the program going forward to be a useful SE education!

International Council on Systems Engineering
A better world through a systems approach

Teaching Systems Engineering for Students – Experiences from the Swedish Education System

Johan Cederbladh & Håkan Forsberg

johan.cederbladh@mdu.se
hakan.forsberg@mdu.se

INCOSE International Symposium 2025 | Ottawa, Canada

