



International Council on Systems Engineering  
*A better world through a systems approach*

# Exploring the Use of SysMLv2 for Solution Architecture Development with the MagicGrid Framework

Zilvinas Strolia & Aiste Aleksandraviciene



## Zilvinas Strolia

CATIA Cyber Systems Industry Process Senior Specialist



- MS in Economics and BS in Electronics Engineering
- >10 year in Systems Engineering
- Certified professional: CSEP and OCSMP

## Aistė Aleksandravičienė

CATIA Cyber Systems Industry Process Senior Specialist



- MS in Software Systems Engineering
- 20 years in Software and Systems Engineering
- Certified professional: ASEP, OCSMP, and UAF MU
- Co-author of MagicGrid Book of Knowledge


# Agenda

- Introduction to SysMLv2
- MagicGrid Overview
- Back to Dublin [Problem Domain]
- From Guinness to Maple Syrup [Solution Domain]
  - Building System Architecture Step-by-Step
  - Textual Notation
- Summary

# INTRODUCTION TO SYSMLv2

# GREATNESS OF SYSMLv1

Complexity



Inconsistent  
Terminology

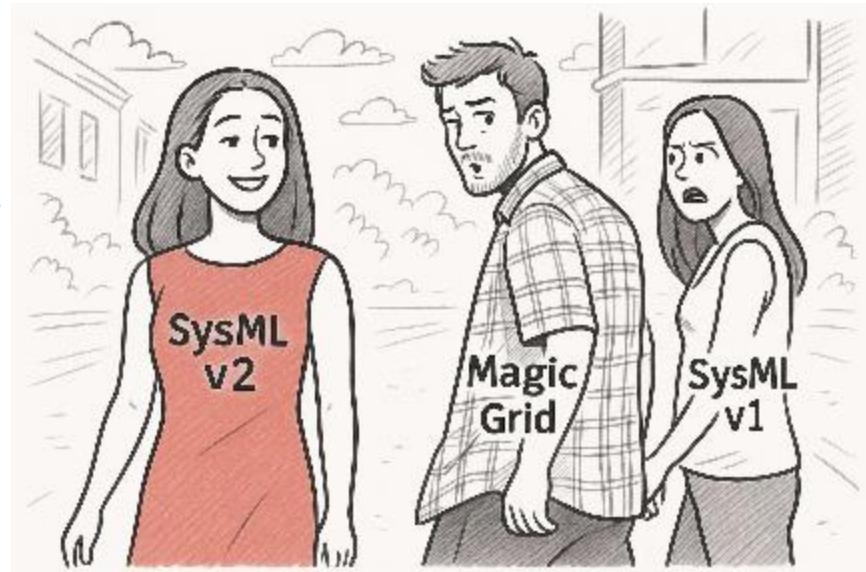
| Usage      | Part Property | Action   | Proxy Port      | Full Port |
|------------|---------------|----------|-----------------|-----------|
| Definition | Block         | Activity | Interface Block | Block     |

GRE

Legacy  
UMLTool  
Interac

Block

System


| System                 |                                                          |
|------------------------|----------------------------------------------------------|
| Block                  | Name<br>System                                           |
| Documentation/Comments | Used As Type                                             |
| Navigation/Hyperlinks  | Sync Element                                             |
| Usage in Diagrams      | General                                                  |
| Usage In               | Element ID<br>_2022x_2_31a0122_1749020965567_143942_3340 |
| Constraints            | Specific Classifier                                      |
| Ports/Interfaces       | Verifies                                                 |
| Properties             | Participates In Interaction                              |
| Attributes             | Allocated To                                             |
| Ports                  | Specifying Component                                     |
| Operations             | All Specifying Elements                                  |
| Receptions             | Realizing Element                                        |
| Behaviors              | Refines                                                  |
| Relations              | Participates In Activity                                 |
| Tags                   | Traced From                                              |
| Traceability           | All Realizing Elements                                   |
| Allocations            | Allocated From                                           |
| Inner Elements         | Specifying Use Case                                      |
| Template Parameters    | All Specific Classifiers                                 |
| Instances              | Owner<br>Model                                           |
| Language Properties    | Qualified Name<br>System                                 |

# NEW SALVATION – SYSMLv2

- In 2017, OMG initiated the SysMLv2 Request for Proposal process to define a next-generation systems modeling language
- As of 2025, SysMLv2 is under finalization and early adoption
- Key features of SysMLv2:
  - Separation from UML - independent metamodel
  - Supports of graphical, tabular and **textual** notation
  - Formal semantics for better precision
  - API access for tool interoperability
  - Consistent definition and usage pattern throughout the language

# NO SILVER BULLET – METHODOLOGY STILL MATTERS

- As its predecessor SysMLv2 is just a language
- To be effective in practice, SysMLv2 must be used together with a modeling methodology
- One of the widely used modeling methodologies is **MagicGrid**
- This paper/presentation examines early use of SysMLv2 in combination with MagicGrid



# MAGICGRID OVERVIEW

## BASIC INFORMATION

- Framework on how to use SysML with SE projects
- Initial version introduced in 2015
- Widely recognized – 7 papers & MagicGrid BoK approved by external experts
- Tool-agnostic and “vanilla” SysMLv1-compatible
- In alignment with ISO15288 technical processes

# MAGICGRID LAYOUT

|        |           | Pillar                 |                     |                     |                           |
|--------|-----------|------------------------|---------------------|---------------------|---------------------------|
| Domain | Problem   | Requirements           | Structure           | Behavior            | Parameters                |
|        |           | Stakeholder Needs      | System Context      | Use Cases           | Measures of Effectiveness |
|        | White Box | Conceptual Subsystems  | Functional Analysis | MoEs for Subsystems |                           |
|        | Solution  | System Requirements    | System Structure    | System Behavior     | System Parameters         |
|        |           | Subsystem Requirements | Subsystem Structure | Subsystem Behavior  | Subsystem Parameters      |
|        |           | Component Requirements | Component Structure | Component Behavior  | Component Parameters      |

# PAPER FOCUS – SOLUTION DOMAIN

|          |                        | Pillar            |                       |                     |                           |
|----------|------------------------|-------------------|-----------------------|---------------------|---------------------------|
| Domain   | Problem                | Requirements      | Structure             | Behavior            | Parameters                |
|          |                        | Stakeholder Needs | System Context        | Use Cases           | Measures of Effectiveness |
|          | White Box              | Black Box         | Conceptual Subsystems | Functional Analysis | MoEs for Subsystems       |
| Solution | System Requirements    |                   | System Structure      | System Behavior     | System Parameters         |
|          | Subsystem Requirements |                   | Subsystem Structure   | Subsystem Behavior  | Subsystem Parameters      |
|          | Component Requirements |                   | Component Structure   | Component Behavior  | Component Parameters      |

# BACK TO DUBLIN [PROBLEM DOMAIN]



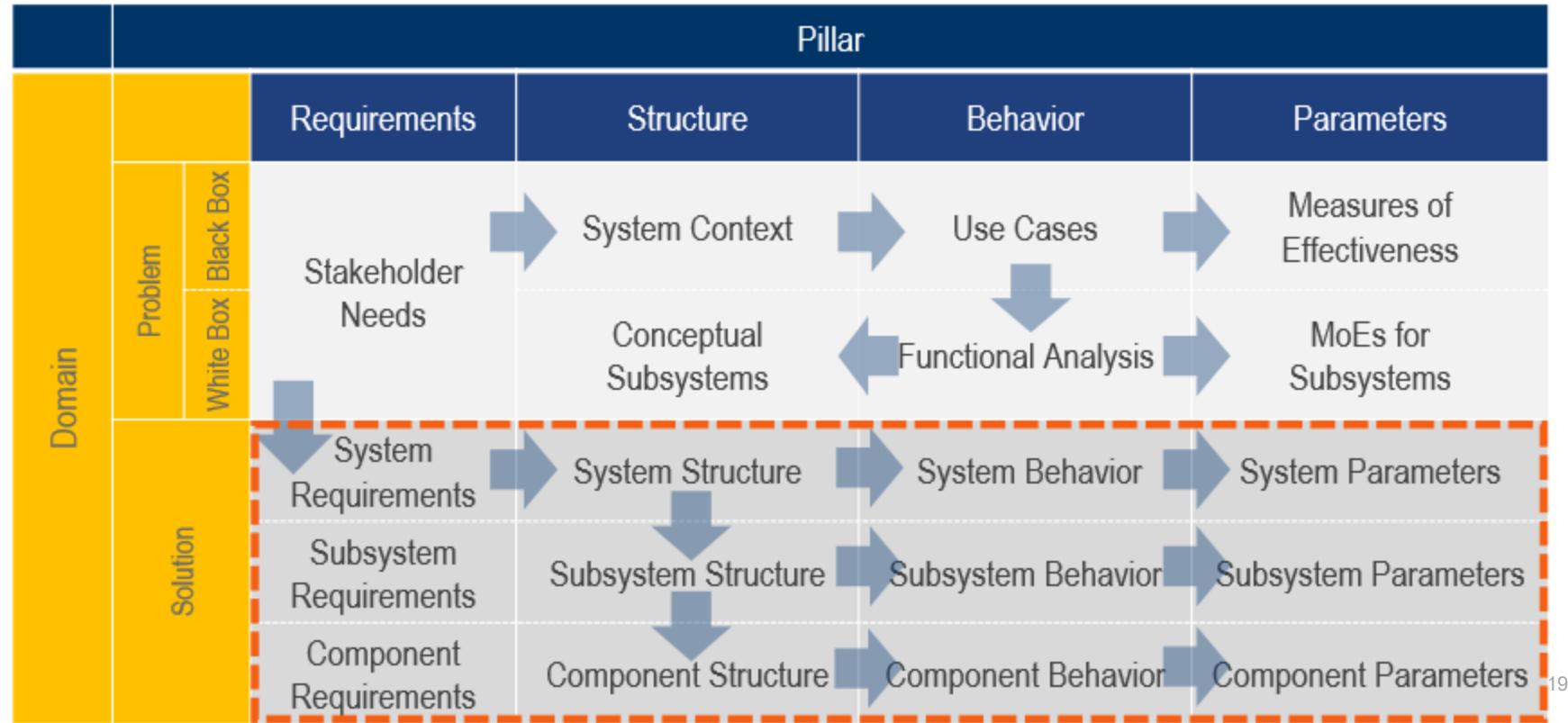
# PREVIOUS RESEARCH


- Presented (as a poster) our **initial findings** on SysMLv2 application for the Problem Domain analysis using MagicGrid

|        |           | Pillar                 |                     |                     |                           |
|--------|-----------|------------------------|---------------------|---------------------|---------------------------|
| Domain | Problem   | Requirements           | Structure           | Behavior            | Parameters                |
|        |           | Stakeholder Needs      | System Context      | Use Cases           | Measures of Effectiveness |
|        | White Box | Conceptual Subsystems  | Functional Analysis | MoEs for Subsystems |                           |
|        |           | System Requirements    | System Structure    | System Behavior     | System Parameters         |
|        | Black Box | Subsystem Requirements | Subsystem Structure | Subsystem Behavior  | Subsystem Parameters      |
|        |           | Component Requirements | Component Structure | Component Behavior  | Component Parameters      |

## PREVIOUS RESEARCH (cont.)

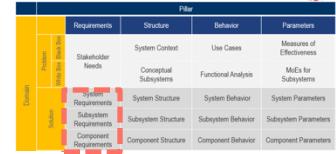
- Initial findings include:
  - MagicGrid cannot be applied with SysMLv2 the same way as it was with SysMLv1
  - SysMLv2 is more open, thus the methodology is even more important than in SysMLv1
  - Want to learn SysMLv2? Forget SysMLv1
- Many things changed since that and some conclusions/findings we made are no longer relevant


# FROM GUINNESS TO MAPLE SYRUP [SOLUTION DOMAIN]



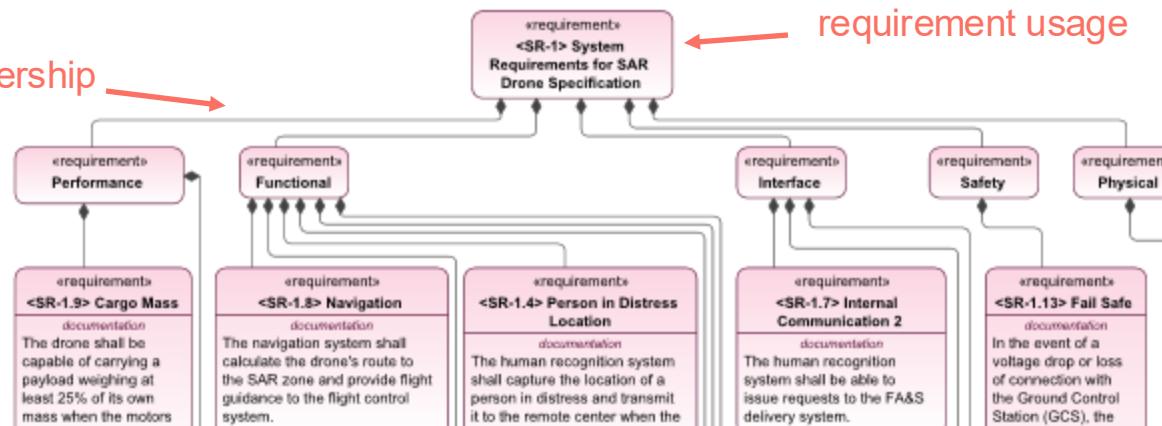
## WHERE WE ARE: THE SOLUTION DOMAIN

- Solution Domain defines a cross-discipline logical architecture of the system
- This is not physical or 3D model
- Solution Architecture model consists of multiple levels (system, subsystem, ..., component)
- Every level includes requirements, structure, behavior, and parameters

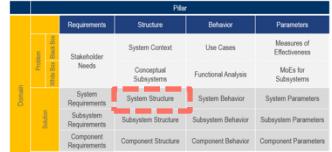

# WHERE WE ARE: THE SOLUTION DOMAIN (cont.)



# BUILDING SYSTEM ARCHITECTURE STEP-BY-STEP



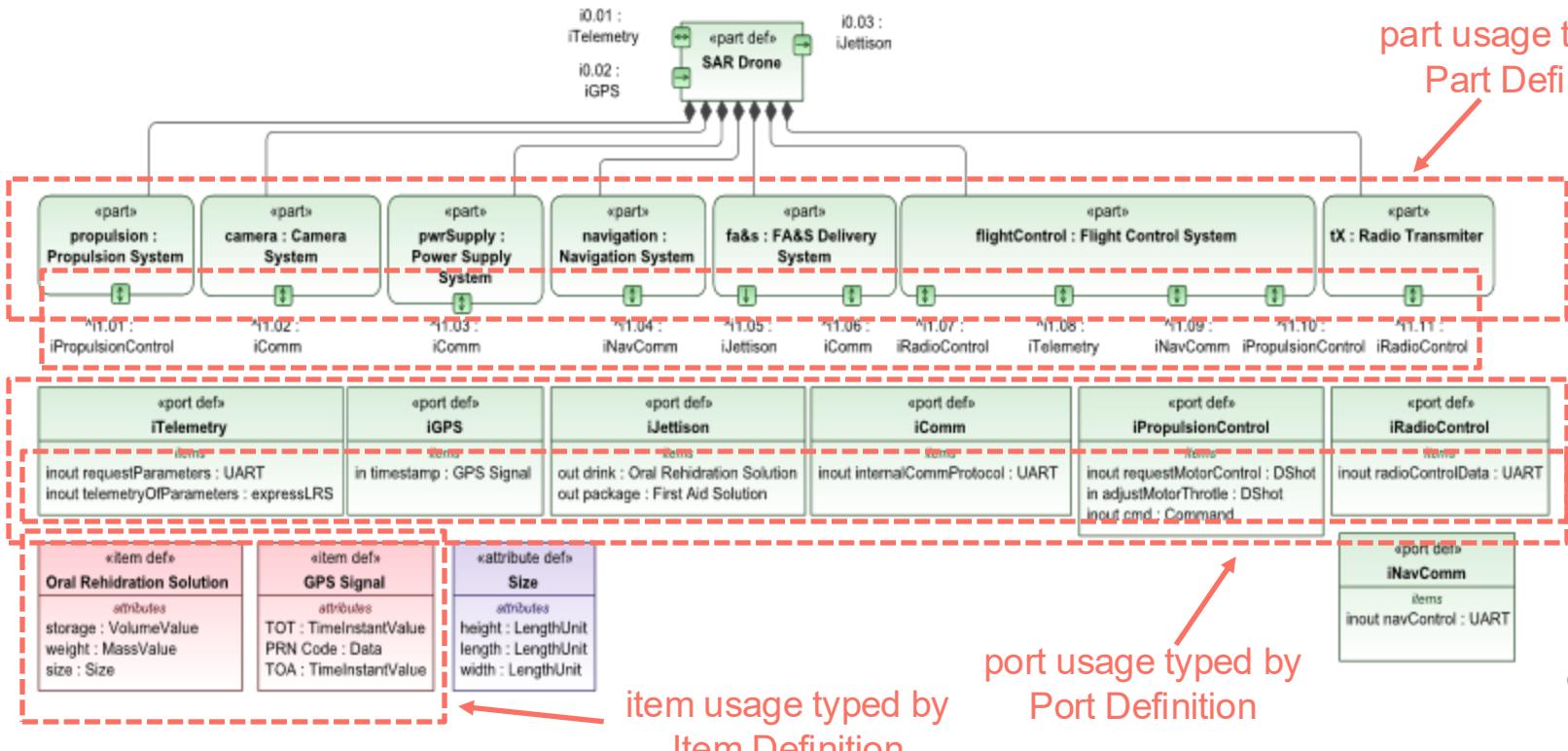

# SYSTEM AND OTHER REQUIREMENTS




- System Requirements application does not differ much from how it was used with MagicGrid and SysMLv1 (same conclusion in previous paper)
- System Requirements we suggest to model as requirement usage element

feature membership



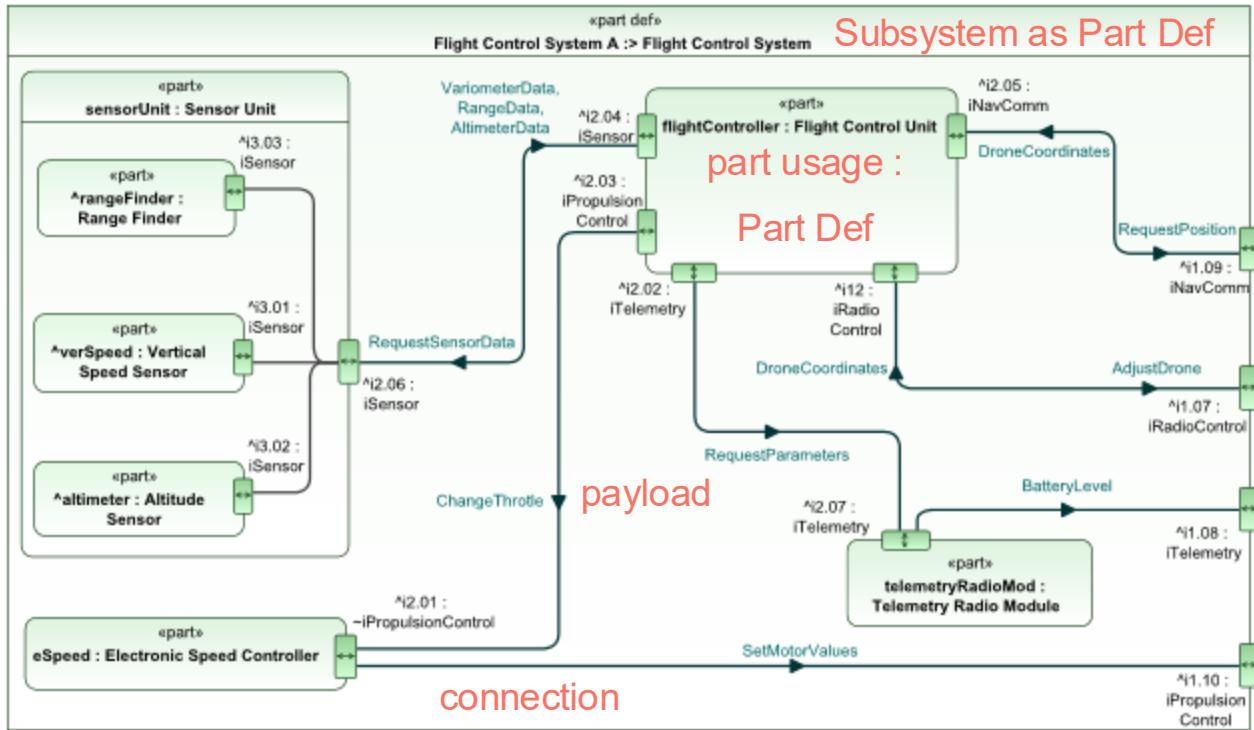

# SYSTEM STRUCTURE



- SST team constantly emphasize usage modeling as one of the main advantages of SysMLv2 language
- Up to this cell of MagicGrid framework we tried to create usage models (including previous paper)
- Usually complex systems are not created from the “blank page”
- Structure elements are typically reused – this can only be achieved using part usages with definitions (SysMLv1 modeling style)
- Same applies to port usage/definitions and item usage/definitions



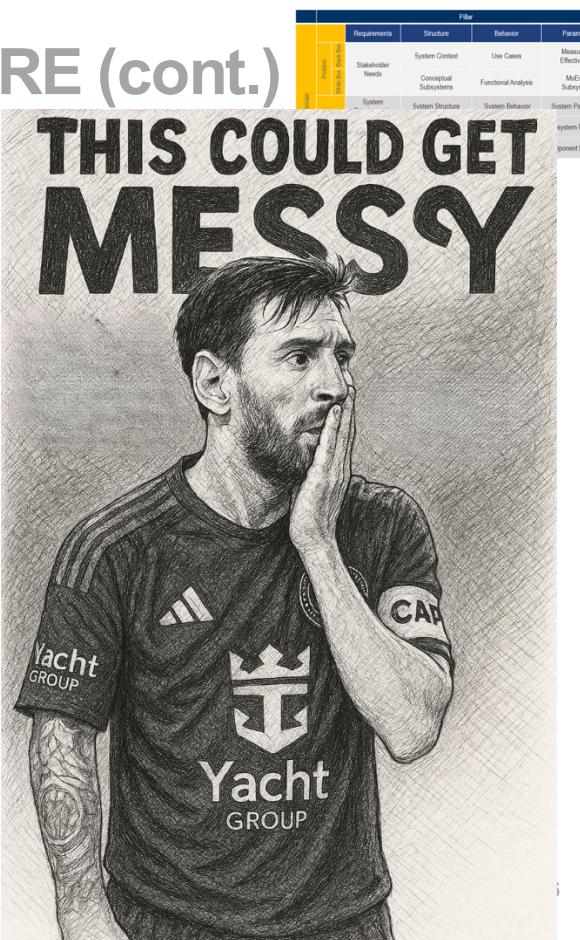
# SYSTEM STRUCTURE (cont.)



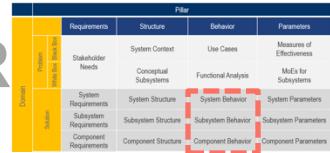

# SUBSYSTEM & COMPONENT STRUCTURE



- From language perspective, there's no difference from the System Structure cell – same element types apply
- In SysMLv1 IBDs were used for internal subsystem/component views
- SysMLv2 eliminates IBDs, replacing them with a interconnection view that handles system internal structure
- Interconnection view is a subtype of general view
- Interconnection view ≠ IBD


## SUBSYSTEM & COMPONENT STRUCTURE (cont.)




There's no strict requirement to place parts inside each other in this view ( $\neq$  IBD)

## port usage : Port Def

# SUBSYSTEM & COMPONENT STRUCTURE (cont.)



# SYSTEM / SUBSYSTEM / COMPONENT BEHAVIOR



- MagicGrid with SysMLv1 treats system behavior as the aggregate of its internal subsystem behaviors and there is no dedicated view for that
- SysMLv2 adds no new concepts on this, so the same approach is used
- For inner system elements behavior description either state or action usages should be used depending on user needs
- Usage is preferred as definitions require reusage and we do not expect these behaviors to be reusable in system model scope (debatable)
- Behavior elements in SysMLv2 retains similar modeling logic
- Main difference lies in how these elements are connected to structural elements that behavior they describe

# SYSTEM / SUBSYSTEM / COMPONENT BEHAVIOR

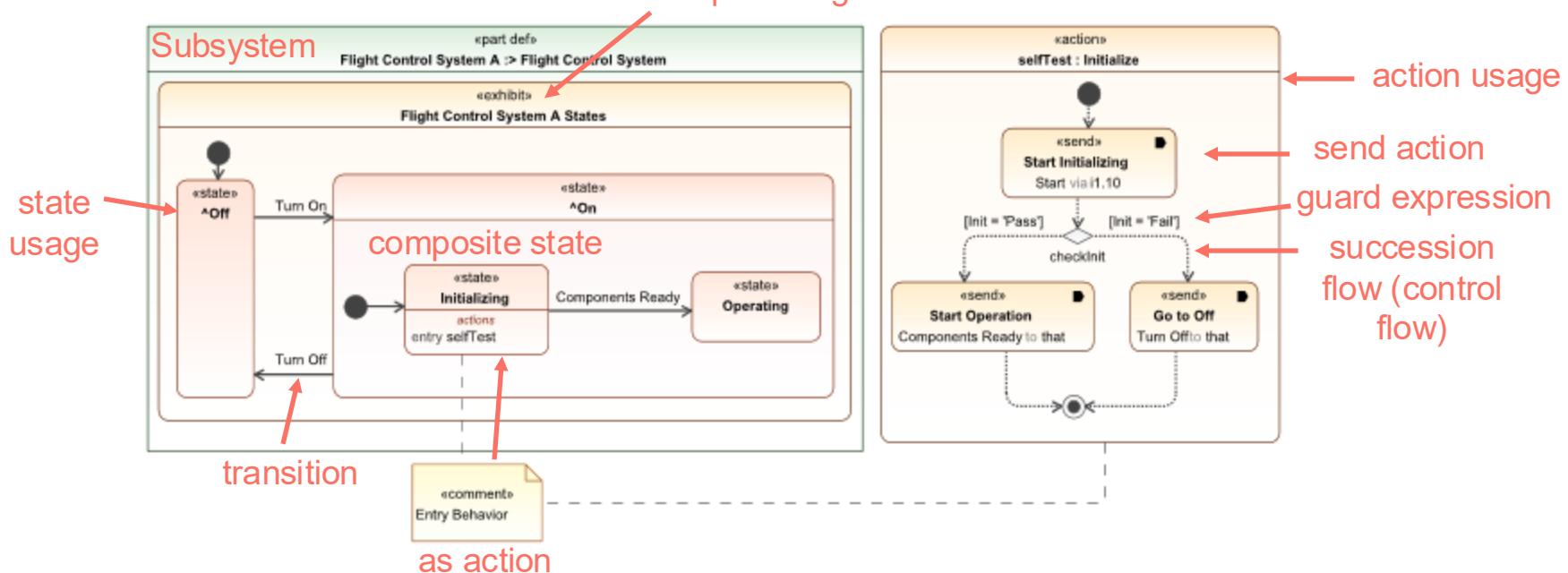




exhibit state – relates state  
to part usage or def



# SYSTEM AND OTHER PARAMETERS



- SysMLv2 allows direct expressions on system attributes (e.g.,  $a = b + c$ ), without need of a parametric model
- Similar to programming languages, expressions can be written directly on attributes
- SysMLv2 still supports similar parametric modeling to SysMLv1 (terminology differs)
- We found no need for SysMLv1-style parametric definitions and recommend the simpler approach

# SYSTEM AND OTHER PARAMETERS (cont.)



attributes

| «part def»<br>SAR Drone                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  | System     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|------------|
| attributes                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |            |
| totalWeight : MassValue = massPS + massCS + massNS + massFAS + massFCS + massPSM + massRT [kg]<br>ThrustToPower : Real = propulsion.TotalThrustEmpty / (totalWeight + fa&s.cargoWeight)                                                                                                                                                                                                                                                                                            |  | expression |
| satisfy requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |            |
| Thrust Weight Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |            |
| «part def»<br>Propulsion System                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |            |
| attributes                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |            |
| massPS : MassValue = 0.45 [kg]<br>TotalThrustEmpty : ForceValue = motorNo * motorThrust [kg]<br>motorNo : Integer = 4<br>motorThrust : ForceValue = thrustCoef * airDensity * rotationSpeed ^ 2 * propDiameter ^ 4 / 4 [kg]<br>thrustCoef : Real = 0.12<br>airDensity : MassDensityValue = 1.225 [kg·m^-3]<br>rotationSpeed : Integer = RPM / 60<br>RPM : Integer = motorConstant * pwrSupply.SupVoltage<br>motorConstant : Integer = 1200<br>propDiameter : LengthUnit = 0.15 [m] |  |            |
| «part def»<br>Power Supply System                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |            |
| attributes                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |            |
| massPSM : MassValue = 0.5 [kg]<br>SupVoltage : ElectricPotentialValue = 14.8 [V]                                                                                                                                                                                                                                                                                                                                                                                                   |  |            |
| «part def»<br>FA&S Delivery System                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |            |
| attributes                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |            |
| massFAS : MassValue = 0.15 [kg]<br>cargoWeight : MassValue = 0.625 [kg]                                                                                                                                                                                                                                                                                                                                                                                                            |  |            |
| «part def»<br>Radio Transmitter                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |            |
| attributes                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |            |
| massRT : MassValue = 0.2 [kg]                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |            |
| «part def»<br>Camera System                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |            |
| attributes                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |            |
| massCS : MassValue = 0.4 [kg]                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |            |
| «part def»<br>Flight Control System                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |            |
| attributes                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |            |
| massFCS : MassValue = 0.3 [kg]                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |            |
| «part def»<br>Navigation System                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |            |
| attributes                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |            |
| massNS : MassValue = 0.2 [kg]                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |            |

# TEXTUAL NOTATION



## DIAGRAMS FAIL, TEXT PREVAILS?

- SST presents textual notation as one of the language key characteristics and main advantages
- From MagicGrid perspective we found:
  - complex and cumbersome
  - slow to use and expansive
  - much less expressive than diagramming
- The benefits are derived more from general application than from adherence to a particular methodology
  - simpler interoperability and interchange between modeling tools
  - simpler to use in complex modeling situations
  - AI assistants to the rescue?

# DIAGRAMS FAIL. TEXT PREVAILS? (cont.)



Operational Model | DistressSignalHandling | Creation Of Safe Place | Operational Connectivity... | OperationalLibrary (Read-Only) |

```
1 package [$1] 'Operational Model' {
930  package [$716] 'Operational Information' {
957      #operationalInformation item def [$743] 'Rescue Aborted';
958      #operationalInformation item def [$744] 'Rescue Available';
959      #operationalInformation item def [$745] 'Rescue Complete';
960      #operationalInformation item def [$746] 'Rescue Resource Assigned To Operation';
961      #operationalInformation item def [$747] 'Rescue Resource Removed From Operation';
962      #operationalInformation item def [$748] 'Rescue Status';
963      #operationalInformation item def [$749] 'Rescue Unavailable';
964      #operationalInformation item def [$750] Response;
965      #operationalInformation item def [$751] 'Safe Place Disestablished';
966      #operationalInformation item def [$752] 'Safe Place Disestablishment Req';
967      #operationalInformation item def [$753] 'Safe Place Established';
968      #operationalInformation item def [$754] 'Safe Place Establishment Req';
969      #operationalInformation item def [$755] 'Safe Place Material And Personnel';
970      #operationalInformation item def [$756] 'Safe Place Medical Status';
971      #operationalInformation item def [$757] 'Safe Place Not Established';
972      #operationalInformation item def [$758] 'Safe Place Operational';
973      #operationalInformation item def [$759] 'Safe Place Patient Transport Arrival At Hs';
974      #operationalInformation item def [$760] 'Safe Place Patient Transport Arrival';
975      #operationalInformation item def [$761] 'Safe Place Patient Transport Dispatched';
976      #operationalInformation item def [$762] 'Safe Place Patient Transport Request';
977      #operationalInformation item def [$763] 'Safe Place Rescued Person Treatment Data';
978      #operationalInformation item def [$764] 'SAR Operation Aborted';
979      #operationalInformation item def [$765] 'SAR Operation Complete';
980      #operationalInformation item def [$766] 'SAR Operation Initiated';
981      #operationalInformation item def [$767] 'Search Aborted';
982      #operationalInformation item def [$768] 'Search Available';
983      #operationalInformation item def [$769] 'Search Resource Assigned To Operation';
984      #operationalInformation item def [$770] 'Search Resource Removed From Operation';
985      #operationalInformation item def [$771] 'Search Status';
986      #operationalInformation item def [$772] 'Search Unavailable';
987      #operationalInformation item def [$773] 'Start Safe Place Disestablishment';
988      #operationalInformation item def [$774] 'Start Safe Place Establishment';
989      #operationalInformation item def [$775] 'Tasking Ack';
990      #operationalInformation item def [$776] 'Tasking Nack';
991      #operationalInformation item def [$777] Tasking;
992      #operationalInformation item def [$778] 'Updated Tracking Info';
993      #operationalInformation item def [$779] 'Warning Order';
994      #operationalInformation item def [$780] 'You Have Been Found';
995  }
996 }
997 view [$781] 'Operational Connectivity diagram' : SysMLStandardViews::iv;
```

≈ 1000 LoC

# SUMMARY

# SUMMARY

- It is still up to debate when to use usage vs definitions in the scope of MagicGrid
- Concept names are consistent and more intuitive from SE perspective (e.g., structure or interface declaration)
- Language semantics can be convoluted (e.g., action vs perform vs perform action, 4 types of connections, etc.)
- SysMLv2 doesn't provide specific mechanisms for establishing and managing relationships among projects and leaves this for tool vendors
- SysMLv2 must be restricted by methodology even more!



# 35<sup>th</sup> Annual **INCOSE** international symposium

hybrid event

Ottawa, Canada  
July 26 - 31, 2025