

International Council on Systems Engineering
A better world through a systems approach

SysML4Sec

Methodology for Security modeling in the context of large-scale product development with multiple design levels

Hartmut Hintze, Alice Santin,
Marvin Blecken, Daniel Patrick Pereira,
Ralf God

INCOSE International Symposium 2025 | Ottawa, Canada

Aircraft architectures are changing

YESTERDAY

Non-integrated aircraft

- Systems are simple, obscure, proprietary and isolated – clear ATA responsibilities
- easy integration, low complexity

TODAY

Integrated aircraft

- Systems share platforms (A653, Blades)
- Communication networks (Ethernet, AFDX)
- More complexity, more integration efforts

TOMORROW

eEnabled aircraft

- More and more COTS will be used
- Merging of ground and aircraft systems
- High integration complexity

Boeing 787 aircraft press review in 2008

The Register®

Software | Music & Media | Comms | Security | Management | Sci
Crime | Enterprise Security | Anti-Virus | Spam | ID | Spyware

[The Register](#) > [Security](#) > [Enterprise Security](#) >

US regulator raises
Dreamliner hacker risk fear

SICHERHEIT SECURITY-MANAGEMENT

Flugsicherheit

Boeings 'Dreamliner' anfällig für Hacker

Von: Liam Tung und Stefan Beiersmann

Montag, 7. Januar 2008

Die US-Flugsicht FAA hat Sicherheitsprobleme im Com
Boeing 787 Dreamliner ausgemacht, weil dessen Unterha
von der Bordelektronik abgekoppelt ist.

POLITICS : SECURITY

FAA: Boeing's New 787 May Be Vulnerable to
Hacker Attack

By Kim Zetter 01.04.08 | 7:30 PM

FOXNEWS.COM HOME > SCITECH

TECHTUESDAY

How to Hack Into a Boeing 787

Tuesday, February 19, 2008

By Jackson Kuhl
FOX NEWS

FOXNEWS.COM HOME > SCITECH

FAA: Terrorists Could Hack New Boeing Jetliner

Thursday, January 10, 2008

Associated Press

E-Mail | Print | Digg This! | del.icio.us

In-flight entertainment has come a
long way since passengers craned
their necks to catch a glimpse of
the flickering films shown in 1980s
aircraft.

Today's passengers expect
on-demand video systems,
telephones and even broadband
Internet access

sueddeutsche.de

Home | E-Paper | Immobilienmarkt | Stellenmarkt | Motormarkt | Anzeigen | SZ-Sh

Politik | Wirtschaft | Finanzen | Kultur | Sport | Leben | Karriere | München | Bayern

09.01.2008 15:01 Uhr

[Drucken](#) | [Versenden](#) | [Kontakt](#)

Boeing

Dreamliner auf Albtraum-Kurs

Mit wenigen Klicks zum Steuern: Die
Bordcomputer des neuen Boeing-Flaggschiffs
sind angeblich nicht ausreichend vor
Hackerangriffen geschützt.

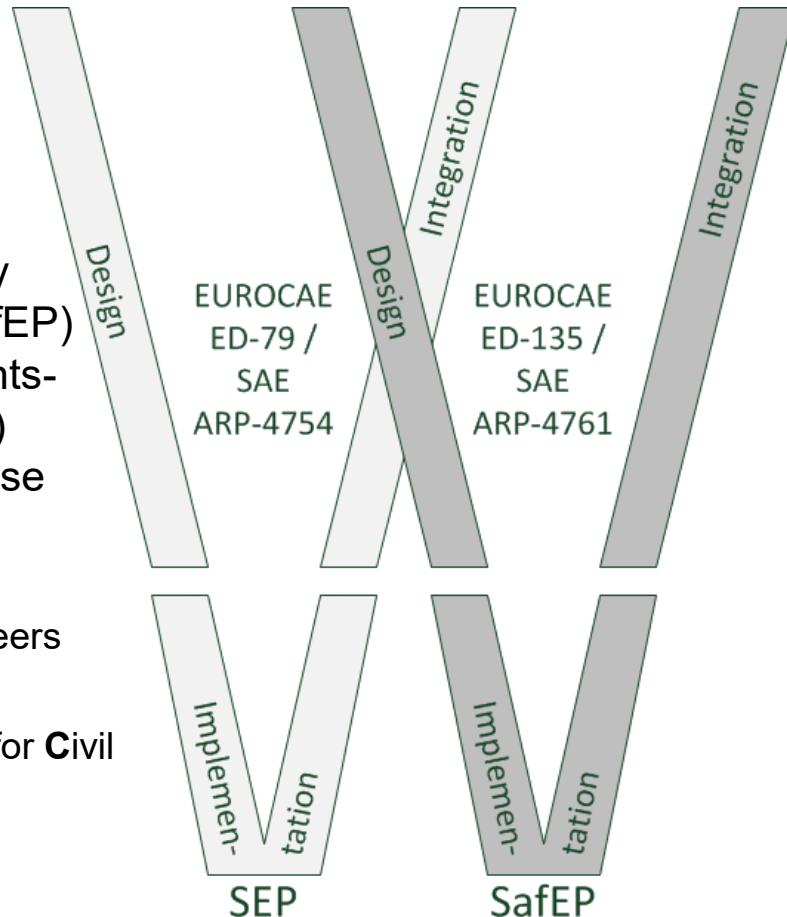
Von Wolfgang Koydl

Der Dreamliner von Boeing
Foto: AFP

Regulations Requirements for System Security

Published for Boeing 787:

Two Special Conditions from FAA (Federal Register, Dec. 28 2007):

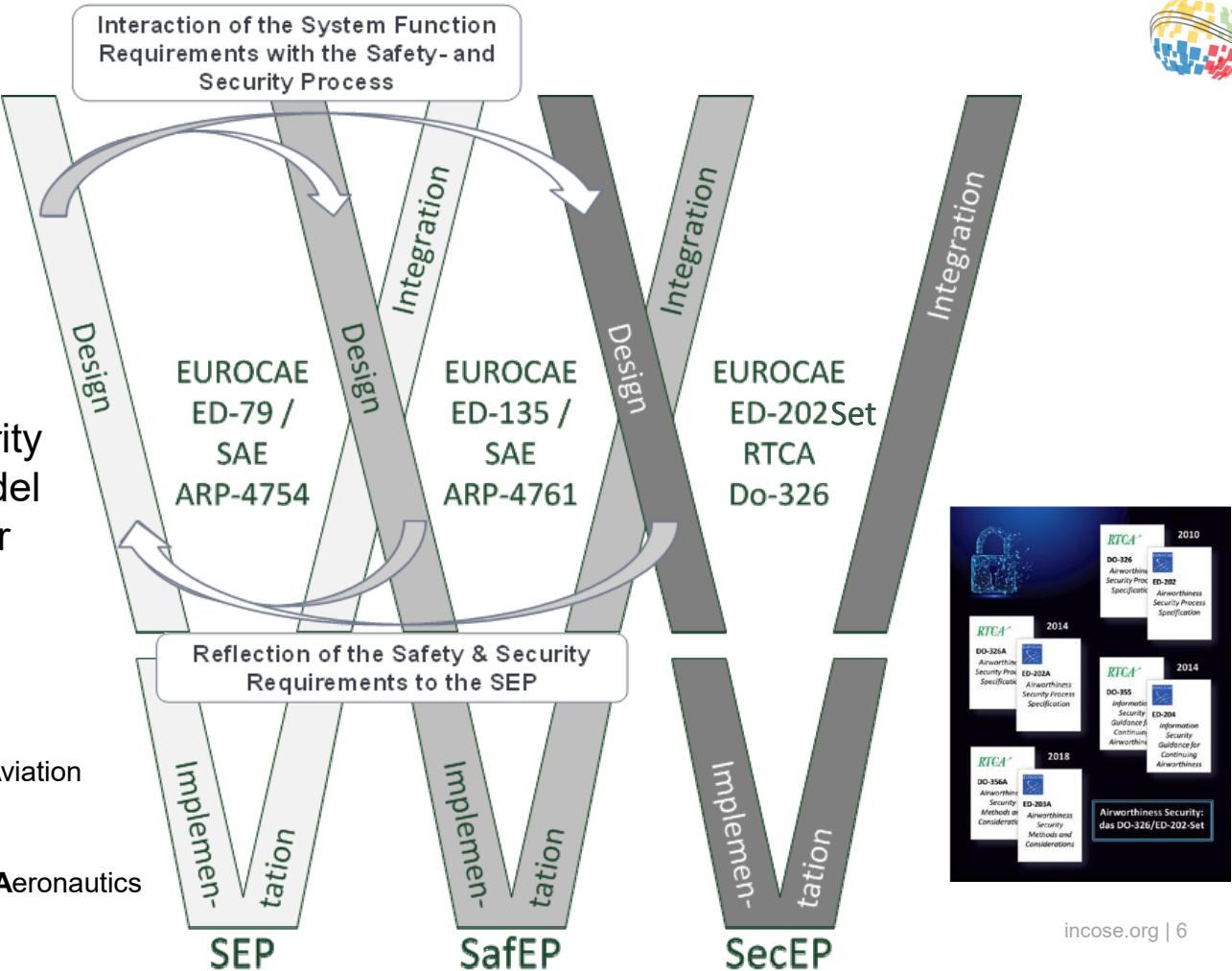

- 25-07-01-SC: “The design shall prevent all inadvertent or malicious changes to, and all adverse impacts upon, all systems, networks, hardware, software, and data in the Aircraft Control Domain and in the Airline Information Domain from all points within the Passenger Information and Entertainment Domain.”
- 25-07-02-SC: “The applicant shall ensure system security protection for the Aircraft Control Domain and Airline Information Services Domain from access by unauthorized sources external to the airplane. The applicant shall also ensure that security threats are identified and assessed, and that risk mitigation strategies are implemented to protect the airplane from all adverse impacts on safety, functionality, and continued airworthiness.

From to the Two-V-Model ...

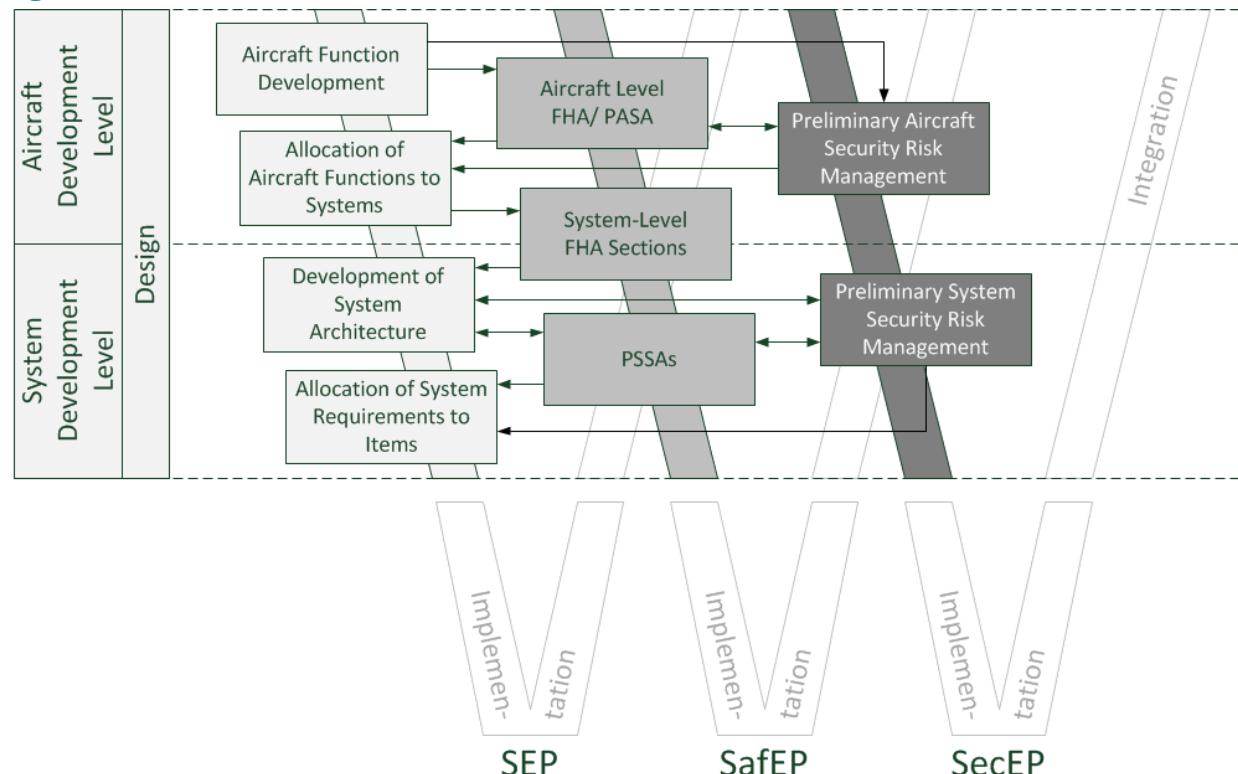
The System Engineering process (SEP) and Safety Engineering Process (SafEP) are using the Requirements-Based Engineering (RBE) method at the design phase today.

SAE –
Society of Automobile Engineers

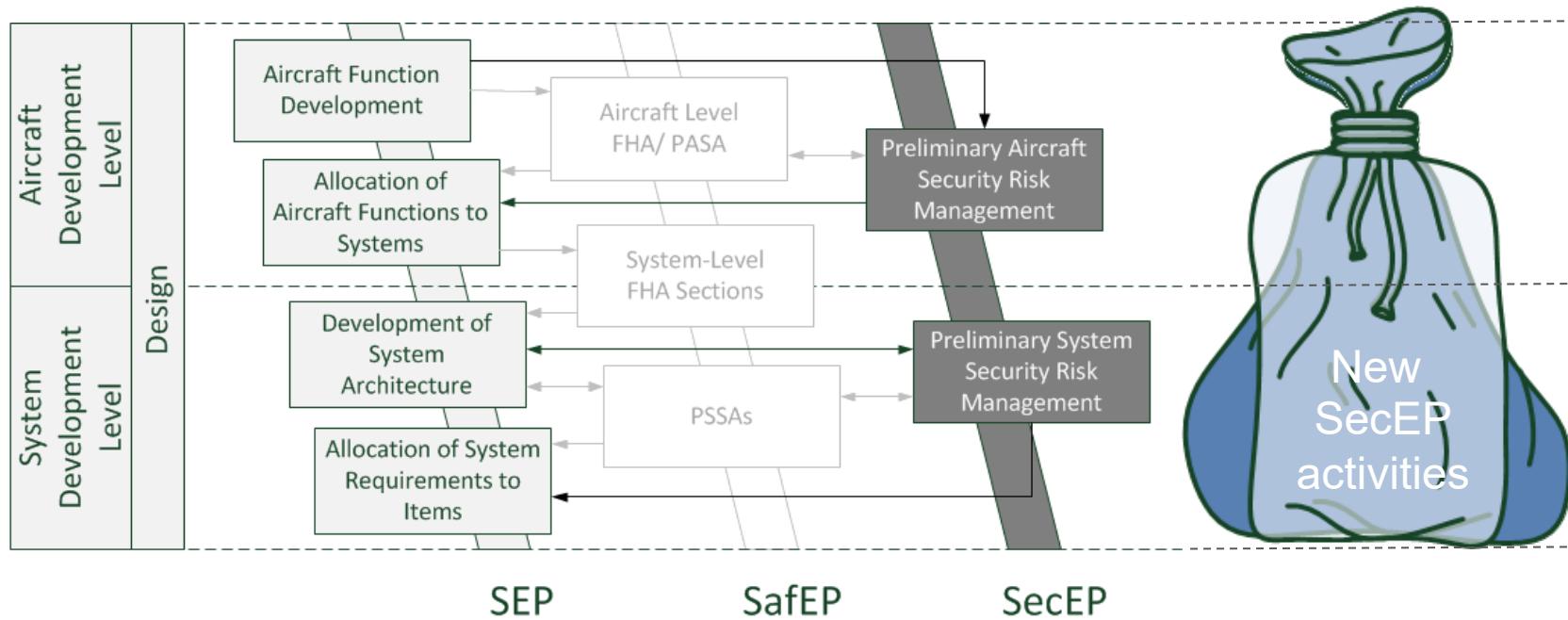
EUROCAE –
The European Organization for Civil Aviation Equipment

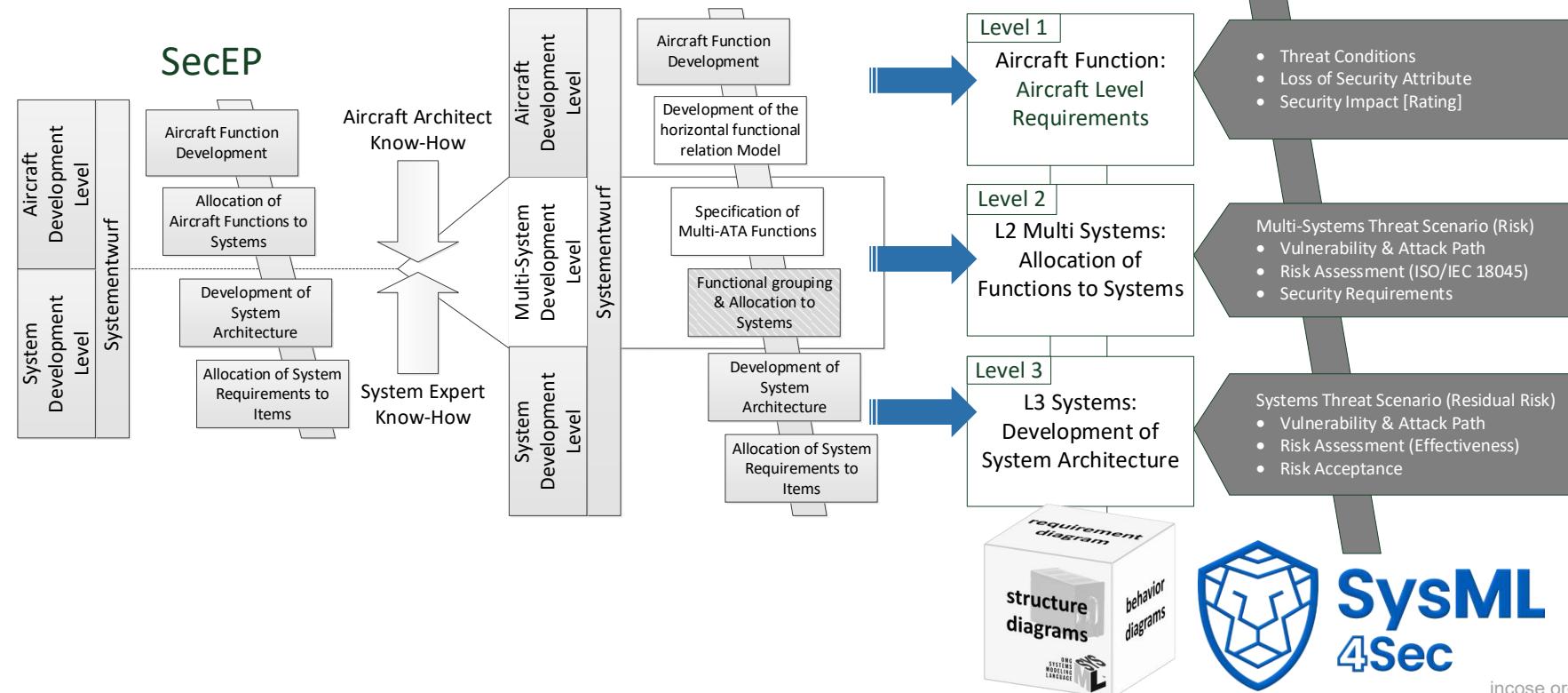

... to the Three-V-Model

The Two-V-Model was extended by the Security Engineering Process (SecEP) to fulfil the authority requirements. Each V-Model is interacting with the other ones.


SAE –
Society of Automobile Engineers

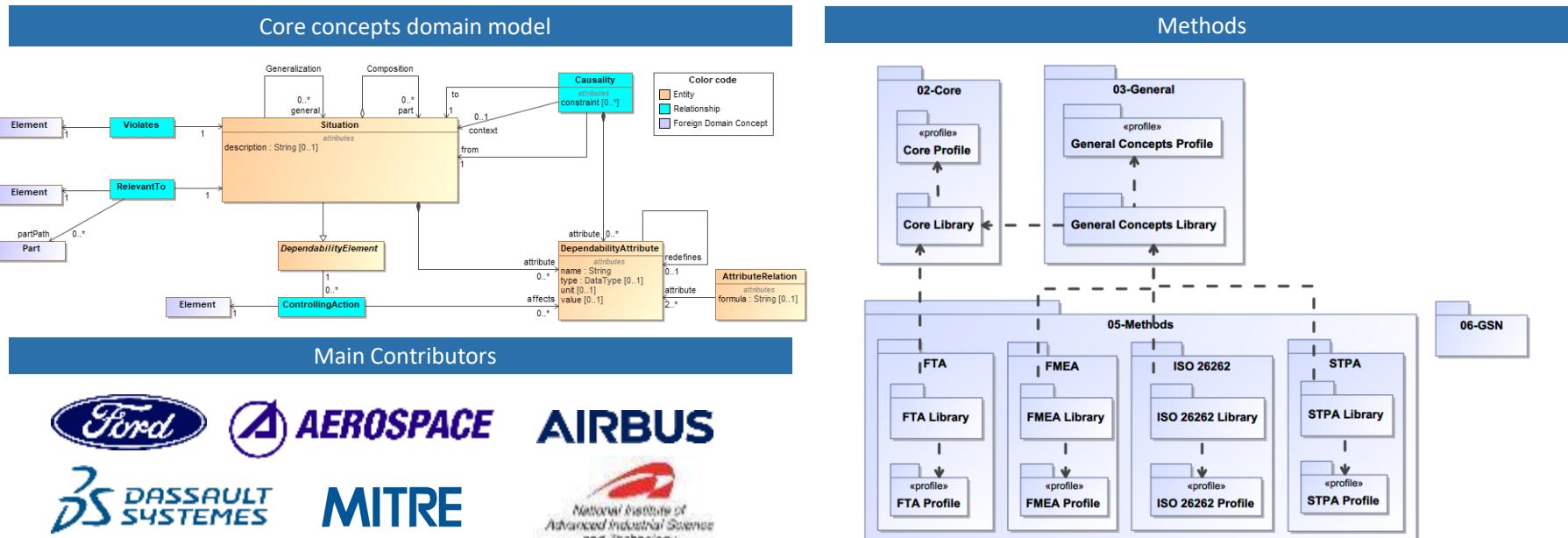
EUROCAE –
The European Organization for Civil Aviation Equipment


RTCA –
The Radio Technical Commission for Aeronautics


Detailed activities of the Three-V-Model Design phase specified by SAE ARP- 4754

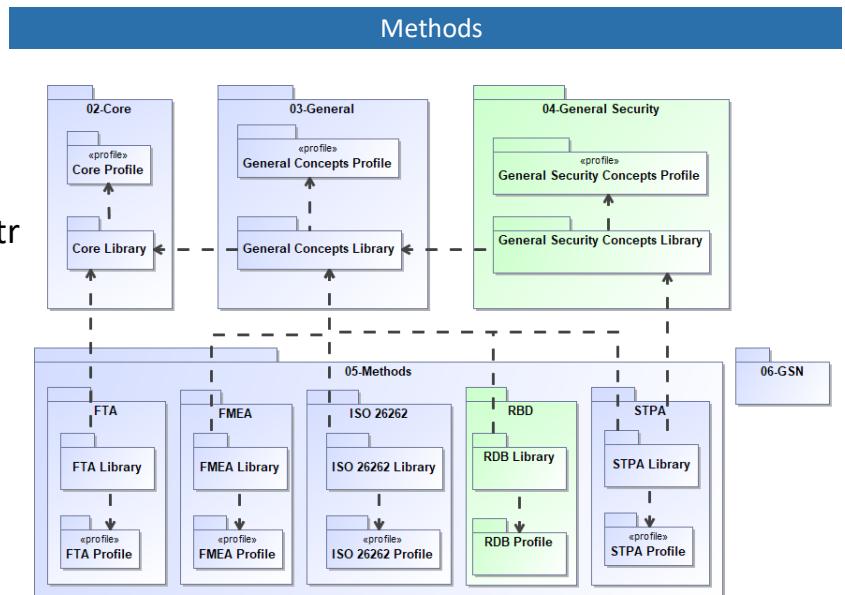
Focusing on the SEP & SecEP for the new process approach

SysML4Sec


RAAML | A safety and cybersecurity modeling language (1/2)

▪ OMG RAAML 1.0 FTF:

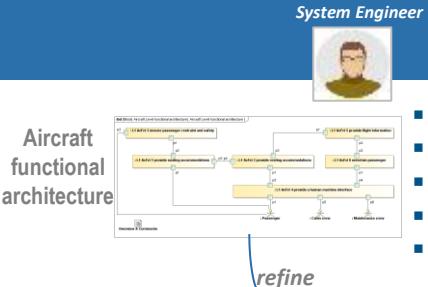
- Extensions to SysML needed to support safety and reliability analysis
- Published in April 2023



OMG RISK ANALYSIS
AND ASSESSMENT
MODELING LANGUAGE

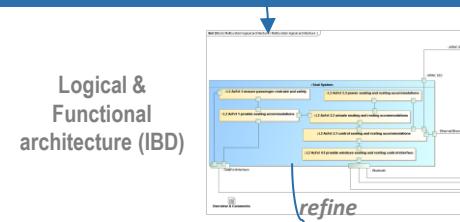
RAAML | A safety and cybersecurity modeling language (2/2)

- **OMG RAAML 1.1, beta version available since June 2024**
 - Foundations for security to support specific security method (e.g. TARA ISO21434, STPA-Sec)
 - Reliability Block Diagrams (RDB)
- New concepts (common & security specific):
 - Item
 - Asset (with value attributes – various *-ilities)
 - Loss, Impact (with individually rated impact to each attr)
 - Factor (promoted from STPA)
 - Limitation, Weakness, Vulnerability
 - Threat, Threat Actor (Security-Specific)


Main Contributors

SysML-based & multi-systems risk assessment for aviation

L1 Aircraft Function

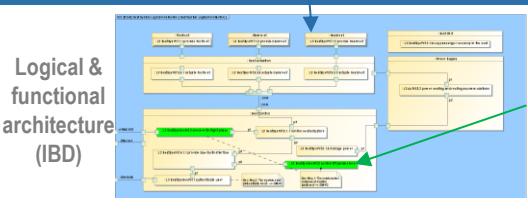

- Security Assets
- Indirect Assets
- Flight Phases
- Use Cases
- Misuse Cases

Security Engineer

#	Name	Security Attribute	Aggregate Impact Rating
1	TC-27 L1 AcFct 2 provide resting accommodations	Accountability Impact	No Effect
2	TC-28 L1 AcFct 2 provide resting accommodations	Availability Impact	Major
3	TC-29 L1 AcFct 2 provide resting accommodations	Confidentiality Impact	No Effect
4	TC-30 L1 AcFct 2 provide resting accommodations	Integrity Impact	Major
5	TC-31 L1 AcFct 2 provide resting accommodations	Privacy Impact	No Effect

L2 Multi Systems

- Threat Conditions
- Loss of Security Attribute
- Security Impact


Multi-Systems Threat Scenario [Risk]

- Vulnerability & Attack Path
- Risk assessment as per ISO 18 045:2022
- Security Requirements

Risk Acceptability

Level of Threat:	Severity of the Threat Condition Effect				
	No Safety Effect	Minor	Major	Hazardous	Catastrophic
Very High	Acceptable	Acceptable	Unacceptable	Unacceptable	Unacceptable
High	Acceptable	Acceptable	Unacceptable	Unacceptable	Unacceptable
Moderate	Acceptable	Acceptable	Acceptable	Unacceptable	Unacceptable
Low	Acceptable	Acceptable	Acceptable	Acceptable	Unacceptable
Extremely Low	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable*

L3 Systems

satisfy

Systems Threat Scenario [Residual Risk]

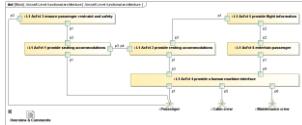
- Refine Multi-Systems Threat Scenario
- Vulnerability & Attack Path
- Risk Assessment as per DO326 Effectiveness method
- Risk Acceptance

Effectiveness Matrix

Effectiveness Matrix	
Effectiveness	1
Effectiveness	2
Effectiveness	3
Effectiveness	4
Effectiveness	5
Effectiveness	6
Effectiveness	7
Effectiveness	8
Effectiveness	9
Effectiveness	10
Effectiveness	11
Effectiveness	12
Effectiveness	13
Effectiveness	14
Effectiveness	15
Effectiveness	16
Effectiveness	17
Effectiveness	18
Effectiveness	19
Effectiveness	20
Effectiveness	21
Effectiveness	22
Effectiveness	23
Effectiveness	24
Effectiveness	25
Effectiveness	26
Effectiveness	27
Effectiveness	28
Effectiveness	29
Effectiveness	30
Effectiveness	31
Effectiveness	32
Effectiveness	33
Effectiveness	34
Effectiveness	35
Effectiveness	36
Effectiveness	37
Effectiveness	38
Effectiveness	39
Effectiveness	40
Effectiveness	41
Effectiveness	42
Effectiveness	43
Effectiveness	44
Effectiveness	45
Effectiveness	46
Effectiveness	47
Effectiveness	48
Effectiveness	49
Effectiveness	50
Effectiveness	51
Effectiveness	52
Effectiveness	53
Effectiveness	54
Effectiveness	55
Effectiveness	56
Effectiveness	57
Effectiveness	58
Effectiveness	59
Effectiveness	60
Effectiveness	61
Effectiveness	62
Effectiveness	63
Effectiveness	64
Effectiveness	65
Effectiveness	66
Effectiveness	67
Effectiveness	68
Effectiveness	69
Effectiveness	70
Effectiveness	71
Effectiveness	72
Effectiveness	73
Effectiveness	74
Effectiveness	75
Effectiveness	76
Effectiveness	77
Effectiveness	78
Effectiveness	79
Effectiveness	80
Effectiveness	81
Effectiveness	82
Effectiveness	83
Effectiveness	84
Effectiveness	85
Effectiveness	86
Effectiveness	87
Effectiveness	88
Effectiveness	89
Effectiveness	90
Effectiveness	91
Effectiveness	92
Effectiveness	93
Effectiveness	94
Effectiveness	95
Effectiveness	96
Effectiveness	97
Effectiveness	98
Effectiveness	99
Effectiveness	100

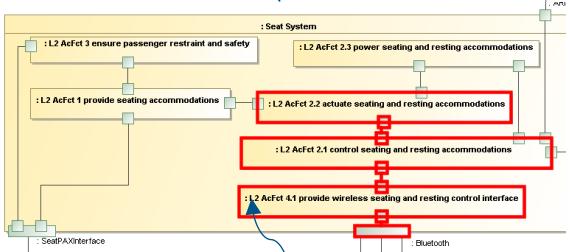
L1 – Aircraft Level

L2 - Multi-systems level


L3 - Systems level

1

2


Identify relevant Aircraft functions as **Security Assets**

Design Aircraft functional architecture.
Define **Flight phase** and **Indirect Asset**
(Crew, Passengers...)

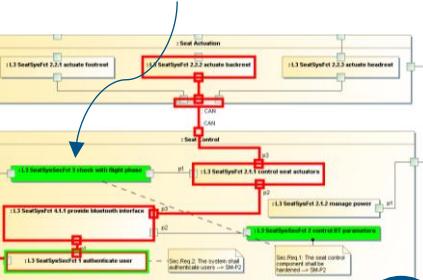
4

Design Logical and Functional architecture

Security Engineer

3

Create **Threat Condition** table for each **Security Asset** and rate its **Impact** on **Indirect Assets**


#	Name	Security Attribute	Threat Condition	Aggregate Impact Rating	Impact On 'Airline'	Rationale for Rating of Impact On 'Airline'
1	TC-1 L1 AcFct 2 provide resting a	Accountability	TC-1 L1 AcFct 2 provide resting a	No Effect	No Effect	The rational is that one...
2	TC-2 L1 AcFct 2 provide resting a	Availability	TC-2 L1 AcFct 2 provide resting a	Major	No Effect	
3	TC-3 L1 AcFct 2 provide resting a	Confidentiality	TC-3 L1 AcFct 2 provide resting a	No Effect	No Effect	
4	TC-4 L1 AcFct 2 provide resting a	Integrity	TC-4 L1 AcFct 2 provide resting a	Major	No Effect	
5	TC-5 L1 AcFct 2 provide resting a	Privacy	TC-5 L1 AcFct 2 provide resting a	No Effect	No Effect	

5

Create **Attack Path** directly on the system model and rate its **likelihood**

6

Refine Logical and Functional architecture adding **Security Measures**

7

Based on **Pre-Threat Scenario**, create **Post -Threat Scenario** that refined **Attack Path** including new **Security Measures**. Rate **Effectiveness** to get **Risk Acceptability** result.

TS-4 - my L3 TS

Security risk (Impact: Major):	
00:29:29 27/26/2019 22:32:21 2019	01:29:29 27/26/2019 22:32:21 2019

Effectiveness:

Effect Criterion	Exposure reduction		Protection	Non-technical	Effectiveness capping
	Preparation measures	Technical			
Windows of opportunity	SM1 non rest sm	7	0	0	0
			L3 Seafly/SeatFct 3 authenticate	3	0

#	Threat Source	Name	Lower Level Threat Scenario	Vulnerability	Attack Path	Misuse Case	Threat Condition	Aggregated Impact Rating	Likelihood	Risk	Requirement
1	human with intention	MultiSystems T1	TC-1 L1 AcFct 2 provide resting a	AV1- Seat Bluetooth interface	AV1- Spoofer through seat Bluetooth	MUC1-MUC3	TC-1 L1 AcFct 2 provide resting a	Major	4	Unacceptable	1 Prevent tampering of seat accommodation for resting through seat Bluetooth
2	human with intention	MultiSystems T1	TC-1 L1 AcFct 2 provide resting a	AV2- Entertainment Bluetooth interface	AV2- Spoofer through Entertainment Bluetooth	MUC1-MUC3	TC-1 L1 AcFct 2 provide resting a	Major	11	Unacceptable	2 Prevent tampering of seat accommodation for resting through Entertainment Bluetooth

KEY TAKE AWAYS

TRACEABILITY

Multi-systems level where High level design is connected to Lower levels solutions

SECURITY BY DESIGN

Integrated Security : people agnostic, no ambiguity, fully connected to the model

Secure from Design to Certification

SCALABILITY

Knowledge sharing collaborative work between systems and security engineers

CONSISTENCY

Iterative assessment to adapt to the system design level
Customizable to follow standards & best practices evolution

Thank You!

Hartmut Hintze

Hamburg University of Technology
Hein-Saß-Weg 22, D-21129 Hamburg
Hartmut.Hintze@TUHH.de

Overview Today's Regulations and Standards

Airworthiness certification (regulations)

Regulation No 1702/2003	
EASA Part 21 Airworthiness and Environmental Certification	Certification Specifications CS 25 – Certification Specifications for Large Aeroplanes
	CS 25.1309 Equipment, systems and installations
	AMC 25.1309 System design and analysis

Acceptable Means of Compliance

Systems Engineering	Safety Engineering	Security Engineering
ARP4754A / ED-79A Guidelines for Development of Civil Aircraft and Systems	ARP4761A/ED-135 Guidelines for Conducting the Safety Assessment Process on Civil Aircraft, Systems, and Equipment	DO-326-/ED202-Set* Airworthiness Security

Design and Security Considerations

ARINC 664 P5 Aircraft Data Network, Part 5, Network Domain Characteristics and Interconnection	ARINC 811 Commercial Aircraft Information Security Concepts of Operation and Process Framework
---	---

Detailed Design & Implementation

DO-254 / ED-80 Design Assurance Guidance For Airborne Electronic Hardware	DO-178C / ED-18C Software Considerations in Airborne Systems and Equipment Certification	DO-160G / ED-14G Environmental conditions and test procedures for airborne equipment	DO-332 / ED-217 Object Oriented Technology and Related Technologies
DO-330 / ED-215 Software Tool Qualification Considerations	DO-331 / ED-218 Model Based Development and Verification	DO-333 / ED-216 Formal Methods	

*Consists of:

DO-391 / ED-201A Aeronautical Information System Security Framework Guidance	DO-356A / ED-203A Airworthiness Security Methods and Considerations	ED-205A Process Standard for Air Traffic Management/Air Navigation Services (ATM/ANS) Ground Systems Security Aspects for Certification/Declaration
DO-326A / ED-202A Airworthiness Security Process Specification	DO-355A / ED-204A Information Security Guidance for Continuing Airworthiness	